• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The first mitochondrial genome for the butterfly family Riodinidae(Abisara fylloides) and its systematic implications

    2013-09-20 03:39:42FangZHAODunYuanHUANGXiaoYanSUNQingHuiSHIJiaShengHAOLanLanZHANGQunYANG
    Zoological Research 2013年5期

    Fang ZHAO, Dun-Yuan HUANG,2, Xiao-Yan SUN, Qing-Hui SHI, Jia-Sheng HAO,*, Lan-Lan ZHANG, Qun YANG,*

    1. College of Life Sciences, Anhui Normal University, Wuhu 24100, China

    2. College of Forestry, Jiangxi Environmental Engineering Vocational College, Ganzhou 34100, China

    3. Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 21008, China

    The typical metazoan mitochondrial genome(mitogenome) contains 37 genes, including 13 proteincoding genes (PCGs), 2 rRNA genes and 22 tRNA genes,and a non-coding area (i.e., the control region or the A+T-rich region) (Wolstenholme, 1992; Boore, 1999).Maternal inheritance, lack of recombination and an accelerated evolutionary rate compared with the nuclear genome have all contributed to the increased use of mitogenomes, which is one of the key methods in fields such as phylogenetics, comparative and evolutionary genomics, molecular evolution and population genetics(Ballard & Whitlock, 2004; Simonsen et al, 2006). At present, mitochondrial genomes have already been determined in a variety of insect groups covering nearly 200 species. However, reported complete mitogenomes are relatively scarce for lepidopterans and especially for butterflies. To our knowledge, as of October 2012 only about 20 butterfly species covering five butterfly families(Table 2) have been reported or deposited into the GenBank, but only one butterfly family, the Riodinidae,still lack corresponding data.

    The phylogenetic position and taxonomic ranking of the butterfly family Riodinidae among butterfly lineages are still controversial issues among entomologists. Some scholars suggest that the riodinids are closely related to the lycaenids,1considering the similarities in morpholo gical character, behavior, and host plants between the two (sluglike larvae, pupa contigua, ants associated) (Ackery, 1984;Chou, 1998; de Jong et al, 1996; Ehrlich, 1958; Scott,1985). Moreover, they are usually classified into the Lycaenidae family as a subfamilial taxon. Some consider the riodinids a unique family parallel to the Lycaenidae family (Campbell et al, 2000; de Jong et al, 1996;Kristensen, 1976; Shou et al, 2006), and others propose that the riodinids are more closely related to the nymphalids than to the other butterfly groups, such as the lycaenids (Martin & Pashley, 1992; Robbins, 1987, 1988).

    This study sequenced the first complete mitochondrial genome of the Abisara fylloides, a representative species of the family Riodinidae, by long PCR and primer walking techniques. Its genetic structure was preliminarily compared with those of other available butterfly species. The maximum likelihood (ML) and Bayesian inference (BI) phylogenetic trees of the A.fylloides and other available butterfly representative species were reconstructed based on concatenated DNA sequences of the 13 protein-coding genes (PCGs), and aim to clarify their phylogenetic relationships and further provide new information about the structure, organization and molecular evolution of the lepidopteran mitogenomes.

    MATERIALS AND METHODS

    Sample collection and DNA extraction

    Adult individuals of A. fylloides were collected in Jinghong, Yunnan Province, China in August 2006. After collection, sample specimens were preserved in 100%ethanol immediately and stored at -20 °C before DNA extraction (specimen No. ZHF07). Total Genomic DNA was isolated using the proteinase K-SiO2method as described by Hao et al (2005).

    PCR amplification and sequence determining

    The multiple sequence alignments were conducted using the software Clustal X 1.8 based on the mitogenome sequences of Coreana raphaelis, Artogeia melete, Troides aeacus available from GenBank and those of Argyreus hyperbius, Acraea issoria, Calinaga davidis, Pieris rapae determined in our laboratory (Thompson et al, 1997). The long PCR primers, which may cover the whole mitogenome, were designed according to the conserved regions by the software Primer premier 5.0 (Singh et al,1998) (Table 1). Seven short fragment sequences (500-700 bp) of cox1, cox2, cox3, cytb, nad1, rrnL and rrnS were amplified using insect universal primers (Caterino &Sperling, 1999; Simmons & Weller, 2001; Simon et al,1994). All the primers were synthesized by the Shanghai Sheng gong Biotechnology Co. Ltd.

    Table 1 List of PCR primers used in this study

    Seven partial gene sequences were initially sequenced under the following conditions: an initial denaturation at 94 °C for 5 minutes, then denaturation at 94 °C for 1 minute for a total of 35 cycles; annealing at 45-55 °C for 1 minute and extension at 72 °C for 2 minutes plus 30 seconds; final extension at 72 °C for 10 minutes. Long PCRs were performed using TaKaRa LA Taq polymerase with the following cycling parameters:an initial denaturation for 5 minutes at 95 °C; followed by 30 cycles at 95 °C for 55 seconds, 45-55 °C for 2 minutes, 68 °C for 2 min and 30 seconds; and a subsequent final extension step of 68 °C for 10 minutes.

    The PCR products were separated by electrophoresis in a 1.2% agarose gel and purified using the DNA gel extraction kit (TaKaRa). All PCR fragments were sequenced directly after purification with the QIA quick PCR Purification Kit reagents (QIAGEN). Internal primers were applied to complete sequences by primer walking(detailed primer information will be provided upon request).All fragments were sequenced for both strands.

    Data analysis

    We used DNASIS MAX (Hitachi) for sequence assembly and annotation. Protein-coding genes and rRNA genes were identified by sequence comparison with other available insect mitochondrial sequences. The tRNAs were identified by tRNAscan-SE v.1.21 (Lowe &Eddy, 1997). The putative tRNAs, which were not found by tRNAscan-SE, were identified by a sequence comparison of A. fylloides with the other lepidopteran tRNAs. PCGs were aligned with the other available lepidopteran mitogenomes using DAMBE software (Xia& Xie, 2001). The tandem repeats in the A+T-rich region were predicted using the Tandem Repeats Finder online(http://tandem.bu.edu/trf/trf.html) (Benson, 1999).Nucleotide composition was calculated using PAUP 4.0b10 (Swofford, 2002). The mitogenome sequence data have been deposited in GenBank under the accession number HQ259069.

    Phylogenetic analysis

    Phylogenetic analyses were performed on 19 representative species including A. fylloides, covering all the six families of butterflies. The multiple aligning of the concatenated nucleotide sequences of the 13 mitochondrial PCGs of the 19 species (Table 2) was conducted using ClustalX 1.8. The phylogenetic trees were reconstructed with the maximum likelihood (ML)and Bayesian inference (BI) methods, using the moth species Adoxophyes honmai (GenBank accession number of mitogenome: NC014295) as the outgroup. In both phylogenetic analyses, the third codon position of all the sequences was excluded. The ML analyses were conducted in PAUP 4.0b10 by using TBR branch swapping (10 random addition sequences) as a search method. The model GTR+I+Γ was selected as the best fit model using Modeltest 3.06 (Posada & Crandall, 1998)under the AIC scores, and the bootstrap values of the ML tree were evaluated via the bootstrap test with 1 000 iterations. The Bayesian analysis was performed using MrBayes 3.1.2 (Huelsenbeck & Ronquist, 2001) with the partitioned strategy (13 partitions: cox1, cox2, cox3, atp8,atp6, nad1, nad2, nad4, nad4L, nad5, nad6 and cytb), and the best substitution model for each partition was selected as in the ML analysis. The MCMC analyses(with random starting trees) were run with one cold and three heated chains simultaneously for 1,000,000 generations sampled every 100 generations with a burnin of 25% until the average standard deviation of split frequencies to be less than 0.01, which means that convergence was reached.

    RESULTS AND DISCUSSION

    Genome structure and organization

    The complete mitogenome is 15 301 bp in length,encodes 37 genes in all. It contains 13 protein, 22 tRNA,2 rRNA genes and a non-coding high A+T content region(Figure 1, Table 3). Its structure and organization are identical to those of the majority of other lepidopterans(Bae et al, 2004; Cha et al, 2007; Cameron & Whiting,2008; Hao et al, 2012; Hong et al, 2008, 2009; Hu et al,2010; Kim et al, 2009b; Ji et al, 2012; Junqueira et al,2004; Wang et al, 2011), though a few lepidopterans,such as three Thitarodes species, were reported to possess the ancestral gene order trnI-trnQ-trnM instead of the trnM-trnI-trnQ (Cao et al, 2012) .

    Eight overlapping sequences totaling 61 bp are located throughout the A. fylloides mitogenome, with size ranging from 2 to 35 bp, of which the longest (35 bp)is located between the cox2 and the tRNALysgenes. In addition, 17 intergenic spacers ranging from 1 to 45 bp in length are found in the mitogenome. Among these spacers, the longest is located between the tRNAGlnand nad2 genes, the other 16 spacers are scattered throughout the whole genome (Figure 1, Table 3). Most of these spacer regions are arranged relatively compactly compared with other insect mitogenomes (Cameron &Whiting, 2008; Hao et al, 2012; Hong et al, 2009; Hu et al, 2010; Kim et al, 2009b; Ji et al, 2012; Junqueira et al,2004; Wang et al, 2011).

    Figure 1 Circular map of the mitochondrial genome of Abisara fylloides

    ?

    Table 3 Organization of the Abisara fylloides mitochondrial genome

    The A. fylloides A+T-rich region is flanked on one side by the rrnS and on the other side by the tRNAMetgenes. This region exhibits the highest A+T content(91.0%) (Table 4), and spans 423 bp (Table 3, Table 4). A sequence analysis of the A+T-rich region revealed that it contained some structures typical of other lepidopteran mitogenomes: (1) at 20 bp downstream of the small subunit rRNA gene, there is a structure including a motif ‘ATAGA’ which is very well conserved in all sequenced lepidopteran insects, and a 18-bp polyT stretch, both of which have been suggested as the origin of minority or light strand replication (ON) and to play a regulatory role (Kim et al, 2009a; Lutz-Bonengel et al,2004; Saitou et al, 2005; Yukuhiro et al, 2002). (2)Between the sites 15 151 and 15 168 there is a microsatellite-like (TA)9element, which is also found in the majority of other lepidopterans; (3) There is another motif “ATTTA” of unknown function located from 15 139 to 15 143 upstream of the (TA)9, which is also typical of the other lepidopterans. In addition, to our great surprise, an unexpected short microsatellitelike repeating region (TA)11downstream of the (TA)9was detected in the A+T-rich region, and this has not been reported in any other lepidopterans.

    Table 4 Nucleotide composition and skewness in different regions of the Abisara fylloides mitogenome

    Base composition bias

    The base composition of the A. fylloides mitogenome shows an A and T bias (Table 4). The whole A+T content of the mitogenome is up to 81.2%,ranging from that of Argyreus hyperbius (80.81%) to that of Coreana raphaelis (82.66%). Like most other metazoan mitogenomes, the A+T content of the A+T-rich region, which is located between the rrnS and tRNAMetgenes, is the highest (91.0%) in all known butterfly species except for P. rapae (Pieridae) to date.The base contents of A, T, C, G are 39.5%, 41.7%,11.3%, 7.5%, respectively, indicating a relatively higher A+T content (81.2%). These phenomena commonly exist in the protein-coding genes, which have a relatively lower A+T content (79.8%), and the tRNA and rRNA genes in insects.

    Protein-coding genes

    The sequences of the 13 Abisara fylloides PCGs are 11 224 bp in length, including 3 730 codons(excluding termination codons). Twelve of the 13 PCGs use standard ATN as their start codon except for the cox1 gene, and eight of these 12 PCGs begin with ATA or ATG (Methionine) and the other four begin with ATT or ATC (Isoleucine) (Table 3). The start codons for cox1 gene of lepidopteran insects have usually been a controversial issue. In general, there is no typical start codon, especially for the cox1 gene,which usually uses CAG (R) as start codon in insects,including the lepidopterans. However, some scholars reported unusual start codons, such as the trinucleotide TTG (Bae et al, 2004; Hong et al, 2008),ACG (Lutz-Bonengel et al, 2004), GCG (Nardi et al,2003), the tetranucleotide ATAA, ATCA and ATTA(Clary & Wolstenholme, 1983; de Bruijn,1983; Kim et al, 2006), and the hexanucleotides TATTAG (Flook et al, 1995), TTTTAG (Yukuhiro et al, 2002), TATCTA(Coates et al, 2005), ATTTAA (Beard et al, 1993;Mitchell et al, 1993) for cox1 in some other insect species. However, the CGA is present as a conserved region for all lepidopteran insects reported, and thus we tend to consider that CGA is the cox1 start codon for A. fylloides as Kim et al (2009b) suggested. As for stop codons, 9 of the 13 PCGs use standard TAA except for the cox1, cox2, nad4 and nad5 genes, all of which terminate at a single thymine (Table 3), and this case was also found in all other lepidopterans reported to date. For more details on this phenomenon, please refer to the discussions of Kim et al. (2010).

    The PCG amino acid sequence variation analysis showed that there were 3 755 homologous sites, of which 1 964 are conserved, 1 791 are variable, and 1 128 are parsimony informative. Among the twenty amino acids in the 13 PCGs, six (Leu, Met, Ile, Phe,Asn, and Tyr) were used more frequently than the others, and their usage frequencies were higher than the average, whereas the other 14 amino acids less used (Table 5).

    rRNA and tRNA genes

    The large subunit rRNA and small subunit rRNA genes of the A. fylloides are 1 334 and 771 bp in length,respectively. As in other lepidopterans, these two genes are located between tRNALeu(UUR)and tRNAVal, and between tRNAValand A+T-rich region respectively(Cameron & Whiting, 2008; Hao et al, 2012; Hu et al,2010; Kim et al, 2009a; Salvato et al, 2008; Wang et al,2011; Yang et al, 2009).

    The A. fylloides mitogenome harbors 22 tRNA genes, which are scattered throughout the whole genome and ranged in length from 61 to 71 bp. Except for the tRNASer(AGN), which lacks the DHU loop, all tRNAs are shown to be folded into the cloverleaf secondary structures, within which all amino acid acceptor stems have 7 base pairs, and all anticodon stems have 5 base pairs. This was also found in all the other lepidopterans determined to date (Cameron & Whiting, 2008; Hao et al,2012; Hu et al, 2010; Kim et al, 2009a).

    A total of 27 pairs of base mismatches were detected in all the predicted tRNA secondary structures,among which 17 are GU, 6 are UU, 2 are AA, and 2 are AC. The AA mismatches occur at the anticodon stem of tRNALysand the TψC loop of tRNATrp; the AC mismatches occur at the amino acid acceptor stem of tRNATyrand the anti codon stem of tRNALeu(UUR). Among the 6 UU mismatches, two occur at the amino acid acceptor stems of tRNALeu(UUR)and tRNAAla, two at the anti codon stems of tRNALeu(UUR)and tRNAGln, and another two at the anti codon stem of tRNASer(UCN),respectively (Figure 2).

    Table 5 Codon usage of the protein-coding genes of the Abisara fylloides mitogenomes

    Phylogenetic analysis

    At present, for the phylogenetic positions of the riodinids within papilionid butterflies, most morphological studies place them as most closely related to the lycaenids and identify the nymphalids as the closest relatives to this riodinid+lycaenid clade (de Jong et al, 1996; Ehrlich & Ehrlich, 1967; Kristensen, 1976;Scott & Wright, 1990). These relationships have been inferred using a variety of phylogenetic methods and are supported by a number of adult, larval and pupal synapomorphies. Additionally, molecular (DNA sequence of the mitochondrial NADH1 gene) or molecular plus morphological evidence also result in a monophyletic interpretation of the Riodinidae+Lycaenidae, and their sister relationship to the Nymphalidae (Wahlberg et al, 2005; Weller et al, 1996).However, based on a cladistic analysis of four foreleg characters with nine character states, Robbins (1988)suggested that the Riodinidae are more closely related to the Nymphalidae than to the Lycaenidae, and this result is supported by the nuclear 28S rRNA gene sequence data (Martin & Pashley, 1992).

    There are two opinions regarding the taxonomic rank of riodinids. First, some previous studies suggest that the riodinids should be categorized into the family lycaenids as a subfamilial taxon in light of their morphological characters (Chou, 1998; de Jong et al,1996; Ehrlich, 1958; Kristensen, 1976; Scott & Wright,1990), and this opinion is supported by the molecular studies of Zou et al (2009) and Hao et al (2007). Other studies postulate that the riodinids should be classified as a separate family parallel to Lycaenidae (Harvey, 1987;Martin & Pashley, 1992; Robbins, 1988; Weller et al,1996), and this view is supported by molecular phylogenetic studies based on data from the wingless gene by Campbell et al (2000) and the combined analysis of sequences of the nuclear Ef-1a, wingless, and mitochondrial COI genes by Wahlberg et al (2005).

    The ML and Bayesian trees of this study (Figure 3)showed that all the butterfly taxa in this study did not form a monophyletic unit, and a similar case was reported by Hao et al (2012). Nonetheless, both the ML and BI trees indicated that all the butterfly species were grouped into five distinct lineages: 1) the Papilionidae,including papilionids and parnassids; 2) Hesperiidae; 3)Pieridae; 4) Nymphalidae; 5) Lycaenidae+Riodinidae.The monophyly of Lycanidae + Riodinidae was strongly supported with a 100% bootstrap value in ML, and with 1.00 posterior probability value in BI. Thus, considering the results of Heikkil? et al (2012), which indicate the monophylies of lycaenids and riodinids, it is reasonable to propose that the two groups may be sisters, though the taxa sampling of riodinids in this analysis is extremely limited. Additionally, based their congruent genetic divergences compared with those between other butterfly subfamilies, the riodinids should be categorized into the Lycaenidae family as a subfamilial taxon.

    Figure 2 Predicated clover-leaf secondary structures for the mitochondrial tRNA genes of Abisara fylloides

    Figure 3 The Bayesian inference (BI) and maximum likelihood (ML) phylogenetic trees of main butterfly lineages based on 13 protein-coding gene sequences (Numbers on each node correspond to the posterior probability values of the BI analysis and the ML bootstrap percentage values for 1 000 replicates of ML analysis)

    Ackery PR. 1984. Systematic and faunistic studies on butterflies. In: Vane-Wright RI, Ackery PR. The Biology of Butterflies. London: Academic Press.Bae JS, Kim I, Sohn HD, Jin BR. 2004. The mitochondrial genome of the firefly, Pyrocoelia rufa: complete DNA sequence, genome organization, and phylogenetic analysis with other insects. Molecular Phylogenetics and Evolution, 32(3): 978-985.

    Ballard JWO, Whitlock MC. 2004. The incomplete natural history of mitochondria. Molecular Ecology, 13(4): 729-744.

    Beard CD, Hamm SM, Collins FH. 1993. The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization,and comparisons with mitochondrial sequences of other insects. Insect Molecular Biology, 2(2): 103-124.

    Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research, 27(2): 573-580.

    Boore JL. 1999. Animal mitochondrial genomes. Nucleic Acids Research, 27(8): 1767-1780.

    Cao YQ, Ma C, Chen JY, Yang DR. 2012. The complete mitochondrial genomes of two ghost moths, Thitarodes renzhiensis and Thitarodes yunnanensis: the ancestral gene arrangement in Lepidoptera. BMC Genomics, 13(1): 276.

    Cameron SL, Whiting MF. 2008. The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta: Lepidoptera:Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. Gene, 408(1-2): 112-123.

    Campbell DL, Brower AVZ, Pierce NE. 2000. Molecular evolution of the wingless gene and its implications for the phylogenetic placement of the butterfly family Riodinidae (Lepidoptera: Papilionoidea).Molecular Biology and Evolution, 17(5): 684-696.

    Caterino MS, Sperling FAH. 1999. Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes. Molecular Phylogenetics and Evolution, 11(1): 122-137.

    Cha SY, Yoon HJ, Lee EM, Yoon MH, Hwang JS, Jin BR, Han YS,Kim I. 2007. The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee, Bombus ignitus(Hymenoptera: Apidae). Gene, 392(1-2): 206-220.

    Chen M, Tian LL, Shi QH, Cao TW, Hao JS. 2012. Complete mitogenome of the Lesser Purple Emperor Apatura ilia (Lepidoptera:Nymphalidae: Apaturinae) and comparison with other nymphalid butterflies. Zoological Research, 33(2): 191-201.

    Chou I. 1998. Classification and Identification of Chinese Butterflies[M]. Zhengzhou: Henan Scientific and Technological Publishing House. (in Chinese)

    Coates BS, Sumerford DV, Hellmich RL, Lewis LC. 2005. Partial mitochondrial genome sequences of Ostrinia nubilalis and Ostrinia furnicalis. International Journal of Biological Sciences, 1: 13-18.

    Clary DO, Wolstenholme DR. 1983. Genes for cytochrome c oxidase subunit I, URF2, and three tRNAs in Drosophila mitochondrial DNA.Nucleic Acids Research, 11(19): 6859-6872.

    De Bruijn MHL. 1983. Drosophila melanogaster mitochondrial DNA,a novel organization and genetic code. Nature, 304(5932): 234-241.

    De Jong R, Vane-Wright RI, Ackery PR. 1996. The higher classification of butterflies (Lepidoptera): problems and prospects.Insect Systematics & Evolution, 27(1): 65-103.

    Ehrlich PR. 1958. The Comparative Morphology, Phylogeny and Higher Classification of the Butterflies (Lepidoptera: Papilionoidea).University of Kansas Science Bulletin, 39(8): 305-370.

    Ehrlich PR, Ehrlich AH. 1967. The phenetic relationships of the butterflies. I. Adult taxonomy and the nonspecificity hypothesis.Systematic Biology, 16(4): 301-317.

    Flook PK, Rowell CH, Gellissen G. 1995. The sequence, organization,and evolution of the Locusta migratoria mitochondrial genome.Journal of Molecular Evolution, 41(6): 928-941.

    Hao JS, Li CX, Sun XY, Yang Q. 2005. Phylogeny and divergence time estimation of cheilostome bryozoans based on mitochondrial 16S rRNA sequences. Chinese Science Bulletin, 50(12): 1205-1211.

    Hao JS, Su CY, Zhu GP, Chen N, Wu DX, Pan HC, Zhang XP. 2007.Mitochondrial 16S rDNA molecular morphology of the main butterflies’ lineages and its phylogenetic significance. Journal of Genetics and Molecular Biology, 18(2): 109-121.

    Hao JS, Sun QQ, Zhao HB, Sun XY, Gai YH, Yang Q. 2012. The complete mitochondrial genome of Ctenoptilum vasava (Lepidoptera:Hesperiidae: Pyrginae) and its phylogenetic implication. Comparative and Functional Genomics, 2012: 328049, doi: 10.1155/2012/328049.Harvey DJ. 1987. The Higher Classification of the Riodinidae. Ph. D dissertation, University of Texas, Austin.

    Heikkil? M, Kaila L, Mutanen M, Pe?a C, Wahlberg N. 2012.Cretaceous origin and repeated tertiary diversification of the redefined butterflies. Proceedings of the Royal Society B: Biological Sciences,279(1731): 1093-1099.

    Hong GY, Jiang ST, Yu M, Yang Y, Li F, Xue FS, Wei ZJ. 2009. The complete nucleotide sequence of the mitochondrial genome of the cabbage butterfly, Artogeia melete (Lepidoptera: Pieridae). Acta Biochimica et Biophysica Sinnica, 41(6): 446-455.

    Hong MY, Lee EM, Jo YH, Park HC, Kim SR, Hwang JS, Jin BR,Kang PD, Kim KG, Han YS, Kim I. 2008. Complete nucleotide sequence and organization of the mitogenome of the silk moth Caligula boisduvalii (Lepidoptera: Saturniidae) and comparison with other lepidopteran insects. Gene, 413(1-2): 49-57.

    Hu J, Zhang DX, Hao JS, Huang DY, Cameron S, Zhu CD. 2010. The complete mitochondrial genome of the yellow coaster, Acraea issoria(Lepidoptera: Nymphalidae: Heliconiinae: Acraeini): sequence, gene organization and a unique tRNA translocation event. Molecular Biology Reports, 37(7): 3431-3438.

    Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8): 754-755.

    Ji LW, Hao JS, Wang Y, Huang DY, Zhao JL, Zhu CD. 2012. The complete mitochondrial genome of the dragon swallowtail, Sericinus montela Gray (Lepidoptera: Papilionidae) and its phylogenetic implication. Acta Entomologica Sinica, 55(1): 91-100.

    Junqueira ACM, Lessinger AC, Torres TT, da Silva FR, Vettore AL,Arruda P, Espin AMLA. 2004. The mitochondrial genome of the blowfly Chrysomya chloropyga (Diptera: Calliphoridae). Gene, 339: 7-15.

    Kim I, Lee EM, Seol KY, Yun EY, Lee YB, Hwang JS, Jin BR. 2006.The mitochondrial genome of the Korean hairstreak, Coreana raphaelis(Lepidoptera: Lycaenidae). Insect Molecular Biology, 15(2): 217-225.

    Kim SR, Kim MI, Hong MY, Kim KY, Kang PD, Hwang JS, Han YS,Jin BR, Kim I. 2009a. The complete mitogenome sequence of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae).Molecular Biology Reports, 36(7): 1871-1880.

    Kim MI, Baek JY, Kim MJ, Jeong HC, Kim KG, Bae CH, Han YS, Jin BR, Kim I. 2009b. Complete nucleotide sequence and organization of the mitogenome of the red-spotted apollo butterfly, Parnassius bremeri(Lepidoptera: Papilionidae) and comparison with other lepidopteran insects. Molecules and Cells, 28(4): 347-363.

    Kim MJ, Wan XL, Kim KJ, Hwang JS, Kim I. 2010. Complete nucleotide sequence and organization of the mitogenome of endangered Eumenis autonoe (Lepidoptera: Nymphalidae). African Journal of Biotechnology, 9(5): 735-754.

    Kim MJ, Kang RA, Jeong HC, Kim KG, Kim I. 2011. Reconstructing intraordinal relationships in Lepidoptera using mitochondrial genome data with the description of two newly sequenced lycaenids, Spindasis takanonis and Protantigius superans (Lepidoptera: Lycaenidae).Molecular Phylogenetics and Evolution, 61(2): 436-445.

    Kristensen NP. 1976. Remarks on the family-level phylogeny of butterflies (Insecta, Lepidoptera, Rhopalocera). Journal of Zoological Systematics and Evolutionary Research, 14(1): 25-33.

    Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 25(5): 955-964.

    Lutz-Bonengel S, S?nger T, Pollak S, Szibor R. 2004. Different methods to determine length heteroplasmy within the mitochondrial control region.International Journal of Legal Medicine, 118(5): 274-281.

    Martin JA, Pashley DP. 1992. Molecular systematic analysis of butterfly family and some subfamily relationships (Lepidoptera: Papilionoidea).Annals of the Entomological Society of America, 85(2): 127-139.

    Mitchell SE, Cockburn AF, Seawright JA. 1993. The mitochondrial genome of Anopheles quadrimaculatus species A: complete nucleotide sequence and gene organization. Genome, 36(6): 1058-1073.

    Mao ZH, Hao JS, Zhu GP, Hu J, Si MM, Zhu CD. 2010. Sequencing and analysis of the complete mitochondrial genome of Pieris rapae Linnaeus (Lepidoptera: Pieridae). Acta Entomologica Sinica, 53(11):1295-1304. (in Chinese)

    Nardi F, Carapelli A, Dallai R, Frati F. 2003. The mitochondrial genome of the olive fly Bactrocera oleae; two haplotypes from distant geographical locations. Insect Molecular Biology, 12(6): 605-611.

    Posada D, Crandall KA. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14(9): 817-818.

    Qin F, Jiang GF, Zhou SY. 2012a. Complete mitochondrial genome of the Teinopalpus aureus guangxiensis (Lepidoptera: Papilionidae) and related phylogenetic analyses. Mitochondrial DNA, 23(2): 123-125.

    Qin XM, Guan QX, Zeng DL, Qin F, Li HM. 2012b. Complete mitochondrial genome of Kallima inachus (Lepidoptera: Nymphalidae:Nymphalinae): Comparison of K. inachus and Argynnis hyperbius.Mitochondrial DNA, 23(4): 318-320.

    Robbins RK. 1987. Logic and phylogeny: a critique of Scott’s phylogenies to the butterflies and Macrolepidoptera. Journal of the Lepidopterists’ Society, 41: 214-216.

    Robbins RK. 1988. Comparative morphology of the butterfly foreleg coxa and trochanter (Lepidoptera) and its systematic implications.Proceedings of the Entomological Society of Washington, 90: 133-154.Saitou S, Tamura K, Aotsuka T. 2005. Replication origin of mitochondrial DNA in insects. Genetics, 171(4): 1695-1705.

    Salvato P, Simonato M, Battisti A, Negrisolo E. 2008. The complete mitochondrial genome of the bag-shelter moth Ochrogaster lunifer(Lepidoptera, Notodontidae). BMC Genomics, 9: 331.

    Scott JA. 1985. The phylogeny of butterflies (Papilionoidea and Hesperioidea). Journal of Research on the Lepidoptera, 23(4): 241-281.Scott JA, Wright DM. 1990. Butterfly phylogeny and fossils // Kudrna O. Butterflies of Europe. Vol 2. Wiesbaden: Aula-Verlag.

    Shou JX, Chou I, Li YF. 2006. Systematic Butterfly Names of the World. Xi’an: Shaanxi Science and Technology Press. (in Chinese)

    Simmons RB, Weller SJ. 2001. Utility and evolution of cytochrome b in insects. Molecular Phylogenetics and Evolution, 20(2): 196-210.

    Simon C, Frati F, Bekenbach A, Crespi B, Liu H, Flook P. 1994.Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America,87(6): 651-701.

    Simonsen TJ, Wahlberg N, Brower AVZ, de Jong R. 2006. Morphology,molecules and fritillaries: approaching a stable phylogeny for Argynnini (Lepidoptera: Nymphalidae). Insect Systematics and Evolution, 37(4): 405-418.

    Singh VK, Mangalam AK, Dwivedi S, Naik S. 1998. Primer premier:program for design of degenerate primers from a protein sequence.Biotechniques, 24(2): 318-319.

    Swofford DL. 2002. PAUP* 4.0b10: Phylogenetic Analysis Using Parsimony (* and Other Methods), Beta Version. Sunderland: Sinauer Associates.

    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DJ.1997. The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24): 4876-4882.

    Tian LL, Sun XY, Chen M, Gai YH, Hao JS, Yang Q. 2012. Complete mitochondrial genome of the Five-dot Sergeant Parathyma sulpitia(Nymphalidae: Limenitidinae) and its phylogenetic implications.Zoological Research, 33(2): 133-143.

    Wahlberg N, Braby MF, Brower AVZ, de Jong R, Lee MM, Nylin S,Pierce N, Sperling FA, Vila R, Warren AD, Zakharov E. 2005.Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proceedings of the Royal Society B: Biological Sciences, 272(1572): 1577-1586.

    Wang XC, Sun XY, Sun QQ, Zhang DX, Hu J, Yang Q, Hao JS. 2011.Complete mitochondrial genome of the laced fritillary Argyreus hyperbius(Lepidoptera: Nymphalidae). Zoological Research, 32(5): 465-475.

    Weller SJ, Pashley DP, Martin JA, Constable JL. 1996. Reassessment of butterfly family relationships using independent genes and morphology.Annals of the Entomological Society of America, 89(2): 184-192.

    Wolstenholme DR. 1992. Animal mitochondrial DNA: structure and evolution. International Review of Cytology, 141: 173-216.

    Xia X, Xie Z. 2001. DAMBE: Software package for data analysis in molecular biology and evolution. Journal of Heredity, 92(4): 371-373.Yang L, Wei ZJ, Hong GY, Jiang ST, Wen LP. 2009. The complete nucleotide sequence of the mitochondrial genome of Phthonandria atrilineata (Lepidoptera: Geometridae). Molecular Biology Reports,36(6): 1441-1449.

    Yukuhiro K, Sezutsu H, Itoh M, Shimizu K, Banno Y. 2002.Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori. Molecular Biology and Evolution, 19(8): 1385-1389.

    Zou FZ, Hao JS, Huang DY, Zhang DX, Zhu GP, Zhu CD. 2009.Molecular phylogeny of 12 families of the Chinese butterflies based on mitochondrial ND1 and 16S rRNA gene sequences(Lepidoptera: Ditrysia: Rhopalocera). Acta Entomologica Sinica,52(2): 191-201. (in Chinese).

    边亲边吃奶的免费视频| 国产在线视频一区二区| 高清黄色对白视频在线免费看| 欧美日韩精品成人综合77777| 亚洲内射少妇av| 好男人视频免费观看在线| 超碰97精品在线观看| 精品一品国产午夜福利视频| 纵有疾风起免费观看全集完整版| 中文精品一卡2卡3卡4更新| 人人妻人人添人人爽欧美一区卜| 亚洲av综合色区一区| 考比视频在线观看| 国产精品 国内视频| 久久久久久伊人网av| 中文字幕av电影在线播放| 黄网站色视频无遮挡免费观看| 美女中出高潮动态图| 精品国产露脸久久av麻豆| 国产一区二区在线观看日韩| 亚洲精品久久午夜乱码| 国产无遮挡羞羞视频在线观看| 久久久精品免费免费高清| 狠狠婷婷综合久久久久久88av| 久久精品久久久久久噜噜老黄| 国产亚洲最大av| a级毛片黄视频| 久久久国产欧美日韩av| 免费观看av网站的网址| 自拍欧美九色日韩亚洲蝌蚪91| 国产免费一区二区三区四区乱码| videos熟女内射| 黄色配什么色好看| 少妇被粗大猛烈的视频| 免费观看无遮挡的男女| 国产爽快片一区二区三区| 精品少妇黑人巨大在线播放| 亚洲天堂av无毛| 黑人欧美特级aaaaaa片| 亚洲国产欧美日韩在线播放| 欧美日本中文国产一区发布| 69精品国产乱码久久久| 91精品伊人久久大香线蕉| 久久人人爽av亚洲精品天堂| 国产精品久久久久久精品古装| 久久亚洲国产成人精品v| 男女边摸边吃奶| 国产成人免费观看mmmm| 欧美人与性动交α欧美软件 | 久久99一区二区三区| 久久久久久伊人网av| 一区二区三区四区激情视频| 精品久久久精品久久久| 亚洲色图综合在线观看| 交换朋友夫妻互换小说| 日本黄色日本黄色录像| 中文字幕另类日韩欧美亚洲嫩草| 精品人妻偷拍中文字幕| 日本色播在线视频| 最黄视频免费看| 精品一区二区免费观看| 国产精品国产三级国产av玫瑰| www.熟女人妻精品国产 | 女的被弄到高潮叫床怎么办| 亚洲国产精品国产精品| 人妻 亚洲 视频| 大香蕉久久网| 制服丝袜香蕉在线| 人成视频在线观看免费观看| a级毛片在线看网站| 黄片无遮挡物在线观看| 五月伊人婷婷丁香| 日日撸夜夜添| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久人妻精品一区果冻| 两个人看的免费小视频| 王馨瑶露胸无遮挡在线观看| 9热在线视频观看99| a级毛色黄片| 久热久热在线精品观看| 国产乱来视频区| 久久国产亚洲av麻豆专区| 国产成人免费无遮挡视频| √禁漫天堂资源中文www| 丰满乱子伦码专区| 精品少妇久久久久久888优播| 王馨瑶露胸无遮挡在线观看| 精品一区二区三区视频在线| 老司机影院成人| 日韩一区二区三区影片| 飞空精品影院首页| 国产精品蜜桃在线观看| 欧美成人午夜免费资源| 一个人免费看片子| 久久久久久久亚洲中文字幕| 美女中出高潮动态图| 99re6热这里在线精品视频| 黑丝袜美女国产一区| 国产黄频视频在线观看| 久久这里只有精品19| 美女主播在线视频| 国产国语露脸激情在线看| 91aial.com中文字幕在线观看| 黄片无遮挡物在线观看| 成人国产av品久久久| av片东京热男人的天堂| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品欧美亚洲77777| 美女内射精品一级片tv| 久久精品夜色国产| 自线自在国产av| 亚洲三级黄色毛片| 亚洲精品一二三| 看十八女毛片水多多多| 亚洲国产精品一区二区三区在线| 亚洲欧美精品自产自拍| 制服诱惑二区| 一级a做视频免费观看| 中文字幕最新亚洲高清| 校园人妻丝袜中文字幕| av国产精品久久久久影院| 精品久久久精品久久久| 人妻系列 视频| 性色av一级| 日本91视频免费播放| 久久久久久久亚洲中文字幕| 亚洲,欧美精品.| 大陆偷拍与自拍| 中文字幕另类日韩欧美亚洲嫩草| 性高湖久久久久久久久免费观看| 九草在线视频观看| 精品一区二区三卡| 考比视频在线观看| 亚洲国产日韩一区二区| 国产伦理片在线播放av一区| 国产精品不卡视频一区二区| 美女中出高潮动态图| 宅男免费午夜| 成年人免费黄色播放视频| 国产在线免费精品| 色网站视频免费| 中文字幕人妻丝袜制服| 99精国产麻豆久久婷婷| 大话2 男鬼变身卡| 人成视频在线观看免费观看| 日韩一本色道免费dvd| 久久精品国产亚洲av涩爱| 纵有疾风起免费观看全集完整版| 99国产综合亚洲精品| 国产免费福利视频在线观看| 1024视频免费在线观看| 亚洲熟女精品中文字幕| 免费在线观看黄色视频的| 亚洲熟女精品中文字幕| 久久久亚洲精品成人影院| 国产 一区精品| 99香蕉大伊视频| 亚洲精品日韩在线中文字幕| 亚洲成色77777| 啦啦啦视频在线资源免费观看| av片东京热男人的天堂| 精品人妻偷拍中文字幕| 精品一品国产午夜福利视频| 国产成人91sexporn| 中文字幕另类日韩欧美亚洲嫩草| 亚洲,欧美精品.| 成年动漫av网址| 韩国高清视频一区二区三区| 日日爽夜夜爽网站| 日日撸夜夜添| 精品国产乱码久久久久久小说| 免费女性裸体啪啪无遮挡网站| 久久毛片免费看一区二区三区| 精品一品国产午夜福利视频| 精品亚洲成a人片在线观看| 51国产日韩欧美| 色婷婷久久久亚洲欧美| xxxhd国产人妻xxx| 国产成人免费观看mmmm| 亚洲av成人精品一二三区| 丝袜人妻中文字幕| 日本免费在线观看一区| 精品酒店卫生间| 久久久久久久亚洲中文字幕| 中文字幕免费在线视频6| 亚洲精品成人av观看孕妇| 国产精品久久久久久精品古装| 亚洲 欧美一区二区三区| 91精品伊人久久大香线蕉| 中国三级夫妇交换| 中文欧美无线码| 午夜福利在线观看免费完整高清在| av免费观看日本| 欧美精品一区二区免费开放| 国产极品天堂在线| 人成视频在线观看免费观看| 欧美人与性动交α欧美精品济南到 | 久久ye,这里只有精品| 精品久久久久久电影网| 亚洲一级一片aⅴ在线观看| 爱豆传媒免费全集在线观看| 日韩中字成人| av福利片在线| 日韩不卡一区二区三区视频在线| 中文欧美无线码| 久久99精品国语久久久| 女人精品久久久久毛片| 国产一区亚洲一区在线观看| 91aial.com中文字幕在线观看| 最近最新中文字幕大全免费视频 | 久久久久久久精品精品| 亚洲av成人精品一二三区| 波多野结衣一区麻豆| freevideosex欧美| 亚洲美女黄色视频免费看| 亚洲精品视频女| 国产男女超爽视频在线观看| 午夜免费观看性视频| av在线app专区| 涩涩av久久男人的天堂| 亚洲人成网站在线观看播放| 久久久精品免费免费高清| 日本欧美视频一区| 国产成人欧美| av线在线观看网站| 国产乱人偷精品视频| 久久久国产欧美日韩av| 老熟女久久久| 如何舔出高潮| 亚洲性久久影院| 大香蕉久久网| 免费高清在线观看日韩| 99视频精品全部免费 在线| 亚洲人成网站在线观看播放| 免费看不卡的av| 亚洲av日韩在线播放| 边亲边吃奶的免费视频| 国产成人精品在线电影| www.av在线官网国产| 日本免费在线观看一区| 亚洲经典国产精华液单| 精品国产露脸久久av麻豆| 插逼视频在线观看| 欧美激情极品国产一区二区三区 | 国产精品国产三级专区第一集| 天堂中文最新版在线下载| 欧美日韩综合久久久久久| 老司机影院毛片| 国产av码专区亚洲av| 欧美精品人与动牲交sv欧美| 欧美日本中文国产一区发布| 五月开心婷婷网| 伊人久久国产一区二区| a级毛色黄片| 久久人人爽人人片av| 天堂俺去俺来也www色官网| 咕卡用的链子| 又黄又粗又硬又大视频| 一二三四中文在线观看免费高清| 国产精品女同一区二区软件| 亚洲一级一片aⅴ在线观看| 女人精品久久久久毛片| 国产男女内射视频| 国产一区二区在线观看日韩| 一级毛片黄色毛片免费观看视频| 国产探花极品一区二区| 老司机影院毛片| 国产高清不卡午夜福利| 母亲3免费完整高清在线观看 | 亚洲av男天堂| 观看av在线不卡| 免费在线观看黄色视频的| 欧美日韩精品成人综合77777| 欧美人与性动交α欧美精品济南到 | 亚洲精华国产精华液的使用体验| 免费人成在线观看视频色| 久热这里只有精品99| 一级爰片在线观看| 两个人免费观看高清视频| 伦理电影大哥的女人| 日本-黄色视频高清免费观看| 亚洲欧美精品自产自拍| 欧美日韩综合久久久久久| 国产精品成人在线| 亚洲一区二区三区欧美精品| 亚洲熟女精品中文字幕| 美女主播在线视频| 久久精品久久久久久噜噜老黄| 久久免费观看电影| 高清黄色对白视频在线免费看| 免费在线观看完整版高清| 免费人成在线观看视频色| 久久精品国产a三级三级三级| 久久精品夜色国产| av女优亚洲男人天堂| www日本在线高清视频| 丰满乱子伦码专区| 亚洲成国产人片在线观看| 久久这里只有精品19| 极品人妻少妇av视频| 日本vs欧美在线观看视频| 久久精品久久久久久噜噜老黄| 在线观看免费日韩欧美大片| 日产精品乱码卡一卡2卡三| 人成视频在线观看免费观看| 夫妻性生交免费视频一级片| 老司机影院毛片| 国产一区二区三区综合在线观看 | 巨乳人妻的诱惑在线观看| 亚洲美女搞黄在线观看| 亚洲三级黄色毛片| 夜夜爽夜夜爽视频| 亚洲av在线观看美女高潮| 日韩制服丝袜自拍偷拍| 国产亚洲av片在线观看秒播厂| 国产日韩欧美在线精品| 麻豆精品久久久久久蜜桃| 亚洲欧美清纯卡通| av国产久精品久网站免费入址| 日本av手机在线免费观看| 欧美性感艳星| 久久久久人妻精品一区果冻| 青春草亚洲视频在线观看| 亚洲精品久久午夜乱码| 啦啦啦视频在线资源免费观看| 国产免费视频播放在线视频| 两个人看的免费小视频| 777米奇影视久久| 极品人妻少妇av视频| 成人国产麻豆网| 在线观看免费日韩欧美大片| 熟女电影av网| 久久女婷五月综合色啪小说| 日本-黄色视频高清免费观看| 亚洲精品美女久久久久99蜜臀 | 视频区图区小说| 天堂中文最新版在线下载| 国产免费一级a男人的天堂| 成年美女黄网站色视频大全免费| 最近中文字幕2019免费版| 国产探花极品一区二区| 天堂中文最新版在线下载| 成人亚洲精品一区在线观看| 国产精品 国内视频| 蜜臀久久99精品久久宅男| 蜜臀久久99精品久久宅男| 国产精品一国产av| 少妇被粗大猛烈的视频| 欧美人与性动交α欧美精品济南到 | 日韩av免费高清视频| 黄片无遮挡物在线观看| 日韩一本色道免费dvd| 波野结衣二区三区在线| 亚洲国产精品999| 亚洲性久久影院| 精品亚洲成a人片在线观看| 最近的中文字幕免费完整| 亚洲情色 制服丝袜| 国产精品秋霞免费鲁丝片| 制服诱惑二区| 欧美精品人与动牲交sv欧美| 国产黄色免费在线视频| 亚洲欧美精品自产自拍| 久久av网站| 亚洲第一av免费看| 久久精品久久久久久久性| 亚洲精品成人av观看孕妇| 青春草亚洲视频在线观看| 一级毛片 在线播放| 欧美xxⅹ黑人| 久久亚洲国产成人精品v| 女人久久www免费人成看片| 欧美日韩一区二区视频在线观看视频在线| 亚洲久久久国产精品| 女人久久www免费人成看片| 一级片免费观看大全| 菩萨蛮人人尽说江南好唐韦庄| 九色成人免费人妻av| 在线观看国产h片| 免费观看性生交大片5| 咕卡用的链子| 妹子高潮喷水视频| 老女人水多毛片| 亚洲第一av免费看| 免费大片黄手机在线观看| 国产免费福利视频在线观看| 最黄视频免费看| 亚洲精品乱久久久久久| 精品久久久久久电影网| 国产亚洲午夜精品一区二区久久| 国产一区亚洲一区在线观看| 2018国产大陆天天弄谢| 天美传媒精品一区二区| 97人妻天天添夜夜摸| 国产av一区二区精品久久| 成年美女黄网站色视频大全免费| 国产精品 国内视频| 免费观看a级毛片全部| 亚洲av男天堂| 免费久久久久久久精品成人欧美视频 | 亚洲国产成人一精品久久久| 国产爽快片一区二区三区| 在线观看一区二区三区激情| 午夜影院在线不卡| 精品国产一区二区三区四区第35| 亚洲久久久国产精品| 日韩在线高清观看一区二区三区| 国产精品国产av在线观看| 色5月婷婷丁香| 亚洲精品美女久久av网站| 大话2 男鬼变身卡| 伊人亚洲综合成人网| 日本av免费视频播放| 国产激情久久老熟女| 精品第一国产精品| av不卡在线播放| 一边摸一边做爽爽视频免费| 久久精品国产鲁丝片午夜精品| 看免费成人av毛片| 黄色配什么色好看| 国产激情久久老熟女| 黑人高潮一二区| 韩国高清视频一区二区三区| 热99久久久久精品小说推荐| 欧美xxxx性猛交bbbb| 男女啪啪激烈高潮av片| av又黄又爽大尺度在线免费看| 午夜精品国产一区二区电影| 亚洲精品色激情综合| 国产精品 国内视频| 高清黄色对白视频在线免费看| 亚洲精品乱码久久久久久按摩| 男女啪啪激烈高潮av片| 国产极品天堂在线| 菩萨蛮人人尽说江南好唐韦庄| 多毛熟女@视频| 久久精品久久精品一区二区三区| 日日摸夜夜添夜夜爱| 一二三四在线观看免费中文在 | 男女国产视频网站| 亚洲 欧美一区二区三区| 久久久久网色| 国产精品久久久久久精品古装| 国产精品一区www在线观看| 精品久久久精品久久久| 亚洲成人一二三区av| 午夜视频国产福利| 成人亚洲精品一区在线观看| 这个男人来自地球电影免费观看 | 在线观看www视频免费| 丁香六月天网| 看免费成人av毛片| 男女啪啪激烈高潮av片| 777米奇影视久久| av电影中文网址| 欧美xxxx性猛交bbbb| 久久精品aⅴ一区二区三区四区 | 中文字幕制服av| 在线观看免费视频网站a站| 性高湖久久久久久久久免费观看| 91午夜精品亚洲一区二区三区| 国产精品人妻久久久影院| 久久99热这里只频精品6学生| 国产成人aa在线观看| 国产精品久久久av美女十八| 中国美白少妇内射xxxbb| 久久人妻熟女aⅴ| av片东京热男人的天堂| 卡戴珊不雅视频在线播放| 午夜精品国产一区二区电影| 伦精品一区二区三区| 男女啪啪激烈高潮av片| av免费在线看不卡| 黄色怎么调成土黄色| 国产精品一二三区在线看| 午夜免费观看性视频| 成人亚洲欧美一区二区av| av福利片在线| 制服人妻中文乱码| av女优亚洲男人天堂| 免费黄色在线免费观看| 国产成人精品一,二区| 精品国产一区二区三区久久久樱花| 婷婷色综合大香蕉| 亚洲av电影在线观看一区二区三区| 国产精品99久久99久久久不卡 | 亚洲精品日本国产第一区| 2021少妇久久久久久久久久久| 最近2019中文字幕mv第一页| 久久久精品区二区三区| 久久久久久久国产电影| 少妇精品久久久久久久| 亚洲三级黄色毛片| 人妻一区二区av| 免费av不卡在线播放| 欧美xxⅹ黑人| 成人手机av| 一级毛片 在线播放| 色哟哟·www| 免费观看性生交大片5| 又黄又粗又硬又大视频| 亚洲人与动物交配视频| 久久精品久久久久久久性| 欧美成人精品欧美一级黄| 高清毛片免费看| 亚洲国产看品久久| 国产深夜福利视频在线观看| 国产色婷婷99| 免费观看在线日韩| 国产福利在线免费观看视频| 成人黄色视频免费在线看| 中文字幕av电影在线播放| 亚洲国产色片| 日韩欧美一区视频在线观看| 国产精品不卡视频一区二区| 亚洲精品日韩在线中文字幕| 午夜激情久久久久久久| 中文字幕最新亚洲高清| 久久久精品区二区三区| 日韩,欧美,国产一区二区三区| 日韩精品有码人妻一区| 9色porny在线观看| 女人被躁到高潮嗷嗷叫费观| 看十八女毛片水多多多| 最新中文字幕久久久久| 毛片一级片免费看久久久久| 精品亚洲乱码少妇综合久久| 亚洲欧美一区二区三区黑人 | 精品视频人人做人人爽| 肉色欧美久久久久久久蜜桃| 又粗又硬又长又爽又黄的视频| 熟女人妻精品中文字幕| 另类亚洲欧美激情| 亚洲av电影在线进入| 精品久久久久久电影网| 国产精品久久久久久av不卡| 十八禁高潮呻吟视频| 九九在线视频观看精品| 亚洲精品色激情综合| 女性被躁到高潮视频| 久久精品国产亚洲av天美| 精品熟女少妇av免费看| 18禁在线无遮挡免费观看视频| 岛国毛片在线播放| 丰满乱子伦码专区| 成年女人在线观看亚洲视频| 亚洲综合色网址| 老女人水多毛片| 日本vs欧美在线观看视频| 九九爱精品视频在线观看| 香蕉国产在线看| 在线免费观看不下载黄p国产| 亚洲国产精品一区二区三区在线| xxx大片免费视频| 国产精品99久久99久久久不卡 | 久久ye,这里只有精品| 午夜老司机福利剧场| 欧美国产精品va在线观看不卡| 久久久久久久大尺度免费视频| 亚洲精品一区蜜桃| 午夜免费观看性视频| 波野结衣二区三区在线| 少妇人妻久久综合中文| 久久久久精品性色| 熟女av电影| 国产麻豆69| 亚洲欧美一区二区三区国产| 免费大片黄手机在线观看| 国产白丝娇喘喷水9色精品| 啦啦啦在线观看免费高清www| 王馨瑶露胸无遮挡在线观看| 免费黄网站久久成人精品| 考比视频在线观看| 1024视频免费在线观看| 国产精品免费大片| 激情视频va一区二区三区| 香蕉丝袜av| 成人漫画全彩无遮挡| 亚洲国产精品国产精品| 亚洲av中文av极速乱| 精品卡一卡二卡四卡免费| 成年动漫av网址| 国产欧美日韩综合在线一区二区| 久久久久精品性色| 看十八女毛片水多多多| 色哟哟·www| 国产深夜福利视频在线观看| 久久久久久久久久久久大奶| 中国国产av一级| 男女午夜视频在线观看 | 大话2 男鬼变身卡| 国产精品一区二区在线不卡| 国产黄色视频一区二区在线观看| 精品人妻一区二区三区麻豆| 亚洲国产精品一区二区三区在线| 激情五月婷婷亚洲| 激情视频va一区二区三区| 久久久欧美国产精品| 国产国语露脸激情在线看| 国产精品久久久久久精品电影小说| 国产不卡av网站在线观看| 亚洲国产精品一区二区三区在线| 午夜免费鲁丝| 国产精品蜜桃在线观看| 波野结衣二区三区在线| 色吧在线观看| 成年人午夜在线观看视频| 成年动漫av网址| 国产女主播在线喷水免费视频网站| 午夜免费鲁丝| 午夜影院在线不卡| 日本与韩国留学比较| 国产av国产精品国产| 久久国产精品男人的天堂亚洲 | 搡女人真爽免费视频火全软件|