• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Models for amplitude fluctuation of underwater acousticnarrow band signal based on modified modal scintillation index

    2013-09-17 06:00:24AnLiangFangShiliangChenLijun

    An Liang Fang Shiliang Chen Lijun

    (Key Laboratory of Underwater Acoustic Signal Processing of Ministry of Education, Southeast University, Nanjing 210096, China)

    T he amplitude fluctuations of underwater narrow band signals have been studied for nearly 50 years.Researchers[1-4]summarized the most important causes of fluctuations in the power amplitudes of signals and noise propagating in the undersea acoustic environment.In recent years,it is still a focus in underwater signal processing.Katsnelson et al.[5-6]studied the frequency dependence and intensity fluctuations due to shallow water internal waves.Temporal variations of intensity fluctuations were found in experimental data.Comparisons of experimental results with theoretical estimates demonstrated good consistency.Colosi et al.[7-8]examined the second-and fourth-moment mode-amplitude statistics for lowfrequency ocean sound propagation through random soundspeed perturbations in deep and shallow-water environments.Nair et al.[9]evaluated the fluctuation observed in theReceivedsignal with relevance to underwater systems.They defined the fluctuation index k as the standard deviation of theReceivedsignal with noise normalized by the standard deviation of noise.Stojanovic et al.[10]studied the random signal variations in underwater communication systems introduced by surface waves, internal turbulence,fluctuations in the sound speed,and other small-scale phenomena.

    Among the above causes leading to sound fluctuations,the source and receiver depth instability may be the most obvious one.According to the normal mode theory, the amplitude of the normal modes are related to the source and receiver depths as well as the sea depth,sound speed profiles, surface and bottom conditions, and the signal frequency.The scintillation of modal energies has often been used to characterize and understand acoustic wave propagation in a randomly fluctuating ocean waveguide.Premus[11]introduced the modal scintillation index(MSI)for the purpose of surface and submerged source discrimination in a shallow water waveguide.The MSI is defined as the variance of the modulus of modal excitation normalized by its expected value over some observation intervals.The MSI of different normal modes exhibits different distributions when theReceivedsignal contains sea noise and it directly casts the source classification problem as a binary hypothesis test.

    The MSI definition has its evident deficiency.It depends on the source level and the source range intensively.In this paper,a modified modal scintillation index(MMSI)is defined as the variance of the modulus of modal excitation normalized by the square of its expected value over some observation intervals.It is proved in an analytical form that the MMSI is only depth dependent.The modal excitations obtained from simulations are used to calculate the MMSI-depth curve of sources with different sound levels and ranges under a noise-free condition.Then the pseudo-inverse mode filter is used to estimate the probability density functions(PDFs)of the MMSI with Gaussian noise in the sinusoidal signal.The simulation results of the normal mode propagation model show that sources at differ-ent depths have different distribution parameters with the same depth fluctuation variations.

    1 Theory of Modified Modal Scintillation Index

    1.1 Definition of modal scintillation index

    According to the normal mode theory,the complex pressure field can be expressed in terms of a superposition of normal modes in the far field of an acoustic source[12],

    where z is the depth of the receiver;zsis the depth of the acoustic source;Φm(z)represents the eigenfunction of the m-th mode;A is the amplitude of the source signal;M is the number of the normal modes;and rsis the range between the source and the receiver.Suppose that the receiver is a vertical array with N hydrophones,and the depth of the i-th hydrophone is zi, i=1,2,…,N.The signal pReceivedby the hydrophone array can be written in a matrix form as

    where Φ is the N × M matrix of normal mode functions;H is the M×1 vector of temporally varying modal excitations and depends on the depth of the acoustic source;and krmis the horizontal wavenumber.Premus[11]defined the modal scintillation index of the m-th mode as

    For an acoustic source whose depth is fluctuating in response to wave interaction,the mode amplitude variance has a component which is a sensitive indicator of its mean depth.Mode amplitude fluctuations will exhibit high variance when the source is near the depth of a modal zero-crossing,where the derivative of the mode function is the maximum.Similarly,mode amplitudes fluctuate with a low variance for a source near a modal extremum,where the derivative of the mode function is zero.The critical property of the shallow waveguide which motivates the use of the modal scintillation index for binary depth classification is the fact that the normal modes are nearly sinusoidal and share a common zero-crossing at the surface as shown in Fig.1.Thus, a surface source with a given vertical motion variance will exhibit a high mode scintillation across all the modes.A submerged source with the same vertical motion variance will exhibit a low mode scintillation for at least one mode,due to its expected proximity to at least one modal extremum.

    Fig.1 Conceptual description of physics-based depth discrimination using MSI

    Although the physical mechanism of utilizing the MSI to discriminate surface source and submerged source is reasonable, the definition in Eq.(5)is not a self-normalized statistic.The value of the MSI depends remarkably on the source level and source range.And this will be analytically proved in the following section.

    1.2 Performance analysis of modal scintillation index

    Consider the isovelocity waveguide as shown in Fig.2.The sound speed is a constant value c at all depths.D is the waveguide depth and ρ is the density of water.

    and the corresponding eigenfunctions are given by

    where kzmis the vertical wavenumber and it is given by

    Fig.2 Schematic of the isovelocity waveguide

    The horizontal wavenumber can be calculated as[12]

    Suppose that the vertical motion of acoustic source Δz is random and that it follows the Gaussian distribution N(0,σ2), and the mean acoustic source depth is zs0.The eigenfunctions in Eq.(7)can be modified as

    where C=(2ρ/D) .Since the approximation condition

    is satisfied in most low frequency narrow band signals in the far field situations(low order normal modes are dominant), Eq.(9)can be simplified as

    Evidently, the eigenfunctions Φm(zs)follows the Gaussian distribution N(μΦ,σ2Φ), where

    where K=A/(krmrs)1/2.Using the properties of the Gaussian random variable,hm(zs)follows the Gaussian distribution N(μKΦ,σ2KΦ), where

    And hm(zs) follows the folded Gaussian distribution[13].Its mathematical expectation and variance are given by

    Substituting Eqs.(12), (15)and(16)into Eq.(5),the modal scintillation index can be expressed as

    where erf(·)is the error function and has the maximum value of 1.When KC?1,further simplification can be made as

    Since K is the function of source level A and source range rs,SImis a source level and source range dependent statistic.

    1.3 Definition of modified modal scintillation index

    In section 1.2, it is analytically proved that the values of the MSI depend not only on the source depth,but also on the source level and source range.It means that a near submerged source may also exhibit high mode scintillation,and the binary discrimination method using the MSI is only valid when the surface source and submerged source have the same K value.Since this condition cannot always be satisfied,another statistic independent of K must be defined to work robustly.Define the MMSI as

    Using a similar simplifying method,S'Imare given in an approximative form as

    Eq.(20)shows that S'Imis a source depth dependent statistic only and independent of the source level and the source range.

    In practice,the MMSI must be estimated from theReceivedsignal with noise.The model with additive noise in signalsReceivedby the array is

    where n is the additive ambient noise vector{n1,n2,…nN}Tand ni(i=1,2,…N)is the noise at the i-th hydrophone.The modal excitation vector can be computed from samples of theReceivedpressure field via the pseudo-inverse calculation given by

    where Φ+=(ΦHΦ)-1ΦHrepresents the pseudo-inverse of Φ and the superscript H denotes conjugate transpose.Suppose that the additive noise n is the zero mean Gaussian random process,and^H is the unbiased estimation of H.Substituting Eq.(22)into Eq.(19), the MMSI can be estimated from theReceivedsignal.

    2 Simulation results and discussion

    To illustrate the utility of the modified modal scintillation index,a simulation experiment is performed for the Pekeris waveguide[12].The simulation geometry is depicted in Fig.3.The waveguide depth D is 100 m;the sound speed in the water c is 1 500 m/s;the density of the water ρ is 1 000 kg/m3;the sound speed in the bottom cbis 2 000 m/s;and the density of the bottom ρbis 1 000 kg/m3.The source is a narrow band source and its frequency is 70 Hz.The receiver is a fully spanning ver-tical array consisting of 41 hydrophones equally spaced at 2.5 m.There are six modes that can propagate in the Pekeris waveguide at the frequency of 70 Hz.The mode shapes are depicted in Fig.4.The vertical motion of source follows the Gaussian distribution N(0,1).

    Fig.3 Schematic of the Pekeris waveguide

    Fig.4 Normal modes in Pekeris waveguide

    The simulation experiment consists of three parts.First,the MSI and the MMSI are calculated by using the analytical form for sources of different sound levels with the source depth varying from 5 to 90 m.Secondly, the MSI and the MMSI are calculated by using the analytical form for sources of different ranges with the source depth varying from 5 to 90 m.The first two parts are under the condition free of noise.In the third part, the MMSI distribution is simulated with noise in theReceivedsignal for surface and submerged sources.

    2.1 MSI and MMSI of sources with different sound levels

    The Kraken normal mode model[14]is used to calculate the eigenfunctions Φm, the horizontal wavenumber krmand the vertical wavenumber kzm.Then Φm, krmand kzmare inserted into Eq.(4), Eq.(5)and Eq.(19)to calculate the modal excitations H analytically for acoustic source with the source levels of 160 and 130 dB.The source level is in units of dB re:1 μPa ·m.The source range is 5 km.The MSI-depth and MMSI-depth curves are depicted in Fig.5.

    The results in Fig.5 show that both the MSI and the MMSI exhibit high mode amplitude fluctuation variances at the depth of modal zero-crossing.In Figs.5(a), (c)and(e),there is a great disparity between the two curves of sources with different source levels.In Figs.5(b),(d)and(f),the two curves of sources with different source levels match well.This means that the MSI is a source level sensitive statistic while the MMSI is not.

    Fig.5 MSI-depth and MMSI-depth curves for different source levels.(a)MSI-depth curve of Mode 1;(b)MMSI-depth curve of Mode 1;(c)MSI-depth curve of Mode 3;(d)MMSI-depth curve of Mode 3;(e)MSI-depth curve of Mode 5;(f)MMSI-depth curve of Mode 5

    2.2 MSI and MMSI of sources with different ranges

    The same algorithm as in Section 2.1 is used to calculate the modal excitations H for acoustic source with the source ranges of 5 and 10 km.The source level is 160 dB.The results are depicted in Fig.6.

    Fig.6 MSI-depth and MMSI-depth curves for different source ranges.(a)MSI-depth curve of Mode 1;(b)MMSI-depth curve of Mode 1;(c)MSI-depth curve of Mode 3;(d)MMSI-depth curve of Mode 3;(e)MSI-depth curve of Mode 5;(f)MMSI-depth curve of Mode 5

    The results in Fig.6 show that both the MSI and the MMSI exhibit high mode amplitude fluctuation variances at the depth of modal zero-crossing.In Figs.6(a), (c)and(e),there is a small disparity between the two curves of sources with different source levels.In Figs.6(b), (d)and(f),the two curves of sources with different source levels match well.This means that the range variation does not affect the MSI as greatly as the source level variation does.The MMSI is a self-normalized statistic and independent of source range.

    2.3 MMSI probability density functions estimation

    In Section 2.1 and Section 2.2, both the MSI and the MMSI are analytically calculated without noise.But in real applications, the ambient noise cannot be ignored.The hydrophone array receives the signal from the acoustic source as well as the ambient noise.The noise field in this simulation experiment is modeled as the spatial white Gaussian noise with a noise spectrum level of 65 dB re:1 μPa·m.The Kraken normal mode model is also used to calculate Φm, krmand kzm.Considering the effect of the ambient noise,only the estimation of the modal excitations H can be obtained from Eq.(22)by using the pseudo-inverse mode filter.In this case, the statistic MMSI is modeled as a distribution depending on the vertical motion and ambient noise.

    A submerged source and a surface source are considered in the simulation experiment.Fig.7 shows the estimated PDFs of six modified modal scintillation indices obtained from Monte Carlo simulations using 1 000 trials under each hypothesis.The submerged source PDF is denoted as p (MMSI| Hsub)and the surface source PDF is denoted as p (MMSI| Hsurf).The source range is 5 km and the source level is 160 dB in each case.

    Fig.7 shows that the PDFs of the modified modal scintillation indices of the submerged source separates to the left of that of the surface source in the direction of small values of the MMSI in most cases except for mode 4.The positions of the PDFs of surface sources are relatively fixed on the axis of log(MMSI),while the positions of the PDFs of submerged sources shifted along the axis of log(MMSI).This phenomenon shows that the surface source is near the depth of modal zero-crossing for all the modes and exhibits a high variance of mode amplitudes.The submerged source is near the depth of mode zerocrossing for some modes(mode 3 and mode 4)and near the depth of mode extremums for other modes(mode 1,mode 2, mode 5 and mode 6).This attribute can be used to discriminate the submerged and surface sources.

    Fig.7 Estimated PDF for MMSI.(a)Mode 1;(b)Mode 2;(c)Mode 3;(d)Mode 4;(e)Mode 5;(f)Mode 6

    3 Conclusion

    A modified modal scin tillation index is proposed in this paper.It is analytically proved that the MMSI is a depth dependent signature and independent of the source level and range under the condition of the ideal waveguide,while the MSI is both source level and range dependent.A simulation experiment which consists of three parts is performed for the Pekeris waveguide to illustrate the utility of the modified modal scintillation index.The simulation results show that the MMSI is a self-normalized statistic while the MSI is not.The MMSI probability density functions of submerged and surface sources separate from each other in most modes with the same vertical motion variance.And this attribute can be regarded as the signature to discriminate underwater acoustic sources.

    [1]Scrimger J A.Signal amplitude and phase fluctuations induced by surface waves in ducted sound propagation [J].J Acoust Soc Am,1961,33(2):239-247.

    [2]Nichols R H, Young H J.Fluctuations in low-frequency acoustic propagation in the ocean [J].J Acoust Soc Am,1968, 43(4):716-722.

    [3]Urick R J.Models of the amplitude fluctuations of narrow-band signals in the sea[J].J Acoust Soc Am,1977,62(4):878-887.

    [4]Clay G S,Wang Y Y, Shang E C.Sound field fluctuations in a shallow water wave guide [J].J Acoust Soc Am,1985,77(2):424-428.

    [5]Katsnelson B,Grigorev V,Lynch J F.Intensity fluctuations of midfrequency sound signals passing through moving nonlinear internal waves [J].J Acoust Soc Am,2008, 124(4):EL78-EL84.

    [6]Katsnelson B, Grigorev V, Badiey M, et al.Temporal sound field fluctuations in the presence of internal solitary waves in shallow water[J].J Acoust Soc Am, 2009,126(1):EL41-EL48.

    [7]Colosi J A,Morozov A K.Statistics of normal mode amplitudes in an ocean with random sound-speed perturbations:cross-mode coherence and mean intensity [J].J Acoust Soc Am,2009,126(3):1026-1035.

    [8]Colosi J A,Duda T F,Morozov A K.Statistics of lowfrequency normal-mode amplitudes in an ocean with random sound-speed perturbations:shallow-water environments[J].J Acoust Soc Am,2012,131(2):1749-1761.

    [9]Nair N R, Jacob R, Ajaikumar M P.Acoustic fluctuations in shallow water[C]//Proceedings of the2011International Symposium on Ocean Electronics.Kochi, India, 2011:174-177.

    [10]Stojanovic M, Preisig J.Underwater acoustic communication channels:propagation models and statistical characterization [J].IEEE Communications Magazine, 2009,47(1):84-89.

    [11]Premus V.Modal scintillation index:a physics-based statistic for acoustic source depth discrimination [J].J Acoust Soc Am,1999,105(4):2170-2180.

    [12]Jensen F B,Kuperman W A,Porter M B,et al.Computational ocean acoustics[M ].2nd ed.New York:Springer, 2011:345-356.

    [13]Meyer S L.Data analysis for scientists and engineers[M].New York:John Wiley & Sons Inc, 1975:286-287.

    [14]Etter P C.Underwater acoustic modeling and simulation[M].4th ed.Boca Raton:CRC Press, 2013:145-162.

    久久久久免费精品人妻一区二区| 欧美+亚洲+日韩+国产| 一级a爱片免费观看的视频| 综合色av麻豆| 可以在线观看的亚洲视频| 亚洲人成网站高清观看| 永久网站在线| 高清日韩中文字幕在线| 男插女下体视频免费在线播放| 性欧美人与动物交配| 国产av麻豆久久久久久久| 亚洲精品一卡2卡三卡4卡5卡| 精品人妻视频免费看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲国产色片| 国产 一区 欧美 日韩| 亚洲性久久影院| 欧美+亚洲+日韩+国产| 精品久久久久久久久av| 中文字幕精品亚洲无线码一区| 国产色婷婷99| 22中文网久久字幕| 狂野欧美激情性xxxx在线观看| 精品欧美国产一区二区三| 中文字幕人妻熟人妻熟丝袜美| 成年版毛片免费区| eeuss影院久久| 欧美一区二区亚洲| 如何舔出高潮| 国产黄片美女视频| 色吧在线观看| 国产欧美日韩一区二区精品| 看片在线看免费视频| 精品一区二区三区人妻视频| 国产精品日韩av在线免费观看| 久久午夜亚洲精品久久| 可以在线观看毛片的网站| 欧美日韩黄片免| 国产精品,欧美在线| 久久午夜福利片| 一卡2卡三卡四卡精品乱码亚洲| 特级一级黄色大片| 一a级毛片在线观看| 久久久久久久精品吃奶| 级片在线观看| 三级国产精品欧美在线观看| 91久久精品国产一区二区三区| 国产人妻一区二区三区在| 天堂网av新在线| 日本黄色视频三级网站网址| 变态另类丝袜制服| 免费在线观看成人毛片| 欧美绝顶高潮抽搐喷水| 国产 一区精品| 欧美一区二区亚洲| 女人被狂操c到高潮| 在线观看舔阴道视频| 欧美又色又爽又黄视频| 亚洲av第一区精品v没综合| 免费看av在线观看网站| 搞女人的毛片| 久久久成人免费电影| 欧美黑人巨大hd| 内地一区二区视频在线| 亚洲成人免费电影在线观看| 成年女人永久免费观看视频| 免费av毛片视频| 男女视频在线观看网站免费| 国产精品永久免费网站| 三级国产精品欧美在线观看| 18禁在线播放成人免费| 国产单亲对白刺激| 国产高清不卡午夜福利| 88av欧美| 一本一本综合久久| 欧美最黄视频在线播放免费| 最好的美女福利视频网| 99久久无色码亚洲精品果冻| 国产aⅴ精品一区二区三区波| 欧美精品啪啪一区二区三区| 日日撸夜夜添| 熟女人妻精品中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 少妇丰满av| 色播亚洲综合网| 成人鲁丝片一二三区免费| 成人永久免费在线观看视频| 亚洲国产精品sss在线观看| 久久6这里有精品| 免费看av在线观看网站| 少妇熟女aⅴ在线视频| 黄片wwwwww| 亚洲黑人精品在线| 淫妇啪啪啪对白视频| 身体一侧抽搐| 免费大片18禁| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av二区三区四区| 久久久久久久久大av| 免费观看的影片在线观看| 国产av一区在线观看免费| 日韩中文字幕欧美一区二区| 精品久久久久久久久av| 成人二区视频| 免费av不卡在线播放| 亚洲av.av天堂| 日韩高清综合在线| 少妇的逼水好多| av中文乱码字幕在线| 日本免费a在线| 啦啦啦啦在线视频资源| 免费av不卡在线播放| 亚洲av免费在线观看| 国产淫片久久久久久久久| 成人精品一区二区免费| 国产一区二区三区视频了| 国产高清激情床上av| 身体一侧抽搐| 天天一区二区日本电影三级| 日韩精品青青久久久久久| 国产蜜桃级精品一区二区三区| 国产精品久久久久久精品电影| 精品人妻视频免费看| 波多野结衣高清作品| 国产伦人伦偷精品视频| 乱系列少妇在线播放| 国产精品永久免费网站| 国产伦一二天堂av在线观看| 不卡一级毛片| 成人国产麻豆网| 国产精品精品国产色婷婷| 国产淫片久久久久久久久| 国产 一区 欧美 日韩| 亚洲av五月六月丁香网| 色在线成人网| 亚洲无线在线观看| 国产成人影院久久av| 免费看av在线观看网站| 精品久久久久久久人妻蜜臀av| 夜夜看夜夜爽夜夜摸| 一a级毛片在线观看| 听说在线观看完整版免费高清| 99精品久久久久人妻精品| 国产色爽女视频免费观看| 亚洲av二区三区四区| 午夜福利18| 深夜精品福利| 亚洲四区av| 看黄色毛片网站| 亚洲国产高清在线一区二区三| 精品国产三级普通话版| 成年人黄色毛片网站| 真人做人爱边吃奶动态| 3wmmmm亚洲av在线观看| av女优亚洲男人天堂| 在线观看舔阴道视频| 成人国产麻豆网| 久久国内精品自在自线图片| 亚洲午夜理论影院| 91麻豆精品激情在线观看国产| 嫁个100分男人电影在线观看| 精品国内亚洲2022精品成人| 日本 av在线| 国产精华一区二区三区| 久久久久久久久久成人| 五月玫瑰六月丁香| 欧美日韩亚洲国产一区二区在线观看| 欧美三级亚洲精品| 国产黄色小视频在线观看| 亚洲图色成人| 亚洲成人久久性| 深爱激情五月婷婷| 国产精品一区二区免费欧美| 国产 一区精品| 男人的好看免费观看在线视频| 99久久精品一区二区三区| 午夜福利18| 18禁裸乳无遮挡免费网站照片| a级一级毛片免费在线观看| 自拍偷自拍亚洲精品老妇| 夜夜爽天天搞| 人人妻人人看人人澡| 男女下面进入的视频免费午夜| 美女cb高潮喷水在线观看| 午夜免费男女啪啪视频观看 | 22中文网久久字幕| 中亚洲国语对白在线视频| 欧美最黄视频在线播放免费| 99久久精品热视频| 三级毛片av免费| 看免费成人av毛片| 九色成人免费人妻av| 很黄的视频免费| 国产伦一二天堂av在线观看| 免费观看在线日韩| 免费观看精品视频网站| 日韩国内少妇激情av| 1000部很黄的大片| 亚洲一级一片aⅴ在线观看| 99国产精品一区二区蜜桃av| 国产女主播在线喷水免费视频网站 | 亚州av有码| 免费人成视频x8x8入口观看| 91麻豆av在线| 欧美高清成人免费视频www| 又粗又爽又猛毛片免费看| 有码 亚洲区| 久99久视频精品免费| 伦精品一区二区三区| 国产男靠女视频免费网站| 黄色视频,在线免费观看| 非洲黑人性xxxx精品又粗又长| 成人精品一区二区免费| 亚洲av中文av极速乱 | 国产探花在线观看一区二区| 成人av一区二区三区在线看| 哪里可以看免费的av片| 国产人妻一区二区三区在| 亚洲精华国产精华液的使用体验 | 九色国产91popny在线| 国产精品一区二区性色av| 麻豆国产97在线/欧美| 美女 人体艺术 gogo| 少妇高潮的动态图| 欧美性感艳星| 国产精品野战在线观看| 精品乱码久久久久久99久播| 亚洲不卡免费看| 大型黄色视频在线免费观看| 97热精品久久久久久| 18+在线观看网站| 色吧在线观看| 亚洲国产精品久久男人天堂| 精品久久久久久,| 久久九九热精品免费| 欧美激情国产日韩精品一区| 国产黄a三级三级三级人| 亚洲avbb在线观看| 亚洲国产精品sss在线观看| 国产亚洲精品久久久com| 午夜日韩欧美国产| 久久人人爽人人爽人人片va| 亚洲天堂国产精品一区在线| 久久精品国产自在天天线| 久久久国产成人免费| 国产精品一区二区三区四区免费观看 | 色综合站精品国产| 国产精品一区二区免费欧美| 精品久久久久久久久亚洲 | 亚洲欧美日韩无卡精品| 无人区码免费观看不卡| 国产精品一区二区性色av| 少妇猛男粗大的猛烈进出视频 | 中文字幕久久专区| 91av网一区二区| 成人av在线播放网站| av天堂中文字幕网| 岛国在线免费视频观看| 日韩在线高清观看一区二区三区 | 99久国产av精品| av在线蜜桃| 亚洲七黄色美女视频| 真人做人爱边吃奶动态| 亚洲熟妇熟女久久| av黄色大香蕉| 日本免费一区二区三区高清不卡| 日韩亚洲欧美综合| 久久香蕉精品热| 校园人妻丝袜中文字幕| 看黄色毛片网站| 五月玫瑰六月丁香| 久久久久久久久久久丰满 | 日韩 亚洲 欧美在线| 亚洲欧美日韩东京热| 99在线人妻在线中文字幕| 别揉我奶头 嗯啊视频| 欧美日本亚洲视频在线播放| 亚洲欧美激情综合另类| 日本免费一区二区三区高清不卡| 国产精品精品国产色婷婷| 精品国内亚洲2022精品成人| 国产精品一区二区三区四区久久| 中文字幕人妻熟人妻熟丝袜美| 五月伊人婷婷丁香| 亚洲一区高清亚洲精品| 男人舔奶头视频| 男插女下体视频免费在线播放| 成人高潮视频无遮挡免费网站| 狂野欧美激情性xxxx在线观看| 淫妇啪啪啪对白视频| 最好的美女福利视频网| 久99久视频精品免费| 亚洲成人免费电影在线观看| 日韩高清综合在线| 女同久久另类99精品国产91| 69人妻影院| 亚洲精华国产精华液的使用体验 | 最新中文字幕久久久久| 欧美中文日本在线观看视频| 亚洲成人精品中文字幕电影| 国产日本99.免费观看| 国产高清视频在线播放一区| 日韩高清综合在线| 99视频精品全部免费 在线| 岛国在线免费视频观看| 亚洲最大成人中文| 日本a在线网址| 亚洲av中文字字幕乱码综合| 久久精品综合一区二区三区| 国产成人a区在线观看| 国产主播在线观看一区二区| 美女高潮的动态| 此物有八面人人有两片| 乱系列少妇在线播放| 日本-黄色视频高清免费观看| 欧美黑人巨大hd| 人妻制服诱惑在线中文字幕| 深爱激情五月婷婷| 精品久久久久久久人妻蜜臀av| 亚洲国产欧洲综合997久久,| 18禁黄网站禁片免费观看直播| 国产精华一区二区三区| av.在线天堂| 亚洲五月天丁香| 看免费成人av毛片| 久久久久久久精品吃奶| 亚洲色图av天堂| 精品免费久久久久久久清纯| 人妻制服诱惑在线中文字幕| 久久久久久久精品吃奶| 亚洲色图av天堂| а√天堂www在线а√下载| 亚洲性久久影院| 亚洲狠狠婷婷综合久久图片| 搡老熟女国产l中国老女人| 亚洲国产欧美人成| 色综合婷婷激情| 久久人人爽人人爽人人片va| 国内久久婷婷六月综合欲色啪| 国产一区二区在线观看日韩| 亚洲美女搞黄在线观看 | 国产高清有码在线观看视频| netflix在线观看网站| 国内精品宾馆在线| 午夜福利在线观看免费完整高清在 | 国产 一区精品| 日本黄色片子视频| 亚洲成人中文字幕在线播放| 特大巨黑吊av在线直播| 少妇被粗大猛烈的视频| 日本在线视频免费播放| avwww免费| 色av中文字幕| 黄色女人牲交| 国产又黄又爽又无遮挡在线| 他把我摸到了高潮在线观看| 国产aⅴ精品一区二区三区波| 九九久久精品国产亚洲av麻豆| 成熟少妇高潮喷水视频| 久久亚洲精品不卡| 成熟少妇高潮喷水视频| 少妇丰满av| 中文字幕免费在线视频6| 国产 一区精品| 国产精品伦人一区二区| 久久精品国产自在天天线| 欧美另类亚洲清纯唯美| 久久精品国产亚洲av香蕉五月| 成人亚洲精品av一区二区| 此物有八面人人有两片| 国内精品久久久久久久电影| 久久人人精品亚洲av| 能在线免费观看的黄片| 97碰自拍视频| 欧美中文日本在线观看视频| 午夜福利欧美成人| 国产久久久一区二区三区| 久久亚洲精品不卡| 国产又黄又爽又无遮挡在线| 久久精品影院6| 联通29元200g的流量卡| 日韩强制内射视频| 91狼人影院| 色哟哟·www| 成年女人毛片免费观看观看9| 悠悠久久av| 成人无遮挡网站| 欧美日韩国产亚洲二区| 国产精品自产拍在线观看55亚洲| 久久精品国产亚洲av涩爱 | 亚洲熟妇熟女久久| 国产在线男女| 我要搜黄色片| 国产乱人伦免费视频| 男女视频在线观看网站免费| 亚洲中文字幕日韩| 国产淫片久久久久久久久| 全区人妻精品视频| 最近在线观看免费完整版| 麻豆久久精品国产亚洲av| 成人性生交大片免费视频hd| 嫩草影视91久久| x7x7x7水蜜桃| 五月伊人婷婷丁香| 精品人妻一区二区三区麻豆 | 亚洲最大成人av| 搡老熟女国产l中国老女人| 一个人免费在线观看电影| 日韩精品中文字幕看吧| 色精品久久人妻99蜜桃| 日本黄色视频三级网站网址| 熟女人妻精品中文字幕| 村上凉子中文字幕在线| 内地一区二区视频在线| 亚洲av美国av| 麻豆一二三区av精品| 国产一区二区三区在线臀色熟女| 国产伦一二天堂av在线观看| 99久久无色码亚洲精品果冻| 国产精品久久久久久久电影| 国产人妻一区二区三区在| 波多野结衣高清无吗| 非洲黑人性xxxx精品又粗又长| 亚洲美女黄片视频| 日韩欧美在线二视频| 亚洲综合色惰| 99热精品在线国产| 偷拍熟女少妇极品色| 人妻制服诱惑在线中文字幕| www.www免费av| 麻豆久久精品国产亚洲av| 午夜激情欧美在线| 国产 一区精品| 九九爱精品视频在线观看| 国产精品免费一区二区三区在线| 国产精品野战在线观看| 搡老妇女老女人老熟妇| 国产老妇女一区| 久久久久九九精品影院| 国内少妇人妻偷人精品xxx网站| 欧美色欧美亚洲另类二区| av国产免费在线观看| 亚洲不卡免费看| 国产精品免费一区二区三区在线| 国产精品野战在线观看| 一个人免费在线观看电影| 国语自产精品视频在线第100页| 美女cb高潮喷水在线观看| 国产爱豆传媒在线观看| 桃色一区二区三区在线观看| 国产伦精品一区二区三区视频9| 国产精品久久电影中文字幕| 亚洲精品色激情综合| a级一级毛片免费在线观看| 超碰av人人做人人爽久久| 99久久九九国产精品国产免费| 中亚洲国语对白在线视频| 欧美日韩黄片免| 亚洲欧美激情综合另类| 热99在线观看视频| 联通29元200g的流量卡| 午夜亚洲福利在线播放| 欧美最新免费一区二区三区| 日本欧美国产在线视频| 一个人观看的视频www高清免费观看| 一个人看视频在线观看www免费| 夜夜爽天天搞| 国产免费一级a男人的天堂| 三级毛片av免费| 亚洲精品日韩av片在线观看| av黄色大香蕉| 欧美性猛交黑人性爽| 亚洲性久久影院| 日韩av在线大香蕉| 亚洲人成网站在线播放欧美日韩| 熟女人妻精品中文字幕| 午夜福利欧美成人| 啦啦啦观看免费观看视频高清| 久久久精品欧美日韩精品| 成人高潮视频无遮挡免费网站| www.www免费av| 亚洲 国产 在线| 麻豆av噜噜一区二区三区| 婷婷六月久久综合丁香| 国产伦精品一区二区三区四那| 校园人妻丝袜中文字幕| 久久精品91蜜桃| 很黄的视频免费| 成人国产麻豆网| 久久久久久久亚洲中文字幕| 听说在线观看完整版免费高清| 国产精品国产高清国产av| 日本欧美国产在线视频| 亚洲真实伦在线观看| 欧美高清性xxxxhd video| 亚洲18禁久久av| 亚洲成av人片在线播放无| 亚洲av熟女| 一区二区三区激情视频| 久久久久性生活片| 草草在线视频免费看| 国产欧美日韩精品一区二区| 亚洲最大成人av| 亚洲经典国产精华液单| 久99久视频精品免费| 精品久久久久久久久亚洲 | 国产精品自产拍在线观看55亚洲| av天堂中文字幕网| 中文字幕精品亚洲无线码一区| 一区福利在线观看| 99久久精品一区二区三区| 亚洲av熟女| 国产精品一区二区性色av| 男人狂女人下面高潮的视频| 国产精品人妻久久久影院| 国产伦一二天堂av在线观看| 日本一二三区视频观看| 免费看a级黄色片| 中文字幕人妻熟人妻熟丝袜美| 色综合站精品国产| 免费av不卡在线播放| 无人区码免费观看不卡| 国产免费av片在线观看野外av| 亚洲av中文字字幕乱码综合| 欧美黑人巨大hd| 男女啪啪激烈高潮av片| 直男gayav资源| 九九热线精品视视频播放| 亚洲av二区三区四区| 18禁黄网站禁片午夜丰满| www日本黄色视频网| 99热这里只有是精品50| 制服丝袜大香蕉在线| 国产午夜福利久久久久久| 啦啦啦啦在线视频资源| 精品午夜福利在线看| 欧美日韩国产亚洲二区| 高清毛片免费观看视频网站| 婷婷精品国产亚洲av在线| 亚洲欧美精品综合久久99| 国产av不卡久久| www.色视频.com| 在线国产一区二区在线| 中亚洲国语对白在线视频| 日韩一本色道免费dvd| 内地一区二区视频在线| 九九热线精品视视频播放| 在线观看66精品国产| 亚洲欧美激情综合另类| 在线免费观看的www视频| 国产免费男女视频| 亚洲欧美日韩高清专用| 18禁黄网站禁片免费观看直播| 黄色欧美视频在线观看| 美女xxoo啪啪120秒动态图| 亚洲人成网站在线播放欧美日韩| 久久99热6这里只有精品| 丰满的人妻完整版| 色综合婷婷激情| 午夜老司机福利剧场| 在线观看av片永久免费下载| 如何舔出高潮| 国产蜜桃级精品一区二区三区| 少妇的逼水好多| 中亚洲国语对白在线视频| 神马国产精品三级电影在线观看| 国产久久久一区二区三区| 嫩草影院精品99| 免费无遮挡裸体视频| av女优亚洲男人天堂| 久久这里只有精品中国| 尾随美女入室| 久久久久国内视频| 一区二区三区高清视频在线| 人妻久久中文字幕网| 久久久久久国产a免费观看| 国产黄片美女视频| 国产日本99.免费观看| 深夜精品福利| 国产毛片a区久久久久| 在线免费观看不下载黄p国产 | 天堂av国产一区二区熟女人妻| 国产精品久久视频播放| 色在线成人网| 欧美一级a爱片免费观看看| 岛国在线免费视频观看| 大型黄色视频在线免费观看| 精品人妻一区二区三区麻豆 | 禁无遮挡网站| 黄片wwwwww| 人人妻人人看人人澡| 国产亚洲av嫩草精品影院| 日本色播在线视频| av专区在线播放| 性插视频无遮挡在线免费观看| av天堂在线播放| 精品一区二区三区av网在线观看| 日日干狠狠操夜夜爽| 国产乱人视频| 国产aⅴ精品一区二区三区波| 亚洲七黄色美女视频| 日韩精品青青久久久久久| 又爽又黄a免费视频| 搡老妇女老女人老熟妇| 91久久精品电影网| 欧美国产日韩亚洲一区| 听说在线观看完整版免费高清| 人妻夜夜爽99麻豆av| 99久久成人亚洲精品观看| 嫩草影院新地址| 久久热精品热| 观看免费一级毛片| 91久久精品国产一区二区成人| 免费看a级黄色片| 可以在线观看毛片的网站|