王慧涵 吳 斌 張 嶸 劉卓剛 楊 威 廖愛軍 趙成海
SFRP5逆轉(zhuǎn)白血病多藥耐藥性的研究*
王慧涵①吳 斌①張 嶸①劉卓剛①楊 威①廖愛軍①趙成海②
目的:研究分泌型卷曲相關(guān)蛋白5(secreted frizzled related protein 5,SFRP5)對P-糖蛋白(P-glycoprotein,P-gp)介導(dǎo)的白血病多藥耐藥性的作用。方法:采用轉(zhuǎn)基因方法構(gòu)建過表達(dá)SFRP5的KG1a/SFRP5細(xì)胞,real-time PCR檢測MDR1 mRNA表達(dá),Western blot檢測細(xì)胞P-gp表達(dá)。免疫熒光顯微鏡觀察細(xì)胞膜表面P-gp表達(dá)。流式細(xì)胞儀檢測細(xì)胞內(nèi)藥物濃度。MTT方法檢測細(xì)胞耐藥性。結(jié)果:與KG1a細(xì)胞及表達(dá)綠色熒光蛋白的KG1a/eGFP細(xì)胞相比,KG1a/SFRP5細(xì)胞中MDR1 mRNA水平顯著下降(P<0.01),總P-gp表達(dá)水平亦被下調(diào),細(xì)胞膜表面P-gp熒光強(qiáng)度減弱,細(xì)胞內(nèi)的羅丹明濃度顯著升高(P<0.01),對ADR的IC50顯著降低(P<0.01),細(xì)胞耐藥性下降。結(jié)論:SFRP5蛋白表達(dá)可以下調(diào)MDR1轉(zhuǎn)錄及P-gp表達(dá),增加細(xì)胞內(nèi)藥物濃度,逆轉(zhuǎn)白血病多藥耐藥。
分泌型卷曲相關(guān)蛋白5 白血病 多藥耐藥性 P-糖蛋白
白血病多藥耐藥(multidrug resistance,MDR)是化療失敗,造成白血病復(fù)發(fā)和難治的主要原因。由多藥耐藥基因(multidrug resistance gene,MDR1)編碼的P-gp過表達(dá)造成抗癌藥物外排增加、藥效降低,是MDR形成的重要原因之一[1]。通過調(diào)節(jié)P-gp逆轉(zhuǎn)MDR是臨床治療的難點(diǎn)及科學(xué)研究的重點(diǎn)。SFRP5是分泌型糖蛋白家族成員之一,通過競爭性抑制Wnt信號通路特異性受體卷曲蛋白(Fz)受體從而抑制Wnt的活化[2]。有研究顯示在白血病細(xì)胞中存在SFRP5基因啟動子區(qū)域甲基化,導(dǎo)致SFRP5蛋白表達(dá)缺失或下調(diào)[3],但這種SFRP5蛋白表達(dá)下調(diào)在腫瘤發(fā)生發(fā)展中的作用,特別是對于P-gp介導(dǎo)的多藥耐藥的作用尚不明確。在本研究中,選擇SFRP5高度甲基化的多藥耐藥白血病細(xì)胞系KG1a作為研究對象,驗(yàn)證SFRP5對白血病多藥耐藥的作用。
人白血病KG1a細(xì)胞株來自中國醫(yī)學(xué)科學(xué)院血液病研究所。表達(dá)SFRP5的質(zhì)粒EX-O0006-M02、表達(dá)綠色熒光蛋白的EX-EGFP-M02質(zhì)粒購自美國GeneCopoeia公司。Plasmid mini purification kit試劑盒購自德國QIAGEN公司。Lipofectamine 2000?Transfection Reagent購自美國Invitrogen公司。PE標(biāo)記的P-gp抗體購自美國BD公司。SYBR Premix Ex TaqTM試劑盒購自日本TaKaRa公司。
1.2.1 細(xì)胞培養(yǎng)和轉(zhuǎn)染 KG1a細(xì)胞用含10%胎牛血清1640培養(yǎng)基在37℃,5%CO2細(xì)胞培養(yǎng)箱中培養(yǎng)。適量細(xì)胞接種在6孔板中,過夜后用脂質(zhì)體Lipofectamine?2000 Transfection Reagent分別將表達(dá)SFRP5的質(zhì)粒EX-O0006-M02,表達(dá)綠色熒光蛋白的EX-EGFP-M02質(zhì)粒進(jìn)行細(xì)胞轉(zhuǎn)染。6 h后換液,更換20%血清1640培養(yǎng)液繼續(xù)培養(yǎng)72 h進(jìn)行后續(xù)實(shí)驗(yàn)。
1.2.2 Western blot檢測SFRP5及P-gp蛋白表達(dá)情況收集細(xì)胞,PBS洗2次,每107個細(xì)胞加1 mL預(yù)冷的RIPA裂解液,混勻,冰上震蕩30 min,4℃,12 000 rpm離心30 min,收上清,BCA方法測蛋白濃度。取50 μg蛋白樣品加入上樣緩沖液,100℃煮沸5 min,用SDS-PAGE分離,將蛋白轉(zhuǎn)移到硝酸纖維素濾膜上。將硝酸纖維素濾膜加入含有5%脫脂奶粉的封閉液中,4℃搖床孵育過夜,加入兔抗人SFRP5及兔抗人P-gp一抗,4℃搖床孵育過夜。除去一抗,加入鼠抗兔二抗,室溫下?lián)u床孵育2 h,除去二抗。加顯色劑,在X射線膠片曝光成像并分析。
1.2.3 real-time PCR檢測MDR1表達(dá) 應(yīng)用real-time PCR檢測KG1a,KG1a/eGFP及KG1a/SFRP5細(xì)胞內(nèi)MDR1 mRNA水平。引物序列:MDR1:上游5'-ATAATGCGACAGGAGATAGG-3',下游 5'-TTGC CATTGACTGAAAGAAC-3';GAPDH:上游 5'-AGTC AACGGATTTGGTCGTA-3',下 游 5'-GGAACATGTA AACCATGTAG-3';PCR擴(kuò)增程序:95℃ 30 s,95℃ 5 s,60℃ 35 s,共40個循環(huán)。
1.2.4 熒光顯微鏡觀察細(xì)胞膜表面P-gp水平 收集KG1a,KG1a/eGFP及KG1a/SFRP5 3組細(xì)胞,調(diào)整細(xì)胞數(shù)為5×105。加入4 μL鼠抗人PE-P-gp直標(biāo)抗體,4℃孵育30 min。PBS洗滌細(xì)胞2次,將細(xì)胞滴于載玻片上,用蓋玻片蓋上細(xì)胞,熒光顯微鏡下觀察呈現(xiàn)紅色熒光的細(xì)胞情況。
1.2.5 流式細(xì)胞儀檢測細(xì)胞內(nèi)藥物濃度 收集KG1a,KG1a/eGFP及KG1a/SFRP5 3組細(xì)胞,調(diào)整細(xì)胞數(shù)1×106。將羅丹明(終濃度0.3 μM)溶于無血清1640培養(yǎng)液中。將細(xì)胞沉淀重懸于2 mL所配置的培養(yǎng)液中。應(yīng)用維拉帕米(10 μM)作為陽性對照。37℃水浴震蕩培養(yǎng)2 h。PBS洗1次,流式細(xì)胞儀檢測細(xì)胞內(nèi)熒光強(qiáng)度。
1.2.6 MTT方法檢測細(xì)胞耐藥性 收集KG1a,KG1a/eGFP及KG1a/SFRP5細(xì)胞,接種于96孔板,實(shí)驗(yàn)設(shè)3個復(fù)孔,并設(shè)空白對照。接種8 h后,加入ADR,使終濃度依次為(0、0.1、0.25、0.5、1、5、10、20、50 μM)。MTT方法測各孔OD值,計算IC50。實(shí)驗(yàn)重復(fù)3次。
熒光顯微鏡下觀察轉(zhuǎn)染效率可達(dá)到90%。應(yīng)用流式細(xì)胞儀檢測eGFP陽性細(xì)胞為92.1%。應(yīng)用Western blot檢測SFRP5表達(dá)情況。結(jié)果顯示,轉(zhuǎn)染后KG1a/SFRP5細(xì)胞恢復(fù)SFRP5表達(dá),而KG1a,KG1a/eGFP細(xì)胞內(nèi)SFRP5表達(dá)仍缺失(圖1)。
圖1 Western blot檢測細(xì)胞轉(zhuǎn)染72 h后SFRP5在KG1a、KG1a/eGFP及KG1a/SFRP5細(xì)胞中的表達(dá)Figure 1 SFRP5 expression in KG1a,KG1a/eGFP and KG1a/SFRP5 were detected by Western blot 72 hours after transfection
應(yīng)用real-time PCR檢測KG1a,KG1a/eGFP及KG1a/SFRP5細(xì)胞內(nèi)MDR1 mRNA水平。結(jié)果顯示KG1a/SFRP5細(xì)胞中MDR1 mRNA水平顯著下降(P<0.01,圖2)。
圖2 Real-time PCR檢測SFRP5轉(zhuǎn)染KG1a細(xì)胞后MDR1 mRNA水平的變化Figure 2 Real-time PCR detection of the expression of mdr1 mRNA in KG1a,KG1a/eGFP and KG1a/SFRP5 groups.*P<0.01,vs.SFRP5(-)
采用Western blot檢測KG1a,KG1a/eGFP及KG1a/SFRP5細(xì)胞中總體P-gp表達(dá)水平,結(jié)果顯示KG1a/SFRP5細(xì)胞中P-gp表達(dá)被下調(diào)(圖3)。
圖3 Western blot檢測SFRP5轉(zhuǎn)染KG1a細(xì)胞后P-gp表達(dá)的影響Figure 3 SFRP5 expression in KG1a,KG1a/eGFP,and KG1a/SFRP5 detected by Western blot analysis
應(yīng)用PE標(biāo)記的P-gp直標(biāo)抗體檢測KG1a,KG1a/eGFP及KG1a/SFRP5細(xì)胞膜表面P-gp的表達(dá),在熒光顯微鏡下觀察紅色熒光強(qiáng)度。結(jié)果顯示,KG1a/SFRP5細(xì)胞紅色熒光強(qiáng)度明顯弱于KG1a及KG1a/eGFP細(xì)胞(圖4)。
圖4 熒光顯微鏡下觀察轉(zhuǎn)染72 h后細(xì)胞表面P-gp表達(dá)情況Figure 4 P-gp expression on the cell surface observed by immunofluorescence.4A,KG1a cell;4B,KG1a/eGFP cell;4C,KG1a/SFRP5 cell
應(yīng)用流式細(xì)胞儀檢測細(xì)胞內(nèi)羅丹明的熒光強(qiáng)度,代表細(xì)胞內(nèi)藥物濃度變化。應(yīng)用維拉帕米(Verapamil)作為陽性對照,實(shí)驗(yàn)重復(fù)3次。結(jié)果顯示KG1a/SFRP5細(xì)胞內(nèi)羅丹明熒光強(qiáng)度較KG1a及KG1a/eGFP細(xì)胞明顯增多(P<0.01,圖5)。
圖5 流式細(xì)胞儀檢測細(xì)胞內(nèi)羅丹明熒光強(qiáng)度(*P<0.01,vs.KG1a)Figure 5 Intracellular drug concentration detected by flow cytometry*P<0.01,vs.KG1a
KG1a中ADR的IC50為(0.963±0.115)μM;KG1a/eGFP中ADR的IC50為(0.917±0.138)μM;KG1a/SFRP5中ADR的IC50為(0.573±0.131)μM。KG1a/SFRP5對ADR的IC50較KG1a及KG1a/eGFP相比明顯下降(P<0.01)。
SFRP5是SFRPs家族的一個分泌型蛋白,大量的研究顯示在多種腫瘤細(xì)胞中存在SFRP5基因啟動子區(qū)甲基化,并導(dǎo)致蛋白表達(dá)的下降[4-6]。Griffiths等[7]的研究提示SFRP5甲基化導(dǎo)致的SFRP5蛋白表達(dá)下降可能增加AML復(fù)發(fā)的風(fēng)險。Su等[8]研究卵巢癌發(fā)現(xiàn)SFRP5甲基化狀態(tài)與卵巢癌對順鉑的耐藥性有關(guān),通過基因轉(zhuǎn)染恢復(fù)SFRP5表達(dá)后減弱Wnt信號活性,能夠抑制小鼠卵巢癌細(xì)胞生長、浸潤及腫瘤形成。同時SFRP5恢復(fù)表達(dá)還能夠抑制上皮-間質(zhì)轉(zhuǎn)化,下調(diào)AKT2,增加卵巢癌細(xì)胞對化療的敏感性。
由MDR1編碼的P-gp過表達(dá)造成抗癌藥物外排增加、藥效降低,是多藥耐藥形成的主要原因[9]。Lim等[10]以大鼠腦內(nèi)皮細(xì)胞及人大腦內(nèi)皮細(xì)胞系hCMEC/D3作為研究對象,發(fā)現(xiàn)應(yīng)用GSK-3抑制劑激活β-catenin通路能夠促進(jìn)MDR1基因轉(zhuǎn)錄及P-gp蛋白表達(dá),并伴隨藥物外排的增加。Flahaut等[11]報道了21例神經(jīng)母細(xì)胞瘤的患者化療后存在FZD1及MDR1的過表達(dá)。應(yīng)用specific micro-adapted short hairpin RNA(shRNAmir)介導(dǎo)FZD1基因沉默后,MDR1表達(dá)明顯減少。
為了驗(yàn)證SFRP5在P-gp介導(dǎo)的白血病多藥耐藥中的作用,本研究選擇了SFRP5高度甲基化的多藥耐藥白血病細(xì)胞系KG1a,應(yīng)用轉(zhuǎn)基因的方法恢復(fù)其SFRP5的表達(dá),發(fā)現(xiàn)KG1a/SFRP5中MDR1 mRNA水平顯著下降,P-gp表達(dá)水平在SFRP5表達(dá)恢復(fù)后亦被下調(diào)。P-gp是膜蛋白,其表達(dá)的多少直接影響藥物外排。本研究應(yīng)用熒光顯微鏡觀察細(xì)胞膜表面的P-gp,發(fā)現(xiàn)其表達(dá)明顯減少。進(jìn)一步應(yīng)用流式細(xì)胞儀檢測細(xì)胞內(nèi)藥物濃度來評價P-gp的功能,發(fā)現(xiàn)KG1a/SFRP5細(xì)胞中藥物濃度增加。應(yīng)用MTT方法計算細(xì)胞耐藥性的變化,發(fā)現(xiàn)SFRP5表達(dá)恢復(fù)的KG1a細(xì)胞耐藥性下降。這些結(jié)果證明了SFRP5能夠逆轉(zhuǎn)P-gp介導(dǎo)的白血病多藥耐藥。
本研究證實(shí)SFRP5蛋白表達(dá)缺失參與腫瘤多藥耐藥的形成,故SFRP5蛋白及其信號通路可能作為評估白血病預(yù)后的新指標(biāo)及治療多藥耐藥白血病的新靶點(diǎn),從而提高白血病的治療緩解率,改善預(yù)后。
1 Baguley BC.Multiple Drug Resistance Mechanisms in Cancer[J].Mol Biotechnol,2010,46(3):308-316.
2 Mii Y,Taira M.Secreted Wnt"inhibitors"are not just inhibitors:regulation of extracellular Wnt by secreted Frizzled-related proteins[J].Dev Growth Differ,2011,53(8):911-923.
3 Kinoshita T,Nomoto S,Kodera Y,et al.Decreased expression and aberrant hypermethylation of the SFRP genes in human gastric can-cer[J].Hepatogastroenterology,2011,58(107-108):1051-1056.
4 Shin H,Kim JH,Lee YS,et al.Change in gene expression profiles of secreted frizzled-related proteins(SFRPs)by sodium butyrate in gastric cancers:Induction of promoter demethylation and histone modification causing inhibition of Wnt signaling[J].Int J Oncol,2012,40(5):1533-1542.
5 Liu JB,Qiang FL,Dong J,et al.Plasma DNA methylation of Wnt antagonists predicts recurrence of esophageal squamous cell carcinoma[J].World J Gastroenterol,2011,17(44):4917-4921.
6 Liu JB,Zhang YX,Zhou SH,et al.CpG island methylator phenotype in plasma is associated with hepatocellular carcinoma prognosis[J].World J Gastroenterol,2011,17(42):4718-4724.
7 Griffiths EA,Gore SD,Hooker C,et al.Acute myeloid leukemia is characterized by Wnt pathway inhibitor promoter hypermethylation[J].Leuk Lymphoma,2010,51(9):1711-1719.
8 Su HY,Lai HC,Lin YW,et al.Epigenetic silencing of SFRP5 is related to malignant phenotype and chemoresistance of ovarian cancer through Wnt signaling pathway[J].Int J Cancer,2010,127(3):555-567.
9 Y Li,H Yuan,K Yang,et al.The Structure and Functions of P-Glycoprotein[J].Current Medicinal Chemistry,2010,17(8):786-800.
10 Lim JC,Kania KD,Wijesuriya H,et al.Activation of beta-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells[J].J Neurochem,2008,106(4):1855-1865.
11 Flahaut M,Meier R,Coulon A,et al.The Wnt receptor FZD1 mediates chemoresistance in neuroblastoma through activation of the Wnt/beta-catenin pathway[J].Oncogene,2009,28(23):2245-2256.
(2012-07-16收稿)
(2012-10-25修回)
SFRP5 reversal multidrug resistance in leukemia KG1a cells
Huihan WANG1,Bin WU1,Rong ZHANG1,Zhuogang LIU1,Wei YANG1,Aijun LIAO1,Chenghai ZHAO2
Zhuogang LIU;E-mail:liuzg@sj-hospital.org
1Department of Hematology,Shengjing Hospital affiliated to China Medical University,Shenyang 110004,China2Department of Pathophysiology,China Medical University,Shenyang 110004,China
Objective:To investigate the effect of secreted frizzled-related protein 5(SFRP5)on leukemic multidrug resistance.Methods:Transgenic methods were used to culture KG1a cells expressing SFRP5 and enhanced green fluorescent protein(control).mdr1 mRNA expression in KG1a,KG1a/eGFP,and KG1a/SFRP5 groups were detected by real-time polymerase chain reaction.P-glycoprotein(P-gp)expression was detected by Western blot analysis.P-gp expression on the cell surface was observed by immunofluorescence.Intracellular drug concentration was detected by flow cytometry.Drug resistance was detected by MTT assay.Results:The KG1a/SFRP5 cell,a KG1a cell expressing SFRP5,and the KG1a/eGFP cell,a KG1a cell expressing eGFP,were successfully constructed.The multidrug resistance protein 1(mdr1)mRNAlevel in KG1a/SFRP5 cells was significantly decreased(P<0.01).P-gp expression in KG1a/SFRP5 cells was also downregulated.Fluorescence intensity of P-gp on the KG1a/SFRP5 cell surface was reduced.Rhodamine concentration in KG1a/SFRP5 cell was significantly increased(P<0.01).IC50of KG1a/SFRP5 cell toAdriamycin was decreased as determined by the MTT method.Conclusion:SFRP5 expression in KG1a cells can downregulate MDR1 transcription and P-gp expression,increase intracellular drug concentration,and reverse multidrug resistance.
secreted frizzled-related protein 5,leukemia,multidrug,P-glycoprotein
10.3969/j.issn.1000-8179.2013.06.002
①中國醫(yī)科大學(xué)附屬盛京醫(yī)院血液科(沈陽市110004);②中國醫(yī)科大學(xué)病理生理教研室
*本文課題受國家自然科學(xué)基金項(xiàng)目(編號:81100376)資助
劉卓剛 liuzg@sj-hospital.org
This work was supported by the National Natural Science Fundation of China(Grant No.81100376)
(本文編輯:楊紅欣)