• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    兩個4-[(8-羥基-5-喹啉)偶氮]苯磺酸配合物的合成、結構及性質研究

    2013-08-20 00:56:40羅亞楠許憲祝于曉洋曲小姝
    無機化學學報 2013年12期
    關鍵詞:化工學院苯磺酸吉林

    羅亞楠 許憲祝 張 瀟 于曉洋 曲小姝

    (1 哈爾濱工業(yè)大學,城市水資源與水環(huán)境國家重點實驗室,哈爾濱 150080)(2 吉林化工學院,化學與制藥工程學院,吉林 132022)

    Coordination chemistry has developed tremendously in the past 30 years, owing to the synthesis and characterization methods arising for compound structures[1-6]. In the constructions of coordination polymers, one important strategy is the extension of lowdimensional building blocks to high-dimensional networks through weak intermolecular interactions,including hydrogen-bonding, π…π stacking and Van der Waals interactions, etc.[7]. Large numbers of coordination polymers possessing diversity of topologies and properties have been obtained, which is conveyed in the wide choice of organic ligands[8-11]. Among them,the ligands containing oxygen and nitrogen atoms are the focus due to their various coordination modes[12-15],and many such ligands possessing strong coordination abilities, unique features or rigid frame structures have been chosen to construct specific function coordination polymers[16-18]. For instance, a rigid ligand 3,3′,5,5′-azobenzenetetracarboxylic acid possessing intense blue emission has been used to construct blue fluorescent materials with some d10metals[19]. As we know, azo-based systems represent one type of bridging aromatic carboxylate ligand employed in the generation of coordination networks. For example, the ligands, 3,3′-azodibenzoate (3,3′-ADB) and 4,4′-azodibenzoate (4,4′-ADB), have been employed in the synthesis of [Cd(3,3′-ADB)2·(H2NMe2)·(NH4)]nand{Tb2(4,4′-ADB)3[(CH3)2SO]4·16[(CH3)2SO]}n, respectively[20-22]. On the other hand, 8-hydroxyquinoline (8-HQ)derivatives are well-known ligands with high coordinated ability to metal ions and display excellent fluorescent performance. For example, the d10metals coordination polymers constructed with 7-iodo-8-hydroxyquinoline-5-sulfonic acid and mercury[23]or zinc[24], and the main group metals lithium[25]or aluminum[26]coordination polymers based on 8-hydroxyquinoline-5-sulfonato have been reported because of rich structures and optical properties. However, the ligands containing simultaneously 8-hydroxyquinoline and benzenesulfonic acid connected via an azo group have not been reported. Based on the above, we have designed and synthesized successfully a ligand, 4-[(8-hydroxy-5-quinolinyl)azo]-benzenesulfonic acid (H2L),which may be an excellent candidate for constructing the coordination polymers with diverse structures and outstanding fluorescent performance. To the best of our knowledge, no examples of crystal compounds containing H2L have been reported yet.

    Here in, we report the syntheses of two compounds, namely [CuL(en)]·0.5H2O (1) and [CuL2][Cu(en)2]·2H2O (2). Interestingly, the crystalline structures of compounds 1 and 2 are both constructed from two discrete molecules (or ions), respectively,and the two discrete molecules (or ions) are connected by non-covalent interactions to form 3D supramolecular networks. Moreover, the coordination mode (Scheme 1) of H2L is identical to compounds 1 and 2, in which the quinoline nitrogen and deprotonated oxygen atoms of 8-HQ bind to Cu(Ⅱ)cation as the usual bidentate chelate and the sulfonate oxygen atoms does not participate in coordination. In addition, PXRD, IR, TGA experiments were carried out to check the phase purity and the stability of the two compounds. Fluorescent properties have also been investigated in solid state, and the results showed that the two compounds may have potential application in photoactive materials field.

    Scheme 1 Coordination mode of H2L ligand in compounds 1 and 2

    1 Experimental

    1.1 Materials and general methods

    All the starting materials were reagent grade and used as purchased without further purification.Distilled water was used throughout. The radical ligand H2L, 4-[(8-hydroxy-5-quinolinyl)azo]-benzenesulfonic acid, was prepared according to the literature method[27-28]. The elemental analyses were carried on a Perkin-Elmer 240C elemental analyzer. The infrared(IR) spectra were recorded (400~4 000 cm-1region)on a Nicolet Impact 410 FT-IR spectrometer using KBr pellets. Thermogravimetric analyses (TGA) were performed under oxygen atmosphere with a heating rate of 10 ℃·min-1using a Perkin-Elmer TGA 7 thermogravimetric analyzer.Fluorescence spectrum was performed on a HITACHIF-7000 Fluorescence Spectrophotometer at room temperature. PXRD were collected on a Siemens D5005 diffractometer by using Cu Kα(λ=0.154 18 nm)with a graphite monochromator.

    1.2 Syntheses of complexes

    [CuL(en)]·0.5H2O (1): A mixture of H2L (5 mg,0.015 mmol), CuCl2·2H2O (30 mg, 0.18 mmol), N,Ndimethylacetamide (DMA, 15 mL), H2O (2 mL) and en(0.012 5 mL) was stirred at room temperature for 1 h until a clear purple solution formed, finally sealed in a 25 mL glass bottle and heated at 100 ℃for 3 d.Afterwards, it was cooled to 25 ℃at a rate of 4 ℃·h-1.Brown sheet crystals were obtained after washing with DMA and drying in air. Yield: 55% based on copper.Anal. Calcd. for C34H36Cu2N10O9S2(%): C 44.39; H 3.94; N 15.23; Found(%): C 44.31; H 3.88; N 15.18.

    [CuL2][Cu(en)2]·2H2O (2): This compound was prepared in a similar manner as compound 1 except for H2L (10 mg, 0.030 mmol), DMA (12 mL) and H2O(6 mL). Brown sheet crystals were obtained after washing with DMA and drying in air. Yield: 32%based on copper. Anal. Calcd. for C34H38Cu2N10O10S2(%): C 43.54; H 4.08; N 14.93; Found(%): C 43.04; H 3.99; N 14.88.

    1.3 Crystal structure determination

    Compounds 1 and 2 were stable under ambient conditions and brown single crystals were glued on thin glass fibers. Diffraction intensities for two compounds were collected at 296 K on Bruker Smart Apex ⅡCCD diffractometer (Mo Kα, 0.071 073 nm).An empirical absorption correction was applied to the date using the SADABS program. The structures were solved by the direct method and refined by full matrix least squares (SHELX-97)[29]. All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were located geometrically by the program OLEX2[30].The final formula was derived from crystallographic data combined with elemental and thermogravimetric analyses data. A summary of the crystallographic data and structural determination for compounds 1 and 2 is listed in Table 1.

    CCDC: 881778, 1; 889463, 2.

    2 Results and discussion

    2.1 Description of crystal structures

    Table 1 Crystal data and structure refinements for compounds 1 and 2

    Single-Crystal X-ray diffraction analysis reveals that the asymmetric unit of compound 1 contains two[CuL(en)] molecules A and B together with one disordered water molecule (Fig.1). In molecules A and B, Cu1 and Cu2 are both coordinated by one nitrogen atom, one oxygen atom from the quinolinol group of one L2-ligand and two nitrogen atoms from an en molecule, forming distorted square geometries,selected bond lengths and bond angles are provided in Table 2. The bond lengths of Cu1-N1, Cu1-N2, Cu1-O1 and Cu1-N9 are 0.197 7(4), 0.199 9(4), 0.195 3(4)and 0.200 2(4) nm, and the bond lengths of Cu2-N3, Cu2-N4, Cu2-O2 and Cu2-N10 are 0.196 4(5),0.199 0(5),0.193 1(4)and 0.199 7(4)nm,respectively.The angles of N1-Cu1-N2, N2-Cu1-O1, O1-Cu1-N9 and N9-Cu1-N1 are 84.57(17)°,93.07(16)°,83.17(15)°and 99.84 (17)°, and the angles of N3-Cu2-N4, N4-Cu2-O2,O2-Cu2-N10 and N10-Cu2-N3 are 84.70(20)°,91.43(19)°, 83.85(18)° and 100.01(19)°, respectively.From above data can see, molecules A and B of compound 1 are similar in the structure but the bond lengths and angles are different.

    Fig.1 Coordination environment of Cu1 and Cu2 in compound 1 with thermal ellipsoids at 30% probability

    Table 2 Selected bond lengths (nm) and angles (°) for compounds 1 and 2

    It is noteworthy that the cohesion of these molecules is strengthened by hydrogen bonding interactions, and hydrogen bond distances (nm) and angles (°) for compound 1 are listed in Table 3. In compound 1, N2 acting as H-donor bonds to thesulfonate oxygen atom O6iiiof the neighboring molecule A (N2…O6iii0.301 4(5) nm, N2-H2C…O6iii160°), thus the molecules A are linked into onedimensional (1D) chains through the N -H … O hydrogen bonding interactions in a head-to-tail manner. Similarly, the molecules B are connected into 1D chains through the hydrogen bonding interaction between N4 and sulfonate oxygen atom O3vof the adjacent molecule (N4…O3v0.302 0(7) nm, N4-H4A…O3v167°) (Fig.2a). Further, N1 and N3 acting as hydrogen bonding donors link, respectively, to the sulfonate oxygen atoms O5iiand O7iiiof the two neighboring molecules A and B (N1…O5ii0.304 6(6)nm, N1-H1C…O5ii163°; N3…O7iii0.288 3 (5) nm,N3-H3A…O7iii131°), which link the 1D chains A and B into two-dimensional (2D) layer structures in AB-A-B chains manner. Interestingly, through the hydrogen bonding linkages, the oxygen atoms and the nitrogen atoms show wavy structures along a axis and the neighboring chains A and B form a special “fish scales” structure (Fig.2a). Finally, four hydrogen bonds between the layers and layers to pillar the neighboring 2D layers into 3D supramolecular network(Fig.2b) (N1…O7iii0.293 9 (6) nm, N1-H1D…O7iii158°; N2…O1iv0.305 6 (6) nm, N2-H2D…O1iv160°;N3…O5i0.296 7 (7) nm, N3-H3A…O5i160°; N4…O2vi0.318 1 (8) nm, N4-H4B…O2vi171°). In particular, the π … π stacking interactions between molecules play important roles in stabilization of the supramolecular structure of compound 1, selected π…π interactions geometry data for compound 1 are listed in Table 4. There are π…π stacking interactions between L2-ligands in neighboring layers. As shown in Fig.2c, those planar L2-ligand molecules are parallel to each other. The distances of center to center, Cg3…Cg5iii, Cg4…Cg5iii, Cg8…Cg10i, Cg9…Cg10i, between adjacent quinoline and benzene rings are 0.357 8(3), 0.378 2(3), 0.365 3(4), 0.446 2(5) nm and the dihedral angle are 3.5(3)°, 4.4(3)°, 4.2(3),5.7(4)°, respectively, estimated by using PLATON program[31-32](Cg3 is the centroid of N9/C3/C4/C5/C6/C11, Cg4 is the centroid of C6/C7/C8/C9/C10/C11,Cg5iiiis the centroid of C12iii/C13iii/C14iii/C15iii/C16iii/C17iii, Cg8 is the centroid of N10/C25/C24/C28/C27/C26, Cg9 is the centroid of C20/C21/C22/C23/C24/C25 and Cg10iis the centroid of C29i/C30i/C31i/C32i/

    C33i/C34iof L2-ligand).

    Table 3 Hydrogen bond distances and angles in compounds 1 and 2

    Fig.2 (a) Hydrogen bonding interactions between nitrogen and oxygen atoms connect N and O atoms into 2D layer structures;(b) 2D layers are linked into a 3D supramolecular network through interlayer hydrogen bonding interactions; (c) π…π stacking interactions in compound 1

    Fig.3 Coordination environment of Cu1 and Cu2 in compound 2 with thermal ellipsoids at 30% probability

    Fig.4 (a) Hydrogen bonding interactions between nitrogen and oxygen atoms connect unit Ⅰand unit Ⅱinto 2D layer structures; (b) 2D layers are linked into a 3D supramolecular network through interlayer hydrogen bonding interactions; (c) π…π stacking interactions between adjacent [CuL2]2-anions in compound 2

    Single-Crystal X-ray diffraction analysis reveals that compound 2 is constructed from two ions. As shown in Fig.3, the structure consists of discrete centrosymmetric [Cu(en)2]2+cations and [CuL2]2-anions together with two crystallization water molecules. Cu1 is coordinated by two nitrogen atoms (N3 and N3i) and two oxygen atoms (O4 and O4i) from the quinolinol groups of two L2-ligands, and Cu2 is chelated by four nitrogen atoms (N1, N1ii, N2 and N2ii) from two en molecules. The coordination environments of the two Cu (II) are both distorted square geometries, selected bond lengths and bond angles are provided in Table 2. The bond lengths for Cu-N are in the range (0.195 6 (2)~0.201 7 (2) nm), and the bond lengths for Cu-O are 0.1925 (2) nm. The angles of N3-Cu1-O4 and N2-Cu2-N1 are 85.14(8)° and 84.96(9)°, respectively.

    In compound 2, the en molecules, sulfonate groups and two crystallization water molecules play an important role in the formation of hydrogen bonds,and hydrogen bond distances (nm) and angles (°) for compound 2 are listed in Table 3. N1 and N2 acting as hydrogen bonding donors link, respectively, to the sulfonate oxygen atoms O1iii, O2iiiand O2vof neighboring two L2-ligands (N1…O1iii0.319 4(4) nm,N1-H1B…O1iii150°; N1…O2iii0.335 9 (4) nm, N1-H1B…O2iii147°; N2…O2v0.294 6(4) nm, N2-H2B…O2v165°), which connect [Cu (en)2]2+cations and[CuL2]2-anions into 1D chain structures (Fig.4a). N1 of the en molecules acting as hydrogen bonding donor links to the sulfonate oxygen atoms O1 (N1 …O1 0.312 3(3) nm, N1-H1A…O1 148°) and the 1D chain structures are linked into 2D layer structures (Fig.4a).In addition, The en molecules N2 and the crystallization water O5 acting as hydrogen bonding donors link, respectively, to the sulfonate oxygen atoms O3iv, O1viand O3v(N2…O3iv0.299 1(3) nm,N2-H2A…O3iv146°; O5…O1vi0.298 8 (4) nm, O5-H5A…O1vi173°; O5…O3v0.318 3(3) nm, O5-H5B…O3v165°) to form a N-H …O hydrogen bonding linkages which pillar the neighboring 2D layers into a 3D supramolecular network (Fig.4b). Moreover, it is obvious that compound 2 involves abundant π…π stacking interactions, selected π … π interactions geometry data for compound 2 are listed in Table 4.The neighboring two L2-ligands are parallel to each other in intermolecules, and π…π interactions exist between quinoline and benzene rings (Fig.4c). The distances of center to center, Cg3…Cg5v, Cg4…Cg5v,Cg4i…Cg3v, Cg4i…Cg4v, between adjacent quinoline and benzene rings are 0.365 2(2),0.394 6(2),0.371 3(2),0.356 6(2) nm and the dihedral angle are 11.8(2)°,13.5(2)°, 1.9(2)°, 0°, respectively, estimated by using PLATON program[31-32](Cg3 is the centroid of N3/C1/C2/C3/C4/C5, Cg4 is the centroid of C4/C5/C6/C7/C8/C9, Cg5vis the centroid of C10v/C11v/C12v/C13v/C14v/C15v, Cg4iis the centroid of C4i/C5i/C6i/C7i/C8i/C9i,Cg3vis the centroid of N3v/C1v/C2v/C3v/C4v/C5vand Cg4vis the centroid of C4v/C5v/C6v/C7v/C8v/C9vof L2-ligand). Hydrogen bonding and π … π stacking interactions are weaker than the coordination bonds,but they play important roles in stabilizing the molecular packing in crystal engineering.

    2.2 IR spectra

    Table 4 Selected π…π interactions geometries for compounds 1 and 2

    The IR spectrums of compounds 1 and 2 were measured and listed in Fig.5 and Fig.6.Bands at 1 650 and 1 257 cm-1for compound 1 (1 663 and 1 259 cm-1for compound 2) correspond to stretching vibrations of the benzene skeleton, band at 1 583 cm-1(1 584 cm-1for compound 2) corresponds to C =N stretching vibration of the pyridine rings, band at 1 510 cm-1(1 504 cm-1for compound 2) corresponds to N=N,bands at 1 470 and 1 397 cm-1(1 465 and 1 405 cm-1for compound 2) correspond to C-H bending vibrations, bands at 1 330 and 1 190 cm-1(1 326 and 1 187 cm-1for compound 2) correspond to S=O of the sulfonate groups, and bands at 1 110, 1 057 and 1 021 cm-1(1 114, 1 054 and 1 022 cm-1for compound 2)correspond to sulfonate groups[33]. The O-H stretching band of the water of crystallization is observed at 3 447 cm-1(3 436 cm-1for compound 2).IR spectrums of compounds 1 and 2 are similar because there are identical functional groups in compounds 1 and 2,however, the slightly differences of their IR spectrums are owing to the different coordination modes of the ligands.

    Fig.5 IR spectra of compound 1

    Fig.6 IR spectra of compound 2

    2.3 Powder X-ray diffractions

    We examined the structural homogeneity of bulk powder samples of compound 1 through comparison of experimental and simulated PXRD patterns. The peak positions of the experimental patterns are nearly in agreement with those of the simulated ones generated from single-crystal X-ray diffraction data (Fig.7),suggesting that the product of compound 1 is pure single phase.

    Fig.7 Experimental (a) and simulative (b) powder X-ray diffraction patterns for compound 1

    2.4 TGA

    TGA curve (Fig.8) shows weight losses of compound 1: The weight loss of 2.12% (Calcd. 1.96%)from 85 ℃to 115 ℃is attributed to the release of the crystallization H2O. The total weight loss of 77.92%from 328 to 980 ℃can be attributed to the release of en and L2-(Calcd. 78.63%).

    TGA curve (Fig.9) shows weight losses of compound 2: Compound 2 losses its crystallization H2O from 130 to 270 ℃(Expt. 4.20%, Calcd. 3.83%).The total weight loss of 66.86% from 270 to 937 ℃corresponds to the removal of the en and L2-(Calcd.66.32%).

    Fig.8 TGA curve of compound 1

    2.5 Fluorescent properties

    The fluorescent properties of compounds 1, 2 and the free ligand H2L have been carried out in the solid state at room temperature under the same condition.As shown in Fig.10, compounds 1 and 2 both display the emissions maxima at 367 nm when excited at 234 nm. The free ligand exhibits emission maximum at 354 nm upon excitation at 236 nm. Compounds 1 and 2 are red-shifted with respect to the free ligand H2L,which can likely be attributed to ligand based π→π*or n→π* electronic transitions including the -N=Nbased π→π* transition[34-35]. The coordination of H2L to the metal ion does not affect these ligand-specific transitions in its products 1 and 2 substantially except for some minor changes. The fluorescence makes them potentially useful photoactive materials.

    Fig.9 TGA curve of compound 2

    Fig.10 Solid-state fluorescent spectrum of the H2L(a, a′), compound 1 (b, b′) and compound 2(c, c′) at room temperature

    3 Conclusions

    The self-assembly reaction of the rigid ligand H2L and Cu (Ⅱ)salts yields two Cu (Ⅱ)coordination polymers [CuL(en)]·0.5H2O (1) and [CuL2][Cu(en)2]·2H2O (2). The solvent ratio of DMA and H2O (7.5∶1 in 1 and 2∶1 in 2) and the metal/ligand ratio (6∶1 in 1 and 3∶1 in 2) have a remarkable influence on the selfassembly of the rigid ligand with metal atoms and result the different motifs of compound 1 and 2.Compound 1 contains two [CuL(en)] molecules A and B, and the neighboring molecules A and B form a special “fish scales” structure. Compound 2 is constructed from[Cu(en)2]2+cations and[CuL2]2-anions.The crystalline structures of compounds 1 and 2 are both connected by non-covalent interactions to form 3D supramolecular networks.The fluorescent properties of compounds 1 and 2 were also determined in solid state at room temperature. This work demonstrates that the azo ligands could be used in producing new frameworks and topologies of coordination compounds with potential fluorescent properties. On the basis of this work, further syntheses and structural studies of new coordination polymers with azo ligands are also under way in our laboratory.

    [1] Daniel M C, Astruc D. Chem. Rev., 2004,104:293-346

    [2] Kitagawa S, Kitaura R, Noro S. Angew. Chem. Int. Ed.,2004,43:2334-2375

    [3] Eddaoudi M, Moler D B, Li H L, et al. Acc. Chem. Res.,2001,34(4):319-330

    [4] YANG Ying-Qun (楊穎群), CHEN Man-Sheng (陳滿生),CHEN Zhi-Min (陳 志 敏), et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2011,27(9):1847-1851

    [5] Yaghi O M, O′Keeffe M, Ockwig N W, et al. Nature, 2003,423:705-714

    [6] Tranchemontagne D J, Mendoza-Cortés J L, O′Keeffe M,et al. Chem. Soc. Rev., 2009,38:1257-1283

    [7] Kolotuchin S V, Fenlon E E, Wilson S R, et al. Angew.Chem. Int. Ed., 1995,34:2654-2657

    [8] Wang X L, Qin C, Wu S X, et al. Angew. Chem. Int. Ed.,2009,48(29):5291-5295

    [9] Dikarev E V, Li B, Chernyshev V V, et al. Chem. Commun.,2005:3274-3276

    [10]ZHU Dun-Ru(朱敦如), ZHOU Jun(周俊), YANG Jie(楊捷), et al. J. Nanjing Univ. Tech.(Nanjing Gongye Daxue Xuebao), 2007,29:103-110

    [11]XIA Jun(夏軍), ZHANG Ming(張明), ZHAO Bin(趙斌),et al. Chinese J. Inorg. Chem.(Wuji Huaxue Xuebao), 2006,22(8):1406-1410

    [12]Larsen R W. J. Am. Chem. Soc., 2008,130:11246-11247

    [13]Xu G C, Ding Y J, Okamura T A, et al. CrystEngComm,2008,10:1052-1062

    [14]Luo F, Che Y X, Zheng J M. Cryst. Growth Des., 2008,8:176-178

    [15]Zeng M H, Wang Q X, Tan Y X, et al. J. Am. Chem. Soc.,2010,132:2561-2563

    [16]Long J R, Bloch E D, Britt D, et al. J. Am. Chem. Soc.,2010,132:14382-14384

    [17]Katsoulis D E. Chem. Rev., 1998,98:359-388

    [18]Müller A. Serain C. Acc. Chem. Res., 2000,33:2-10

    [19]Liu W L, Ye L H, Liu X F, et al. CrystEngComm, 2008,10:1395-1403

    [20]Chen Z F, Xiong R G, Abrahams B F, et al. J. Chem. Soc.Dalton Trans., 2001,17:2453-2455

    [21]Reineke T M, Eddaoudi M, Moler D B, et al. J. Am. Chem.Soc., 2000,122:4843-4844

    [22]Chen Z F, Zhang Z L, Tan Y H, et al. CrystEngComm,2008,10:217-231

    [23]Balasubramani K, Thomas P, Bocelli G, et al. J. Coord.Chem., 2005,58:1689-1694

    [24]Lu Y G, Cheng W, Meng X R, et al. J. Mol. Struct., 2008,875:183-188

    [25]Thomas M P, Murugesan S. J. Coord. Chem., 2006,59:1167-1172

    [26]Camerel F, Barberá J, Otsuki J, et al. Adv. Mater., 2008,20:3462-3467

    [27]Park J S, Jeong S, Dho S K, et al. Dyes Pigm., 2010,87:49-54

    [28]Aytül S, Zeynel S, Nermin E. Dyes Pigm., 2008,76(2):470-476

    [29]Sheldrick G M. SHELXTL V. 5.10. Structure Determination Software Suite, Bruker AXS, Madison, 1998.

    [30]Dolomanov O V, Bourhis L J, Gildea R J, et al. J. Appl.Cryst., 2009,42:339-341

    [31]Spek A L, Appl J. J. Appl. Crystallogr., 2003,36:7-13

    [32]Spek A L. PLATON, A Multipurpose Crystallographic Tool,Utrecht University, Netherlands, 2006.

    [33]Yuan L, Qin C, Wang X L, et al. Solid State Sci., 2008,10:967-975

    [34]Yu X Y, Ye L, Zhang X, et al. Dalton Trans., 2010,39(44):10617-10625

    [35]Lan A J, Padmanabhan M, Li K H, et al. Inorg. Chim. Acta,2011,366:68-75

    猜你喜歡
    化工學院苯磺酸吉林
    使固態(tài)化學反應100%完成的方法
    13.吉林卷
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    吉林卷
    學生天地(2020年31期)2020-06-01 02:32:24
    吉林卷
    學生天地(2019年30期)2019-08-25 08:53:24
    苯磺酸氨氯地平治療輕中度高血壓的效果分析
    頂空氣相色譜法測定甲苯磺酸拉帕替尼原料藥中的7種殘留溶劑
    《化工學報》贊助單位
    化工學報(2016年3期)2016-03-14 08:37:00
    厄貝沙坦聯(lián)合苯磺酸氨氯地平治療糖尿病合并高血壓的臨床研究
    国产精品免费一区二区三区在线| 亚洲国产色片| 三级男女做爰猛烈吃奶摸视频| 老司机午夜福利在线观看视频| 俄罗斯特黄特色一大片| 国产精品一区www在线观看| 1000部很黄的大片| 国产久久久一区二区三区| 男女之事视频高清在线观看| 国产午夜福利久久久久久| av在线老鸭窝| 性插视频无遮挡在线免费观看| eeuss影院久久| 亚洲人成网站在线观看播放| 一边摸一边抽搐一进一小说| 男女下面进入的视频免费午夜| 老女人水多毛片| 国产精品爽爽va在线观看网站| 亚洲成av人片在线播放无| 国产亚洲精品久久久com| 波多野结衣高清无吗| 中文字幕人妻熟人妻熟丝袜美| 久久久精品欧美日韩精品| 永久网站在线| 国产欧美日韩精品一区二区| 老女人水多毛片| 内地一区二区视频在线| 热99re8久久精品国产| 最新中文字幕久久久久| 丝袜喷水一区| 麻豆国产97在线/欧美| 国产av麻豆久久久久久久| 国产美女午夜福利| 高清日韩中文字幕在线| 午夜福利在线观看免费完整高清在 | 国产精品综合久久久久久久免费| 亚洲国产色片| 亚州av有码| 小说图片视频综合网站| 亚洲成a人片在线一区二区| 欧美bdsm另类| 91狼人影院| 麻豆乱淫一区二区| 18禁黄网站禁片免费观看直播| 人妻丰满熟妇av一区二区三区| 国产真实乱freesex| 露出奶头的视频| av.在线天堂| 小蜜桃在线观看免费完整版高清| 久久人人爽人人片av| 天堂动漫精品| 国内少妇人妻偷人精品xxx网站| 国产综合懂色| 男女视频在线观看网站免费| 午夜福利在线观看免费完整高清在 | 国产色爽女视频免费观看| 国产黄色视频一区二区在线观看 | 中国美白少妇内射xxxbb| 精品99又大又爽又粗少妇毛片| 少妇猛男粗大的猛烈进出视频 | 亚洲成a人片在线一区二区| 69人妻影院| 少妇人妻一区二区三区视频| 国产激情偷乱视频一区二区| 久久国内精品自在自线图片| 国产一区二区在线观看日韩| 亚洲色图av天堂| 国产在线男女| 美女高潮的动态| 午夜亚洲福利在线播放| 久久99热这里只有精品18| 一进一出抽搐gif免费好疼| 欧美最黄视频在线播放免费| 一进一出抽搐动态| 99九九线精品视频在线观看视频| 少妇人妻一区二区三区视频| 亚洲av五月六月丁香网| 成年免费大片在线观看| 欧美zozozo另类| 国产成年人精品一区二区| av在线蜜桃| 日韩欧美在线乱码| 欧美丝袜亚洲另类| 男女下面进入的视频免费午夜| 人人妻人人澡人人爽人人夜夜 | 岛国在线免费视频观看| 国产伦精品一区二区三区视频9| 变态另类成人亚洲欧美熟女| 日本黄色片子视频| 深夜精品福利| 久久热精品热| 免费看光身美女| 校园春色视频在线观看| 少妇裸体淫交视频免费看高清| 大型黄色视频在线免费观看| 成人永久免费在线观看视频| 成人二区视频| 男插女下体视频免费在线播放| 亚州av有码| 亚洲aⅴ乱码一区二区在线播放| 一进一出好大好爽视频| 又粗又爽又猛毛片免费看| 在线a可以看的网站| 久久久久国产精品人妻aⅴ院| 成人欧美大片| 国产伦精品一区二区三区四那| 国产久久久一区二区三区| 成人鲁丝片一二三区免费| 国产69精品久久久久777片| 欧美中文日本在线观看视频| 在线免费十八禁| 毛片一级片免费看久久久久| 亚洲精品影视一区二区三区av| 91久久精品国产一区二区成人| 日日摸夜夜添夜夜爱| 亚洲七黄色美女视频| 搡老妇女老女人老熟妇| 偷拍熟女少妇极品色| 亚洲国产欧美人成| 露出奶头的视频| 欧美精品国产亚洲| 国产精品人妻久久久影院| 久久久久久久久久黄片| 一进一出好大好爽视频| 又粗又爽又猛毛片免费看| 国内精品美女久久久久久| 国产成人精品久久久久久| 成人特级黄色片久久久久久久| 又黄又爽又免费观看的视频| 国产伦在线观看视频一区| 成人二区视频| 欧美一区二区亚洲| 少妇人妻一区二区三区视频| 国语自产精品视频在线第100页| 蜜桃亚洲精品一区二区三区| 99久国产av精品国产电影| 精品乱码久久久久久99久播| 免费av不卡在线播放| 精品一区二区三区av网在线观看| 国产精品久久视频播放| 97人妻精品一区二区三区麻豆| 看黄色毛片网站| 日本撒尿小便嘘嘘汇集6| 春色校园在线视频观看| 国产真实乱freesex| 在线看三级毛片| 在线免费观看不下载黄p国产| 最近在线观看免费完整版| 亚洲成a人片在线一区二区| 久久99热6这里只有精品| 蜜桃久久精品国产亚洲av| 成人美女网站在线观看视频| 黄色欧美视频在线观看| 真人做人爱边吃奶动态| 亚洲性久久影院| 国产午夜精品论理片| 久久久久免费精品人妻一区二区| 麻豆一二三区av精品| 国产在线男女| 中文资源天堂在线| 插逼视频在线观看| 久久久午夜欧美精品| 久久精品国产清高在天天线| 国产免费一级a男人的天堂| 国产成人精品久久久久久| 1000部很黄的大片| 不卡视频在线观看欧美| 精品福利观看| 亚洲av中文av极速乱| 亚洲精品成人久久久久久| 国产精品,欧美在线| 色播亚洲综合网| 女人十人毛片免费观看3o分钟| 国产精品久久久久久av不卡| 亚洲四区av| 又爽又黄无遮挡网站| 韩国av在线不卡| 亚洲婷婷狠狠爱综合网| 91久久精品国产一区二区成人| 一区二区三区四区激情视频 | 91午夜精品亚洲一区二区三区| 色哟哟哟哟哟哟| 久久久午夜欧美精品| 日韩一本色道免费dvd| 亚洲欧美日韩无卡精品| 亚洲国产精品sss在线观看| 亚洲美女视频黄频| 国产精品,欧美在线| 最好的美女福利视频网| 精品一区二区免费观看| 中国国产av一级| 中国国产av一级| 美女黄网站色视频| 两个人的视频大全免费| 99久久久亚洲精品蜜臀av| av天堂在线播放| 国产精品,欧美在线| 欧美性猛交╳xxx乱大交人| 毛片女人毛片| 久久天躁狠狠躁夜夜2o2o| 亚洲最大成人av| 一级毛片久久久久久久久女| 六月丁香七月| 熟女人妻精品中文字幕| 内地一区二区视频在线| 久久久欧美国产精品| 国产熟女欧美一区二区| 国产不卡一卡二| 欧美性猛交╳xxx乱大交人| 麻豆成人午夜福利视频| 成人av在线播放网站| 99久久精品国产国产毛片| 成人无遮挡网站| 亚洲av免费高清在线观看| 51国产日韩欧美| 人妻少妇偷人精品九色| 秋霞在线观看毛片| 欧美3d第一页| 亚洲av电影不卡..在线观看| 观看免费一级毛片| 又黄又爽又刺激的免费视频.| 淫妇啪啪啪对白视频| 亚洲中文日韩欧美视频| 国产高清不卡午夜福利| 国产女主播在线喷水免费视频网站 | 国产精品一二三区在线看| 中文字幕人妻熟人妻熟丝袜美| 波多野结衣巨乳人妻| 成年版毛片免费区| 国产爱豆传媒在线观看| 97人妻精品一区二区三区麻豆| 天美传媒精品一区二区| 久久午夜亚洲精品久久| 午夜激情福利司机影院| 99久国产av精品| 国产高清三级在线| 人人妻人人看人人澡| 国产毛片a区久久久久| 欧美日韩一区二区视频在线观看视频在线 | 搡老熟女国产l中国老女人| 白带黄色成豆腐渣| 成年女人看的毛片在线观看| 亚洲成人久久性| 成人三级黄色视频| 国产成年人精品一区二区| 18禁在线播放成人免费| 插阴视频在线观看视频| 校园春色视频在线观看| 国产亚洲精品综合一区在线观看| 国产高清不卡午夜福利| 日韩欧美精品v在线| 国产一区二区亚洲精品在线观看| 成人无遮挡网站| 成人亚洲精品av一区二区| 99久久精品一区二区三区| 夜夜看夜夜爽夜夜摸| 久久精品久久久久久噜噜老黄 | 淫妇啪啪啪对白视频| 不卡视频在线观看欧美| 亚洲精品日韩在线中文字幕 | 少妇人妻一区二区三区视频| 免费电影在线观看免费观看| 嫩草影院精品99| 99riav亚洲国产免费| 国产精品久久久久久久久免| 天堂av国产一区二区熟女人妻| 日日摸夜夜添夜夜添av毛片| 黄色日韩在线| 国产精品无大码| 亚洲一级一片aⅴ在线观看| 校园人妻丝袜中文字幕| 日本爱情动作片www.在线观看 | 国内久久婷婷六月综合欲色啪| 可以在线观看毛片的网站| 国产精品一区二区三区四区免费观看 | 在线观看66精品国产| 国产成人精品久久久久久| av国产免费在线观看| 香蕉av资源在线| 国产一区二区在线av高清观看| 99九九线精品视频在线观看视频| 免费搜索国产男女视频| 中国美女看黄片| 一本一本综合久久| 一级黄片播放器| 日韩欧美国产在线观看| 熟妇人妻久久中文字幕3abv| 老熟妇仑乱视频hdxx| 国产精品福利在线免费观看| 国产男人的电影天堂91| 国产欧美日韩一区二区精品| 内地一区二区视频在线| 国产成人一区二区在线| 欧美国产日韩亚洲一区| 成人高潮视频无遮挡免费网站| 国产爱豆传媒在线观看| 国产精品一区二区三区四区久久| 天天躁日日操中文字幕| 欧美丝袜亚洲另类| 成人综合一区亚洲| 国语自产精品视频在线第100页| 自拍偷自拍亚洲精品老妇| 欧美精品国产亚洲| 最后的刺客免费高清国语| 亚洲av不卡在线观看| 尾随美女入室| 亚洲精品日韩在线中文字幕 | 一区福利在线观看| 亚洲无线在线观看| 熟女人妻精品中文字幕| 成人一区二区视频在线观看| 亚洲成人av在线免费| 欧美日韩在线观看h| 丰满乱子伦码专区| 国产精品美女特级片免费视频播放器| 久久久精品大字幕| 日本黄色视频三级网站网址| 午夜a级毛片| 久久午夜福利片| 特大巨黑吊av在线直播| 内射极品少妇av片p| 国产女主播在线喷水免费视频网站 | 国产视频内射| 国产成人a区在线观看| 亚洲最大成人中文| 人人妻人人澡欧美一区二区| 久久精品国产清高在天天线| 国产国拍精品亚洲av在线观看| 国产欧美日韩精品亚洲av| 露出奶头的视频| 美女xxoo啪啪120秒动态图| 免费大片18禁| 免费人成视频x8x8入口观看| 久久久国产成人免费| 内地一区二区视频在线| 日日摸夜夜添夜夜添av毛片| 91狼人影院| 一个人看的www免费观看视频| 国产午夜福利久久久久久| 最好的美女福利视频网| 亚洲美女视频黄频| 色哟哟·www| 日本免费a在线| a级毛片a级免费在线| 麻豆国产97在线/欧美| 午夜亚洲福利在线播放| 毛片一级片免费看久久久久| 高清毛片免费观看视频网站| 亚洲国产精品成人久久小说 | 欧美色欧美亚洲另类二区| 亚洲经典国产精华液单| 亚洲成人精品中文字幕电影| 亚洲精品色激情综合| 亚洲五月天丁香| 欧美极品一区二区三区四区| 联通29元200g的流量卡| 高清午夜精品一区二区三区 | 人人妻人人澡欧美一区二区| 国国产精品蜜臀av免费| 99在线视频只有这里精品首页| 国产乱人偷精品视频| 亚洲欧美日韩东京热| 亚洲乱码一区二区免费版| 亚洲精品国产成人久久av| 亚洲成人久久爱视频| 人妻丰满熟妇av一区二区三区| 国语自产精品视频在线第100页| 欧美日韩在线观看h| av在线播放精品| 国产成人aa在线观看| 久久亚洲国产成人精品v| 国产真实伦视频高清在线观看| 69av精品久久久久久| 国产乱人偷精品视频| 国内精品美女久久久久久| 欧美一区二区国产精品久久精品| 在线看三级毛片| 国产白丝娇喘喷水9色精品| 天堂√8在线中文| 国产麻豆成人av免费视频| 亚洲av中文字字幕乱码综合| av天堂在线播放| 国产黄色小视频在线观看| 午夜福利成人在线免费观看| 亚洲中文字幕日韩| 日本精品一区二区三区蜜桃| 久久精品国产亚洲网站| 伦理电影大哥的女人| 国产精品一区二区三区四区久久| 好男人在线观看高清免费视频| 久久精品国产99精品国产亚洲性色| 午夜日韩欧美国产| 悠悠久久av| 国产午夜精品久久久久久一区二区三区 | 亚洲最大成人手机在线| 热99re8久久精品国产| 国产精品久久久久久久久免| 精品人妻一区二区三区麻豆 | 成年av动漫网址| 亚洲丝袜综合中文字幕| 午夜影院日韩av| 天堂动漫精品| 天天躁日日操中文字幕| 俺也久久电影网| 99久国产av精品| 真人做人爱边吃奶动态| av天堂中文字幕网| 亚洲成人中文字幕在线播放| 成年女人永久免费观看视频| 麻豆国产97在线/欧美| 欧美成人a在线观看| 三级毛片av免费| 精品人妻一区二区三区麻豆 | 日韩一区二区视频免费看| 在线a可以看的网站| 国产精品国产三级国产av玫瑰| 日韩 亚洲 欧美在线| 国产毛片a区久久久久| 亚洲自偷自拍三级| 狂野欧美白嫩少妇大欣赏| 成人亚洲欧美一区二区av| 一进一出好大好爽视频| 久久6这里有精品| 国产亚洲精品久久久久久毛片| 亚洲自偷自拍三级| 久99久视频精品免费| 午夜免费男女啪啪视频观看 | 久久6这里有精品| 免费黄网站久久成人精品| av福利片在线观看| 精品乱码久久久久久99久播| 男人和女人高潮做爰伦理| 日韩一区二区视频免费看| av在线观看视频网站免费| 男女之事视频高清在线观看| 欧美成人免费av一区二区三区| 国产精品1区2区在线观看.| 五月玫瑰六月丁香| 亚洲成人久久爱视频| 午夜视频国产福利| 蜜臀久久99精品久久宅男| 欧美+亚洲+日韩+国产| 又黄又爽又免费观看的视频| 一进一出好大好爽视频| 日韩亚洲欧美综合| 中文字幕av在线有码专区| 一级a爱片免费观看的视频| 国产精品久久视频播放| 99热这里只有是精品50| 日韩人妻高清精品专区| 深爱激情五月婷婷| 久久草成人影院| 国产熟女欧美一区二区| 国产一区二区激情短视频| 久久久国产成人精品二区| .国产精品久久| 欧美精品国产亚洲| 精品无人区乱码1区二区| 婷婷亚洲欧美| 日本精品一区二区三区蜜桃| 国产中年淑女户外野战色| 国产精品乱码一区二三区的特点| 婷婷六月久久综合丁香| 好男人在线观看高清免费视频| 熟妇人妻久久中文字幕3abv| 久久99热这里只有精品18| 好男人在线观看高清免费视频| 国产亚洲精品av在线| 久久这里只有精品中国| 欧美色视频一区免费| 国产伦一二天堂av在线观看| 精品一区二区免费观看| 久99久视频精品免费| 国产精品乱码一区二三区的特点| 久久精品国产清高在天天线| 欧美xxxx性猛交bbbb| 国产毛片a区久久久久| 国产精品人妻久久久影院| a级毛色黄片| 精品一区二区三区人妻视频| 国产精品久久久久久av不卡| 亚洲丝袜综合中文字幕| 国产精品免费一区二区三区在线| 老司机福利观看| 草草在线视频免费看| 在线免费观看不下载黄p国产| 亚洲专区国产一区二区| 欧美一区二区亚洲| 99热精品在线国产| 男女做爰动态图高潮gif福利片| 中文字幕精品亚洲无线码一区| 成年女人看的毛片在线观看| 99久久无色码亚洲精品果冻| 久久久久久久久久成人| 少妇的逼好多水| 久久久久久久久久久丰满| 欧美日本亚洲视频在线播放| 国产精品一区www在线观看| 波野结衣二区三区在线| av在线天堂中文字幕| 亚洲欧美日韩高清在线视频| 看非洲黑人一级黄片| 欧美丝袜亚洲另类| 99久久久亚洲精品蜜臀av| 18禁裸乳无遮挡免费网站照片| 亚洲经典国产精华液单| 最近中文字幕高清免费大全6| a级一级毛片免费在线观看| 久久中文看片网| 久久久国产成人精品二区| 国内少妇人妻偷人精品xxx网站| 插阴视频在线观看视频| 欧美最新免费一区二区三区| 日本免费a在线| 成人综合一区亚洲| 亚洲一级一片aⅴ在线观看| 精品久久久久久成人av| 午夜福利高清视频| 久久午夜亚洲精品久久| 国产亚洲精品久久久久久毛片| 女人十人毛片免费观看3o分钟| 国产免费男女视频| 露出奶头的视频| 可以在线观看毛片的网站| 美女内射精品一级片tv| 尾随美女入室| 97在线视频观看| 亚洲欧美日韩高清在线视频| 国产私拍福利视频在线观看| 国产久久久一区二区三区| 热99在线观看视频| 干丝袜人妻中文字幕| 日韩一本色道免费dvd| 免费观看的影片在线观看| 亚洲色图av天堂| 免费大片18禁| 看黄色毛片网站| 亚洲熟妇中文字幕五十中出| 直男gayav资源| 少妇丰满av| 成熟少妇高潮喷水视频| 婷婷色综合大香蕉| 国产v大片淫在线免费观看| 午夜影院日韩av| 麻豆av噜噜一区二区三区| 久久精品人妻少妇| 最近2019中文字幕mv第一页| 99久久久亚洲精品蜜臀av| 最近在线观看免费完整版| 国产一级毛片七仙女欲春2| 国产亚洲av嫩草精品影院| 国产视频一区二区在线看| 天天躁日日操中文字幕| 人妻制服诱惑在线中文字幕| 中国国产av一级| 97超碰精品成人国产| 国产亚洲91精品色在线| 久久久精品大字幕| 天堂动漫精品| 久久精品国产亚洲av天美| 3wmmmm亚洲av在线观看| 国产精品久久久久久久久免| 一级a爱片免费观看的视频| 校园春色视频在线观看| 国产一区二区在线观看日韩| 99久国产av精品| 精品久久久久久久久亚洲| 午夜精品国产一区二区电影 | 十八禁网站免费在线| 真实男女啪啪啪动态图| 五月玫瑰六月丁香| 人妻丰满熟妇av一区二区三区| 国产精品一区二区三区四区久久| 99精品在免费线老司机午夜| 激情 狠狠 欧美| 国产成人一区二区在线| 一区二区三区四区激情视频 | 欧美极品一区二区三区四区| 91午夜精品亚洲一区二区三区| 高清毛片免费观看视频网站| 婷婷精品国产亚洲av| а√天堂www在线а√下载| 国产在线精品亚洲第一网站| 男女下面进入的视频免费午夜| 国产亚洲欧美98| 亚洲成人av在线免费| 天美传媒精品一区二区| 美女被艹到高潮喷水动态| 97超视频在线观看视频| 内地一区二区视频在线| 一级a爱片免费观看的视频| 国产黄色视频一区二区在线观看 | 蜜臀久久99精品久久宅男| 春色校园在线视频观看| 国产免费男女视频| 九色成人免费人妻av| 高清毛片免费看| 又粗又爽又猛毛片免费看| 性色avwww在线观看| 日韩成人伦理影院| 久久久久久伊人网av| 国产亚洲欧美98| 免费在线观看影片大全网站| 成人午夜高清在线视频| 国产探花在线观看一区二区| 少妇丰满av| 一级黄片播放器| 九九在线视频观看精品| 日本免费a在线| 亚洲三级黄色毛片| 男女边吃奶边做爰视频| 国产激情偷乱视频一区二区| 亚洲无线在线观看| 日韩成人伦理影院| 午夜亚洲福利在线播放|