• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    以1-萘乙酸、5,5′-二甲基-2,2′-聯(lián)吡啶構(gòu)筑的雙核釤配合物的晶體結(jié)構(gòu)和熒光性質(zhì)

    2013-08-20 00:57:24黃德乾盛良全蔣雪月劉昭第徐華杰
    無機(jī)化學(xué)學(xué)報 2013年5期
    關(guān)鍵詞:聯(lián)吡啶萘乙酸化工學(xué)院

    黃德乾 張 宏 盛良全 蔣雪月 劉昭第 徐華杰

    (阜陽師范學(xué)院化學(xué)化工學(xué)院,阜陽 236037)

    0 Introduction

    The study of luminescent lanthanide metal complexes has gained great recognition over the last decade due to their superior functional properties and various potential applications[1-6]. Compared to first-row transition metals, lanthanide ions have a larger coordination sphere and more flexible coordination geometry, which makes it even more difficult to control the structures. Thus, to be able to rationally design and construct lanthanide coordination polymers with predicted geometries is still a great challenge, as many factors can affect the overall structural formation[7].It has proved that the selection of ligands containing appropriate coordination sites is crucial to build lanthanide complexes. Fortunately, the lanthanide ions have a strong preference to bond to the O-donor atoms to form, e.g., lanthanide carboxylate subunits. This provides a handle that can be utilized in the construction of new lanthanide complexes with unusual useful physical-chemical properties and intriguing structural topologies. A variety of fascinating lanthanide complexes have been constructed by carboxylate ligands and/or Ncontaining ligands as the auxiliary ligands[8-11]. 1-naphthaleneacetate (1-npac) is interesting in the field of coordination complexes due to its strong and various coordination modes. For example, Liu et al.[12]obtained two dinuclear lanthanide complexes based on 1-npac and 1,10-phenanthroline ligands. Chen also synthesized one dinuclear copper(Ⅱ)complex involving 1-npac and dimethylsulfoxide ligands[13]. As part of an on-going study related to lanthanide metal carboxylates, we report here the preparation and structural characterization of a new dinuclear lanthanide complex, Sm2(1-npac)6(dmpy)2·(H2O)3(1).The luminescent properties of 1 were also studied.

    1 Experimental

    1.1 Materials and measurements

    All chemicals purchased were of reagent grade and used without further purification. All syntheses were carried out in 23 mL Teflon-lined autoclaves under autogenous pressure. Elemental analyses (C, H and N) were performed on a Perkin-Elmer 240 CHN elemental analyzer. Infrared spectra were recorded (4 000 ~400 cm-1) as KBr disks on Shimadzu IR-440 spectrometer. Powder XRD investigations were carried out on a Bruker AXS D8-Advanced diffractometer at 40 kV and 40 mA with Cu Kα (λ=0.154 06 nm)radiation. UV-Vis spectra were recorded at room temperature on a Shimadzu UV-160A spectrophotometer in barium sulfate based paint. Luminescence spectra for crystal solid samples were recorded at room temperature on an Edinburgh FLS920 phosphorimeter. Thermogravimetry analyses (TGA)were performed on an automatic simultaneous thermal analyzer (DTG-60, Shimadzu) under a flow of N2at a heating rate of 10 ℃·min-1between ambient temperature and 800 ℃.

    1.2 Synthesis of complex 1

    Complex 1 was prepared by the addition of stoichiometric amounts of Sm(NO3)3·6H2O (0.222 g,0.5 mmol) and 5,5′-Dimethyl-2,2′-bipyridine (dmpy,0.092 g, 0. 5 mmol) to a hot aqueous solution (15 mL)of 1-naphthaleneacetic acid (0.279 g, 1.5 mmol) where the pH value was adjusted to 8~9 with NaOH (0.016 g, 0.4 mmol). The resulting solution was sealed in a 23 mL Teflon-lined stainless steel autoclave and heated at 150 ℃ for 3 days under autogenous pressure. Colorless single crystals were obtained(yield: 43%, based on dmpy) upon cooling the solution to room temperature at 5 ℃·h-1. Anal. Calcd.(%) for C96H84N4O15Sm2: C, 62.19; H, 4.64; N, 3.02. Found(%):C, 62.24; H, 4.60; N, 3.05. IR (KBr, cm-1): 3 423(vs),3 043(m),2 919(m),1 597(vs),1 551(m),1 508(w),1 478(w),1 408(vs),1 381(vs),1 289(m),1 257(m),1 234(m),1 160(w), 1 041(s), 1 018(w), 982(w), 929(m), 874(w),855(w),832(s),778(vs),735(m),708(s),681(w).

    1.3 Crystal structure determination

    A single crystal with dimension of 0.30 mm×0.28 mm×0.23 mm was mounted on a glass fiber for data collection on a Bruker Apex ⅡCCD diffractometer operating at 50 kV and 30 mA using MoKα radiation(λ=0.07 1073 nm) at room temperature. In the range of 1.64°<θ<27.49°, a total of 33 797 reflections were collected, of which 9 258 were unique (Rint=0.033 8)and 8 063 observed ones (I>2σ(I)) were used in the succeeding structure calculations. Data collection and reduction were performed using the APEX Ⅱsoftware[14]. Multi-scan absorption corrections were applied for all the data sets using the SADABS[14]. The structure was solved by direct methods and refined by full matrix least squares on F2using the SHELXTL program package[15]. All non-hydrogen atoms were refined with anisotropic displacement parameters.Hydrogen atoms attached to carbon were placed in geometrically idealized positions and refined using a riding model. O2W is disordered and it is split into two sets of positions, with occupancy ratios of 0.5∶0.5.Water H atoms were tentatively located in difference Fourier maps and were refined with distance restraints of O-H 0.082 nm and H …H 0.139 nm, with an standard deviation of 0.001 nm, and with Uiso(H)=1.5 Ueq(O). The final R=0.0291 and wR=0.0684 (w=1/[σ2(Fo2)+(0.0400P)2+0.9700P], where P=(Fo2+2Fc2)/3) for 8063 observed reflections with I>2σ (I). S=1.057, (Δ/σ)max=0.000. Crystal parameters and details of the data collection and refinement are given in Table 1.Selected bond lengths and angles are given in Table 2. H-bonding parameters are given in Table 3.

    CCDC: 898378.

    Table 1 Crystal data and structure refinements of the title complex

    Table 2 Selected bond lengths (nm) and angles (°) for the title complex

    Table 3 Hydrogen bond lengths(nm) and angles (°) for the title complex

    2 Results and discussion

    2.1 IR spectra

    The IR spectra of complex 1 (Fig.1) shows broad band at 3 423 cm-1, which may be assigned to the ν (O-H) stretching vibrations of the free water molecules. The moderate absorption band observed at 3 043 and 2 919 cm-1are attributed to the ν(Cmethyl-H)vibration of dmpy ligand. The features at 1 597 and 1 408, 1 381 cm-1are associated with the asymmetric(COO) and symmetric (COO) stretching vibrations.

    Fig.1 IR spectra of 1

    2.2 Structure description

    Fig.2 (a) View of the asymmetric unit of complex 1. Non-H atoms are shown as 30% probability displacement ellipsoids.(b) Tricapped trigonal prismatic (TTP) geometry surronding a Sm(Ⅲ)atom of complex 1

    Single-crystal X-ray diffraction analysis reveals that complex 1 is a centrosymmetric dinuclear structure and crystallizes in triclinic system withspace group. A thermal ellipsoid plot of 1 is shown in Fig.2a. In the asymmetric unit of 1, there are one Sm(Ⅲ)ion, three 1-npac ligands, one dmpy ligand and one and a half water molecules. The structure consists of a centrosymmetric dimers Sm (Ⅲ)ions bridged by two bidentate and two terdentate corboxylato groups.The Sm(Ⅲ)is nine-coordinated by seven oxygen atoms from five different 1-npac ligands and two nitrogen atoms from one dmpy ligand. The Sm1 center can be described as having a distorted tricapped trigonal prismatic (TTP) geometry (Fig.2b). O1i, O5, O6i, O2,O3, N2 atoms form the prism and O4, O1 and N1 atoms cap the rectangular faces (symmetry code:i1-x,1-y, -z). Dihedral angles between the rectangular faces are 53.4°, 58.5° and 69.0°, respectively. The Sm-O, Sm-N bond distance and O-Sm-O, O-Sm-N bond angle ranging from 0.237 9(2) to 0.261 5(2) nm and 51.02(6)° to 151.57(7)°, respectively, all of which are within the range of those observed for other ninecoordinate Sm(Ⅲ)complexes with nitrogen and oxygen donors ligands[16-17]. The 1-npac ligands display three types of coordination (Scheme 1). One acts as a conventional bidentate bridging ligand, bonding to Sm1 through O5 and Sm1ithrough O6i. The second one is chelated to Sm1 through O2, and O1i, with O1ialso linked to Sm1i. The third one acts as a bidentate chelate, bonding to Sm1 through O3 and O4. The structure has three distinct Sm-O distances involving 1-npac ligands depending on three coordination modes; average bond length of Sm-Obridging, Sm-Ochelateand Sm-Oterdentateis 0.240 5, 0.249 0 and 0.249 2 nm,respectively. This indicates that the order of ring strain is terdentate >chelating >bridging[18]. Compared with [SmTb(1-npac)6(phen)2]2·2C3H7NO[19], average bond length is nearly the same (0.2377, 0.2466 and 0.2466 nm, respectively), which shows that different carboxylato groups with the same mode of coordination with Ln (Ⅲ) ion have essentially the same bond requirements. The separation of Sm…Sm (0.392 5 nm)in the dimer just exceeds the sum of the two ionic radii and is significantly shorter than in [SmTb(1-npac)6(phen)2]2·2C3H7NO(0.3953 nm)[19].The short separation,therefore, may be attributed to the simultaneous appearance of four-membered and eight-membered rings between the two samarium atoms. The average Sm-N bond distance is 0.260 2 nm. Structures,including the complex 1 and [SmTb(1-npac)6(phen)2]2·2C3H7NO suggest strongly that N-bidentate heterocyclic amines as ligands have stronger coordination ability for lanthanide ions than N-unidentate which are hard, and much less common. The centrosymmetric dinuclear molecules are further connected into a supramolecular structure through intermolecular O-H…O, C-H…O hydrogen bonding interactions(Fig.3,Table 3).

    Scheme 1 Coordination mode of 1-npac ligands in the structure of complex 1

    Fig.3 View of the 3D supramolecular structure of complex 1 formed by hydrogen bonds (dashed lines), C-H…π and π…π stacking interactions (dashed lines). Cg1-Cg6 are the centroid of the C5-C10 ring, C17-C22 ring,C1-C4/C9/C10 ring, C13-C16/C21/C22, C38-C41/N1, and C42-C46/N2, respectively. Symmetry codes:i 1-x,1-y,-z; ii 1-x,1-y,1-z; iii 2-x,1-y,-z.

    There are also stabilized by C-H…π and π…π stacking interactions. The H-to-centroid distances of H(19)…Cg(1)i=0.292(3) nm, H(28)…Cg(2)ii=0.295(4) nm and H (43) …Cg (3)iii=0.292 (2) nm, and the C-tocentroid distances of C(19)…Cg(1)i= 0.365(2) nm, H(28)…Cg(2)ii=0.387(3) nm and H(43)…Cg(3)iii=0.363(2) nm [Cg(1), Cg(2) and Cg(3) are the centroid of the C5-C10 ring, C17-C22 ring and C1-C4/C9/C10 ring,respectively. Symmetry codes:ii1-x,1-y,1-z;iii2-x,1-y,-z]. The centroid to centroid distances involving parallel pyridyl rings of neighboring dmpy ligands(Cg5 and Cg6 are the centroid of the C37-C41/N1 ring, and the C42-C46/N2 ring, respectively) and parallel benzene rings of neighboring 1-npac ligands(Cg4 is the centroid of the C13-C16/C21/C22 ring) are Cg5…Cg6iii=0.3744(5) and Cg4…Cg4iv=0.3738(5) nm,respectively. The dihedral angles of Cg5…Cg6iiiand Cg4…Cg4ivare 12.11 (2)° and 0.00 (3)°, respectively[Symmetry code:iv1-x,2-y,-z]. Moreover, intramolecular C37-H37…O6 hydrogen bonds are also observed.

    2.3 Thermal analysis

    The TG curve is depicted in Fig.4, which shows three weight loss steps. The first weight loss corresponding the release of two free water molecules is observed from 50 to 120 ℃ (Obsd. 3.95%, Calcd.3.89%). The second weight loss corresponding the escape of one dmpy ligand is observed from 180 to 300 ℃ (Obsd. 20.11 %, Calcd. 20.10%). The sharp weight loss above 300 ℃ corresponds to the decomposition of framework structure.

    2.4 Powder X-ray diffraction analysis

    As shown in Fig.5, the peak positions of the experimental patterns are in a good agreement with the simulated patterns, which clearly indicates the good purity of the complex.

    Fig.4 TG curve for complex 1

    Fig.5 PXRD patterns of complex 1

    2.5 UV-Vis absorption spectra

    Fig.6 illustrates the UV-Vis absorption spectra of 1 in solid state. In the studied wavelength domain from 200~450 nm, the B band of 1-npac and dmpy ligands attributed to the π-π*transition is observed with the most intense of absorption around 281 nm.The second-most intense absorption at 362 corresponds to the K band of the L →M (charge transfer) transition involving 1-npac, dmpy ligands and Nd3+ions[20].

    Fig.6 UV-Vis absorption spectroscopy of 1 in solid state

    2.6 Luminescent properties

    The excitation and emission spectra of complex 1 are shown in Fig.7. The excitation spectra of 1 show a broad band covering the 200 ~250 nm regions. The broad excitation band is assigned to the π-π electron transition of the ligands[21]. In the emission spectrum of 1, there are three characteristic fluorescence emission bands assigned with Sm3+ions, which are the characteristic peaks of the4G5/2→6HJtransitions (J=5/2,7/2, and 9/2)[22]. The peak at 562 nm corresponds to the4G5/2→6H5/2transition of Sm3+ions, the peak at 598 nm corresponds to the4G5/2→6H7/2transition of Sm3+ions, and the strongest peak at 642 nm corresponds to the4G5/2→6H9/2hypersensitive transition of Sm3+ions.The luminescent lifetime of solid complex 1 using an Edinburgh FLS920 phosphorimeter with 450 W xenon lamp as excitation source indicates a lifetime of 0.87 μs at 598 nm (Fig.8).

    Fig.7 Solid-state excitation and emission spectra of complex 1 at room temperature

    Fig.8 Luminescent lifetime for complex 1 in solid state at room temperaturef

    3 Conclusions

    In summary, a dinuclear samarium (Ⅲ)complex based on 1-npac and dmpy ligands has been synthesized and structurally characterized. The Sm3+ions are bridged by two bidentate and two terdentate carboxylato groups to give centrosymmetric dimers.Complex 1 emits intensive orange luminescence of Sm3+ion with fluorescence lifetime of 0.87 μs (598 nm) in the solid state at room temperature.

    [1] Ma D, Wang W, Li Y, et al. CrystEngComm., 2010,12:4372-4377

    [2] Tsukube H, Juanes S. Chem. Rev., 2002,102:2389-2403

    [3] Bünzli J C G. Chem. Rev., 2010,110:2729-2755

    [4] Smith P H, Brainard J R, Morris D E, et al. J. Am. Chem.Soc., 1989,111:7437-7443

    [5] Galdwell J P, Henderson W, Kim N D. J. Forensic Sci.,2001,46:1332-1341

    [6] Kido J, Okamoto Y. Chem. Rev., 2002,102:2357-2368

    [7] Liu J Q. J. Coord. Chem., 2011,64:1503-1512

    [8] Liang Y C, Cao R, Su W P, et al. Angew. Chem. Int. Ed.,2000,39:3304-3307

    [9] Mortl K P, Sutter J P, Golhen S, et al. Inorg. Chem., 2000,39:1626-1627

    [10]Li X, Sun H L, Wu X S, et al. Inorg. Chem., 2010,49:1865-1871

    [11]Seward C, Hu N X, Wang S. Dalton Trans., 2001:134-137

    [12]Liu Y F, Rong D F, Xia H T, et al. J. Coord. Chem., 2009,62:1835-1845

    [13]Chen L F, Zhang J, Song L J, et al. Acta Cryst., 2004,E60:m1032-m1034

    [14]Bruker. APEXII Software, Version 6.3.1, Bruker AXS Inc,Madison, Wisconsin, USA(2004).

    [15]Sheldrick G M. Acta Cryst., 2008,A64:112-122

    [16]Jongen L, Bromant C, Hinz-Hubner D, et al. Z. Anorg. Allg.Chem., 2003,629:975-980

    [17]Sun S J, Zhang D H, Zhang J J, et al. J. Mol. Struct.,2010,977:17-25

    [18]Lu Y Q, Lu W M, Wu B, et al. J. Coord. Chem., 2001,53:15-23

    [19]Xia H T, Liu Y F, Chen L, et al. Acta Cryst., 2008,E64:m1419-m1420

    [20]Yang Y, Zhang L, Liu L, et al. Inorg. Chim. Acta, 2007,360:2638-2646

    [21]Wen S, Zhang X, Hu S, et al. Polymer, 2009,50:3269-3274

    [22]Chen X Y, Jensen M P, Liu G K, et al. J. Phys. Chem. B,2005,109:13991-13999

    猜你喜歡
    聯(lián)吡啶萘乙酸化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    不同生根促進(jìn)劑對玉樹水培誘導(dǎo)的影響
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    乙酸溶液濃度對提高迎春硬枝扦插生根規(guī)律的影響
    紫外分光光度法測定氯化膽堿·萘乙酸可濕性粉劑中萘乙酸含量
    山西化工(2019年3期)2019-08-01 09:21:02
    復(fù)硝酚鈉與萘乙酸處理對紅花羊蹄甲扦插效果的影響
    《化工學(xué)報》贊助單位
    純手性的三聯(lián)吡啶氨基酸—汞(II)配合物的合成與表征
    功能化三聯(lián)吡啶衍生物的合成及其對Fe2+識別研究
    高清av免费在线| 欧美97在线视频| 欧美变态另类bdsm刘玥| 欧美精品人与动牲交sv欧美| av网站在线播放免费| 美国免费a级毛片| 亚洲精品中文字幕在线视频| av欧美777| 精品国产一区二区三区久久久樱花| 男人操女人黄网站| 黑人欧美特级aaaaaa片| 久久久久久免费高清国产稀缺| av视频免费观看在线观看| 亚洲av日韩在线播放| 七月丁香在线播放| 好男人视频免费观看在线| 悠悠久久av| 精品一品国产午夜福利视频| 国产福利在线免费观看视频| 777米奇影视久久| 天天躁日日躁夜夜躁夜夜| 飞空精品影院首页| 久久久国产精品麻豆| 69精品国产乱码久久久| 中国国产av一级| 美女国产高潮福利片在线看| 日韩 欧美 亚洲 中文字幕| 一级毛片黄色毛片免费观看视频| 首页视频小说图片口味搜索 | 亚洲七黄色美女视频| 少妇人妻久久综合中文| 亚洲精品国产av成人精品| 国产深夜福利视频在线观看| 亚洲av电影在线进入| 亚洲人成电影免费在线| 午夜日韩欧美国产| 波多野结衣av一区二区av| 成在线人永久免费视频| 国产成人欧美在线观看 | 天天操日日干夜夜撸| 亚洲精品乱久久久久久| 欧美日韩精品网址| kizo精华| 后天国语完整版免费观看| 青春草亚洲视频在线观看| 97精品久久久久久久久久精品| 精品一区二区三卡| 伊人亚洲综合成人网| 国产亚洲欧美精品永久| 97精品久久久久久久久久精品| 两个人免费观看高清视频| 大型av网站在线播放| 精品欧美一区二区三区在线| 国产精品久久久久久精品电影小说| 国产日韩欧美在线精品| 日韩人妻精品一区2区三区| 美女扒开内裤让男人捅视频| 欧美精品亚洲一区二区| 日韩欧美一区视频在线观看| 亚洲精品自拍成人| 9色porny在线观看| 久久久久久久国产电影| 人体艺术视频欧美日本| 美女扒开内裤让男人捅视频| 九色亚洲精品在线播放| 男女床上黄色一级片免费看| 久9热在线精品视频| 校园人妻丝袜中文字幕| 亚洲av在线观看美女高潮| 亚洲av日韩精品久久久久久密 | 99热全是精品| 国产一区二区激情短视频 | 大片免费播放器 马上看| 欧美+亚洲+日韩+国产| 国产不卡av网站在线观看| 美女高潮到喷水免费观看| 亚洲人成电影观看| 两个人看的免费小视频| 韩国高清视频一区二区三区| 九草在线视频观看| 亚洲精品乱久久久久久| 久久国产精品影院| 成年人免费黄色播放视频| 最黄视频免费看| 黄色毛片三级朝国网站| 亚洲国产毛片av蜜桃av| 亚洲精品日韩在线中文字幕| 久久人人爽av亚洲精品天堂| 国产爽快片一区二区三区| 亚洲国产日韩一区二区| 精品久久久久久电影网| 中文乱码字字幕精品一区二区三区| av线在线观看网站| 人妻 亚洲 视频| 国产精品 国内视频| 免费av中文字幕在线| 国产亚洲av高清不卡| 熟女av电影| 亚洲美女黄色视频免费看| av国产精品久久久久影院| 黄色 视频免费看| 黄色a级毛片大全视频| 久久久久国产精品人妻一区二区| 国产一卡二卡三卡精品| 日本午夜av视频| 丁香六月欧美| 欧美av亚洲av综合av国产av| 精品国产乱码久久久久久男人| 日韩中文字幕视频在线看片| 国产精品一区二区精品视频观看| 高清视频免费观看一区二区| 极品人妻少妇av视频| 2021少妇久久久久久久久久久| 日韩视频在线欧美| 在线观看免费日韩欧美大片| 久久久久精品国产欧美久久久 | 亚洲av成人不卡在线观看播放网 | 国产精品亚洲av一区麻豆| 99国产精品一区二区三区| 精品视频人人做人人爽| 99香蕉大伊视频| 好男人视频免费观看在线| 少妇精品久久久久久久| 国产成人影院久久av| 9色porny在线观看| av天堂在线播放| 久久99一区二区三区| 黑人猛操日本美女一级片| 国产精品一二三区在线看| 国产在线视频一区二区| 免费不卡黄色视频| 秋霞在线观看毛片| 90打野战视频偷拍视频| 成年女人毛片免费观看观看9 | 精品国产乱码久久久久久男人| 亚洲精品国产一区二区精华液| 欧美成人午夜精品| 夫妻性生交免费视频一级片| 欧美日韩亚洲国产一区二区在线观看 | 亚洲五月色婷婷综合| 捣出白浆h1v1| 可以免费在线观看a视频的电影网站| 欧美日韩av久久| 黄片小视频在线播放| 精品国产乱码久久久久久小说| 王馨瑶露胸无遮挡在线观看| h视频一区二区三区| 国产精品国产三级专区第一集| 高清不卡的av网站| 国产日韩欧美亚洲二区| 亚洲av日韩在线播放| 青春草亚洲视频在线观看| 男人舔女人的私密视频| 日韩人妻精品一区2区三区| 欧美日韩视频高清一区二区三区二| 韩国精品一区二区三区| 麻豆av在线久日| 亚洲,一卡二卡三卡| 精品人妻一区二区三区麻豆| 老鸭窝网址在线观看| 天堂8中文在线网| 久久精品国产a三级三级三级| 大型av网站在线播放| 国产一区二区 视频在线| 好男人电影高清在线观看| 免费观看av网站的网址| xxxhd国产人妻xxx| 午夜福利视频在线观看免费| 亚洲精品久久久久久婷婷小说| 日日夜夜操网爽| av在线老鸭窝| 十八禁人妻一区二区| 久久国产亚洲av麻豆专区| 亚洲第一av免费看| 午夜av观看不卡| 亚洲欧美一区二区三区久久| 国产不卡av网站在线观看| 18禁黄网站禁片午夜丰满| 9191精品国产免费久久| 黄片小视频在线播放| 菩萨蛮人人尽说江南好唐韦庄| 中文乱码字字幕精品一区二区三区| 一本一本久久a久久精品综合妖精| 国产麻豆69| 手机成人av网站| 久久精品国产亚洲av涩爱| 两人在一起打扑克的视频| 秋霞在线观看毛片| 波野结衣二区三区在线| 中国国产av一级| 十八禁高潮呻吟视频| 老鸭窝网址在线观看| 中文字幕av电影在线播放| 国产精品麻豆人妻色哟哟久久| 免费看十八禁软件| av不卡在线播放| 宅男免费午夜| 中文精品一卡2卡3卡4更新| 国产黄色视频一区二区在线观看| 午夜福利免费观看在线| 久久国产精品人妻蜜桃| 精品国产一区二区三区四区第35| 亚洲人成电影免费在线| 99热全是精品| 国产女主播在线喷水免费视频网站| 精品一区二区三区av网在线观看 | 欧美性长视频在线观看| av有码第一页| 国产高清国产精品国产三级| 欧美精品高潮呻吟av久久| 成人手机av| 欧美 亚洲 国产 日韩一| 免费在线观看完整版高清| 精品久久久久久电影网| 悠悠久久av| 人成视频在线观看免费观看| 亚洲成人手机| 久久av网站| 少妇的丰满在线观看| 妹子高潮喷水视频| 国产精品久久久久久人妻精品电影 | 嫁个100分男人电影在线观看 | 18在线观看网站| 国产成人精品久久二区二区免费| 尾随美女入室| 啦啦啦在线观看免费高清www| 欧美亚洲日本最大视频资源| 亚洲黑人精品在线| 国语对白做爰xxxⅹ性视频网站| a级片在线免费高清观看视频| 国产成人免费观看mmmm| 亚洲专区中文字幕在线| 亚洲av日韩在线播放| 成人国语在线视频| a 毛片基地| 18禁国产床啪视频网站| 在线观看免费日韩欧美大片| 高清不卡的av网站| 韩国精品一区二区三区| 亚洲av电影在线进入| 亚洲伊人久久精品综合| 国产99久久九九免费精品| 中文字幕色久视频| 精品第一国产精品| 国产精品免费视频内射| avwww免费| 久久久亚洲精品成人影院| √禁漫天堂资源中文www| 精品国产超薄肉色丝袜足j| 波野结衣二区三区在线| 操美女的视频在线观看| 亚洲国产欧美网| 国产xxxxx性猛交| 国产成人精品无人区| 久久久精品94久久精品| 午夜视频精品福利| 90打野战视频偷拍视频| 国产成人91sexporn| 欧美国产精品va在线观看不卡| 久久精品熟女亚洲av麻豆精品| 久久久久久久久久久久大奶| 亚洲精品久久午夜乱码| 在线亚洲精品国产二区图片欧美| 视频区欧美日本亚洲| 极品人妻少妇av视频| 国产男人的电影天堂91| 青青草视频在线视频观看| 久久久久久久大尺度免费视频| 日韩熟女老妇一区二区性免费视频| 亚洲伊人久久精品综合| 亚洲专区国产一区二区| 精品久久久久久久毛片微露脸 | 日本午夜av视频| 久久精品亚洲熟妇少妇任你| 欧美人与善性xxx| 国产麻豆69| 在现免费观看毛片| 91精品三级在线观看| 午夜激情久久久久久久| 国产高清视频在线播放一区 | 成人手机av| 免费在线观看视频国产中文字幕亚洲 | 国产淫语在线视频| 欧美日韩一级在线毛片| 777久久人妻少妇嫩草av网站| 高清视频免费观看一区二区| 日韩一卡2卡3卡4卡2021年| 一级a爱视频在线免费观看| 90打野战视频偷拍视频| 丰满人妻熟妇乱又伦精品不卡| 韩国精品一区二区三区| 国产黄色免费在线视频| 国语对白做爰xxxⅹ性视频网站| kizo精华| 国产麻豆69| 国产片特级美女逼逼视频| 国产伦理片在线播放av一区| 最黄视频免费看| 一本综合久久免费| 一区福利在线观看| 久久九九热精品免费| 欧美国产精品va在线观看不卡| 19禁男女啪啪无遮挡网站| 男女边吃奶边做爰视频| 亚洲av在线观看美女高潮| 国产精品偷伦视频观看了| 国产精品久久久久成人av| 午夜福利,免费看| 777米奇影视久久| 伊人久久大香线蕉亚洲五| 久久天躁狠狠躁夜夜2o2o | 天天操日日干夜夜撸| 亚洲精品av麻豆狂野| 久久精品熟女亚洲av麻豆精品| 少妇人妻 视频| 黄网站色视频无遮挡免费观看| 午夜福利在线免费观看网站| 人人澡人人妻人| h视频一区二区三区| 亚洲av男天堂| 每晚都被弄得嗷嗷叫到高潮| 色精品久久人妻99蜜桃| 中文字幕av电影在线播放| 欧美在线黄色| 亚洲精品自拍成人| 欧美大码av| 最新在线观看一区二区三区 | 老司机深夜福利视频在线观看 | 天堂中文最新版在线下载| 色视频在线一区二区三区| av天堂在线播放| 国产成人精品久久久久久| 丰满迷人的少妇在线观看| 国产深夜福利视频在线观看| 国产福利在线免费观看视频| 午夜免费鲁丝| 巨乳人妻的诱惑在线观看| 如日韩欧美国产精品一区二区三区| 国语对白做爰xxxⅹ性视频网站| 国产91精品成人一区二区三区 | 亚洲成av片中文字幕在线观看| 国产成人欧美在线观看 | 捣出白浆h1v1| 中文精品一卡2卡3卡4更新| 久久精品久久久久久久性| 亚洲九九香蕉| 男女国产视频网站| 丝瓜视频免费看黄片| av网站免费在线观看视频| 欧美中文综合在线视频| 久久久久久久大尺度免费视频| 男女免费视频国产| 久久精品久久精品一区二区三区| 丝袜喷水一区| 中文欧美无线码| 一本综合久久免费| 午夜福利,免费看| 国产成人啪精品午夜网站| 老司机靠b影院| 美女脱内裤让男人舔精品视频| 亚洲国产精品一区三区| 精品亚洲乱码少妇综合久久| 老鸭窝网址在线观看| 久久99热这里只频精品6学生| 91成人精品电影| 丝袜人妻中文字幕| 亚洲中文日韩欧美视频| 午夜福利一区二区在线看| 亚洲一卡2卡3卡4卡5卡精品中文| 自拍欧美九色日韩亚洲蝌蚪91| 性色av一级| 肉色欧美久久久久久久蜜桃| 久久久久视频综合| 国产亚洲av高清不卡| 人人妻人人澡人人爽人人夜夜| 婷婷丁香在线五月| 久久精品久久久久久久性| 国产伦人伦偷精品视频| 久久ye,这里只有精品| 日韩制服丝袜自拍偷拍| 交换朋友夫妻互换小说| 中文字幕高清在线视频| 成人午夜精彩视频在线观看| 国产精品秋霞免费鲁丝片| 国产亚洲av高清不卡| 国产成人精品在线电影| 中文字幕最新亚洲高清| 中文字幕亚洲精品专区| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲午夜精品一区二区久久| 999久久久国产精品视频| 男女免费视频国产| 亚洲精品久久午夜乱码| 日本91视频免费播放| 亚洲美女黄色视频免费看| 超碰成人久久| 欧美黑人欧美精品刺激| 99热网站在线观看| 久久精品久久久久久久性| 久久人妻熟女aⅴ| 国产精品一区二区在线不卡| 日韩制服丝袜自拍偷拍| 大型av网站在线播放| 午夜免费鲁丝| 男女午夜视频在线观看| 国产黄频视频在线观看| 日日摸夜夜添夜夜爱| 久久精品熟女亚洲av麻豆精品| 国产成人一区二区三区免费视频网站 | 91九色精品人成在线观看| 亚洲人成网站在线观看播放| 性少妇av在线| 国产无遮挡羞羞视频在线观看| 亚洲欧美精品自产自拍| 久久青草综合色| 久久精品熟女亚洲av麻豆精品| 99精品久久久久人妻精品| 国产片特级美女逼逼视频| 亚洲国产精品999| 女人精品久久久久毛片| 少妇粗大呻吟视频| 亚洲精品自拍成人| 91九色精品人成在线观看| 蜜桃在线观看..| 婷婷丁香在线五月| 自线自在国产av| 久久九九热精品免费| a 毛片基地| 黄频高清免费视频| 中国国产av一级| 国产淫语在线视频| 亚洲免费av在线视频| 侵犯人妻中文字幕一二三四区| 精品国产乱码久久久久久男人| 丰满迷人的少妇在线观看| 搡老岳熟女国产| 最黄视频免费看| 国产精品国产三级国产专区5o| 国产精品久久久久久人妻精品电影 | 亚洲国产毛片av蜜桃av| 一区在线观看完整版| 侵犯人妻中文字幕一二三四区| 丝袜喷水一区| 99久久人妻综合| 超色免费av| 国产老妇伦熟女老妇高清| 国产成人精品在线电影| 久久人人爽av亚洲精品天堂| 成年动漫av网址| 日韩欧美一区视频在线观看| 日韩制服骚丝袜av| 热re99久久精品国产66热6| 精品福利永久在线观看| 丰满少妇做爰视频| 国产在线视频一区二区| 国产高清国产精品国产三级| 国产在线观看jvid| 精品国产一区二区久久| 蜜桃国产av成人99| 男女边摸边吃奶| 我要看黄色一级片免费的| 中文字幕人妻丝袜一区二区| av一本久久久久| 日韩精品免费视频一区二区三区| 亚洲五月婷婷丁香| 国产精品一区二区精品视频观看| 老司机影院毛片| 欧美久久黑人一区二区| 国产真人三级小视频在线观看| 一本—道久久a久久精品蜜桃钙片| 国产爽快片一区二区三区| 亚洲美女黄色视频免费看| 少妇 在线观看| 亚洲七黄色美女视频| 精品久久久精品久久久| 中文字幕人妻丝袜一区二区| 青春草亚洲视频在线观看| 少妇被粗大的猛进出69影院| 18禁裸乳无遮挡动漫免费视频| 男女午夜视频在线观看| 国产麻豆69| 18禁观看日本| 操出白浆在线播放| 久久久精品区二区三区| 婷婷色麻豆天堂久久| 日韩 亚洲 欧美在线| 精品免费久久久久久久清纯 | 欧美日韩av久久| 在线看a的网站| 日韩免费高清中文字幕av| 午夜福利在线免费观看网站| 真人做人爱边吃奶动态| 黄色一级大片看看| av国产精品久久久久影院| 欧美人与善性xxx| 久久影院123| 另类亚洲欧美激情| svipshipincom国产片| 午夜影院在线不卡| e午夜精品久久久久久久| www.自偷自拍.com| 视频区图区小说| 999精品在线视频| 亚洲美女黄色视频免费看| 精品国产超薄肉色丝袜足j| 国产精品偷伦视频观看了| 久久人人爽人人片av| 男女边吃奶边做爰视频| 成年动漫av网址| 男女高潮啪啪啪动态图| 国产精品香港三级国产av潘金莲 | 久久国产精品男人的天堂亚洲| 欧美黄色淫秽网站| videos熟女内射| 最新在线观看一区二区三区 | 亚洲一码二码三码区别大吗| 亚洲精品国产av成人精品| 肉色欧美久久久久久久蜜桃| 91九色精品人成在线观看| 亚洲九九香蕉| 一本大道久久a久久精品| 天天添夜夜摸| 国产精品久久久久成人av| 天堂中文最新版在线下载| 欧美性长视频在线观看| 精品免费久久久久久久清纯 | 飞空精品影院首页| 国产精品成人在线| 亚洲欧美激情在线| 又大又爽又粗| 久久久精品区二区三区| 亚洲美女黄色视频免费看| 国产日韩欧美视频二区| 国产成人影院久久av| 欧美日韩黄片免| 美女主播在线视频| 纯流量卡能插随身wifi吗| 免费在线观看黄色视频的| 纯流量卡能插随身wifi吗| 免费在线观看黄色视频的| 国产爽快片一区二区三区| 午夜av观看不卡| 久久久久久久国产电影| 日本wwww免费看| 老熟女久久久| 一本—道久久a久久精品蜜桃钙片| 欧美精品高潮呻吟av久久| 成人三级做爰电影| 午夜福利乱码中文字幕| 伦理电影免费视频| 午夜福利,免费看| 黄色怎么调成土黄色| 大香蕉久久网| 色播在线永久视频| 大陆偷拍与自拍| 在现免费观看毛片| 伊人亚洲综合成人网| 又紧又爽又黄一区二区| 亚洲av国产av综合av卡| 天堂俺去俺来也www色官网| 91国产中文字幕| 超碰97精品在线观看| 最黄视频免费看| 秋霞在线观看毛片| 国产熟女欧美一区二区| 午夜91福利影院| 成在线人永久免费视频| 天堂8中文在线网| 国产精品久久久人人做人人爽| 黑人欧美特级aaaaaa片| 国产欧美日韩精品亚洲av| 99国产精品99久久久久| 人体艺术视频欧美日本| 欧美国产精品va在线观看不卡| 满18在线观看网站| 狂野欧美激情性bbbbbb| 国产精品偷伦视频观看了| 女人被躁到高潮嗷嗷叫费观| 国产精品秋霞免费鲁丝片| 男女午夜视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产精品欧美亚洲77777| 国产91精品成人一区二区三区 | 国产精品av久久久久免费| 不卡av一区二区三区| 国产精品 国内视频| 秋霞在线观看毛片| 午夜av观看不卡| 天天躁夜夜躁狠狠躁躁| 最新在线观看一区二区三区 | 亚洲av欧美aⅴ国产| 黄网站色视频无遮挡免费观看| 免费观看a级毛片全部| 91字幕亚洲| 一本—道久久a久久精品蜜桃钙片| 国产免费又黄又爽又色| 久久久精品94久久精品| 中文字幕人妻丝袜一区二区| 久久青草综合色| 欧美激情高清一区二区三区| 下体分泌物呈黄色| 久久久亚洲精品成人影院| 侵犯人妻中文字幕一二三四区| 日本色播在线视频| 无遮挡黄片免费观看| 欧美少妇被猛烈插入视频| 在线精品无人区一区二区三| 日日夜夜操网爽| 色网站视频免费| 97人妻天天添夜夜摸| 亚洲美女黄色视频免费看| 亚洲 国产 在线| 国产成人欧美在线观看 | 99国产精品一区二区蜜桃av | 国产真人三级小视频在线观看|