• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    稀土元素對Ti0.26Zr0.07V0.24Mn0.1Ni0.33 貯氫合金微觀結(jié)構(gòu)和電化學(xué)性能的影響

    2013-08-20 00:51:48李書存趙敏壽焦體峰
    無機化學(xué)學(xué)報 2013年1期
    關(guān)鍵詞:燕山大學(xué)應(yīng)用化學(xué)秦皇島

    李書存 趙敏壽 劉 研 焦體峰

    (1 秦皇島燕山大學(xué)環(huán)境與化學(xué)工程學(xué)院,秦皇島 066004)

    (2 秦皇島燕山大學(xué)亞穩(wěn)材料制備技術(shù)與科學(xué)實驗室,秦皇島 066004)

    (3 中國科學(xué)院長春應(yīng)用化學(xué)研究所稀土化學(xué)與物理重點實驗室,長春 130022)

    Recently, nickel-metal hydride (Ni-MH)secondary batteries are competing with the Li-ion batteries as power sources for HEV, electric tools etc.Many performances of hydrogen storage alloys used as the negative electrode materials for the Ni-MH batteries have been widely and extensively studied[1-6],including their discharge capacity, high-rate discharge ability (HRD), cycle stability, fade mechanism and environmental compatibility. Several types of hydrogen storage alloys have been investigated, for example,rare earth-based AB5-type alloys[7], Ti, Zr-based or AB2-type alloys[8-9], Mg-based alloys[10]and V-based solid solutions[11]. Among the hydrogen storage alloys mentioned above, the discharge capacity of the AB5-type alloy electrodes is comparatively low, the activation of the AB2-type laves phase alloy electrodes is very difficult and the cycle stability of the Mgbased alloy electrodes is extremely poor. V-based solid solutions have larger discharge capacity, V can form two types of hydride, monohydride (VH1) and dihydride (VH2), the equilibrium pressure of hydrogenation between V and VH1is too low at room temperature for utilization. But the equilibrium pressure of hydrogenation between VH1and VH2is appropriate for various applications and the theoretical capacity of protium per mass of alloy during this reaction is higher than that of LaNi5transforming with LaNi5H6[12-13]. So vanadium-based solid solution hydrides have attracted significant attention for various applications such as hydrogen storage,hydrogen compressor and heat pump[14]. However, Vbased solid solution phase alone has very low electrochemical discharge capacity in the KOH electrolyte due to the lack of electrochemical catalytic activity in decomposing water into hydrogen atoms and OH-ions. Yet it could be activated to absorb and desorb a large amount of hydrogen with the presence of a secondary phase, such as Ti-Ni phase or C14 Laves phase, which is considered to act both as a micro-current collector and as an electrochemical catalyst. After Laves phase undergoing easy activation treatment, it may be possible that the activation of BCC phase will be easier if the alloys contain such Laves phase. The approach to improve the hydrogen absorbing properties by forming Laves phase in Vbased BCC alloys can make it become more promising materials for electrodes of Ni-MH batteries.

    Following the idea mentioned above, in this work, we select Ti0.26Zr0.07V0.24Mn0.1Ni0.33hydrogen storage alloys as norm alloy for investigation.Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01)alloys are obtained. The effect of rare earth elements substitution on microstructures and electrochemical properties of Ti0.26Zr0.07V0.24Mn0.1Ni0.33alloy is studied.

    1 Experimental

    All samples were prepared by arc melting the constituent metals or master alloy on a water-cooled cuprum hearth under an argon atmosphere. The purity of all the metal, i.e., Ti, V, Mn, Zr ,Ni and rare earth elements Ce, Nd and Gd was higher than 99.9 mass%,respectively. In order to obtain homogeneous alloys,the ingots of alloys were turned over and remelted at least three times. Then the as-cast alloys were divided into two parts. One part was crushed mechanically into particles with the average size of 74 μm (200 mesh) for electrochemical measurement. Another part was crushed mechanically into particles with the average size of 37 μm (400 mesh) for X-ray diffraction analysis.

    The crystal structures of the hydrogen storage alloys were determined by X-ray diffraction (XRD)analysis on a Rigaku D/Max 2500PC X-ray diffractometer with Cu Kα radiation after Kα2 stripping (λ=0.154 06 nm ) at 40 kV and 200 mA(Bragg-Brentano geometry, 2θ range 20°~90°, step size 0.02°, backscattered rear graphite monochromator).The XRD patterns were analyzed using RIETAN97 software. Scanning electron microscopy (SEM) was used to study the microstructures of the alloy electrodes.

    The alloy electrodes were prepared by mixing the alloy powders with carbonyl nickel powders in a weight ratio of 1∶5 and then cold-pressing the mixture to form pellets of 10 mm in diameter and thickness of 1mm under a pressure of 14 MPa. Prior to electrochemical testing, all alloy electrodes were activated by immersion in 6 mol·L-1KOH aqueous solution for 24 h. The positive electrode was a sintered Ni(OH)2/NiOOH with excessive capacity.

    The charge/discharge tests were carried out with DC-5 battery testing instrument under a computer control. Each alloy electrode was charged with a current density of 60 mA·g-1and discharged with a current density of 60 mA·g-1to a cut-off voltage of 0.8V at different temperatures (303, 313, 333, and 343 K, respectively).

    To evaluate the HRD (in the range of 60~600 mA·g-1), the charging current density was kept a constant of 60 mA·g-1and the obtained discharge capacity was denoted as Cn(with n=30, 60, 180, 360,and 600 mA·g-1, respectively). HRD is generally defined as Cn×100/(Cn+C30).

    2 Results and discussion

    2.1 Structure characteristic

    The X-ray diffraction patterns of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01) alloys are shown in Fig.1. It is found that these alloys are all composed of V-based solid solution phase with BCC structure and C14 Laves phase with hexagonal structure. Compared to the different X-ray diffraction patterns, we can find that the diffraction peaks of BCC phase and C14 Laves phase shift toward higher angle with rare earth elements substitution. This phenomenon shows that the lattice parameters of alloys are different with different rare earth elements substitution.

    Fig.1 XRD patterns of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01) alloy

    Table 1 Lattice parameter and cell volume of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01) alloy

    The lattice parameters and cell volumes of alloys are shown in Table 1. It can be seen that with rare earth elements substitution, the cell volumes of the BCC phases are increased and the cell volumes of C14 phase with rare earth elements substitution are larger than norm alloy. It is obvious that with rare earth elements substitution, the cell volumes of BCC phase and C14 phase are increased at the same time.

    Fig.2. gives the scanning electron micrographs of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01)alloys. It is obvious that all the alloy samples are mainly composed of two distinct crystallographic phases: one is C14 Laves phase, and the other is Vbased solid solution phase as confirmed by EDS analysis, which is in agreement with the XRD results.It can be easily seen that, with rare earth elements substitution, the BCC phase increases and finally forms a three-dimensional phase structure, and a little third phase appears.

    Fig.2 FESEM images of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01) alloy

    It also can be seen from Fig.2 that there are some white particles with irregular edges distributed near the grain boundaries of BCC phase, which is proved to be Ce-rich particles by energy dispersive Xray spectroscopy (EDS), as indicated by Qiao et al.[15]

    2.2 Electrochemical property

    The curves of the discharge capacity vs. the cycle number at 303 K for Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01) alloy electrodes are shown in Fig.3. Compared with the alloy electrode without rare earth elements substitution which requires 2 ~3 cycles to be activated, the ones with rare earth elements substitution can reach their maximum capacity in the first cycle, which means that activation of the alloy electrodes is easy and rare earth elements substitution is benefit for the activation property of the alloy electrode. These phenomena may be attributed to the electro-catalytic activity improved by adding the rare earth elements[16]. The rare earth elements have certain effect on the maximum discharge capacity of the alloy. With Ce substitution, the maximum discharge capacity of the alloy increases distinctly,but the cyclic stability decreases; Nd and Gd substitution has little effect on the maximum discharge capacity of the alloy, whereas the cyclic stability increases a little; and with Nd and Gd substitution,maximum discharge capacity decreases distinctly.

    Fig.3 Discharge capacity as a function of cycle number for Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd;x=0.01) alloy electrode

    Alloys used as negative electrode material in Ni-MH battery should be capable of working at wide temperature range. In order to investigate the temperature-related properties of the hydrogen storage electrodes, the alloys electrodes are fully charged at room temperature and discharged at various temperatures. Discharge capacity as a function of temperature of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce,Nd, Gd; x=0.01) alloy electrodes is shown in Fig.4.

    Fig.4 Effect of temperature on the discharge capacity of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd;x=0.01) alloy electrode

    The discharge capacity of the alloy electrodes is sensitive to temperature. With increasing temperature,the discharge capacity of the alloy electrodes with the rare earth element substitution increases first and then decreases. The discharge capacity of the alloy electrodes is up to maximum at 333 K except the norm alloy electrode.

    It is very important to restrain the decrease of the discharge capacity even at the high charge/discharge current density for practical application of metal hydride electrode. The effect of the discharge current density (60~600 mA·g-1) on the discharge capacity of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01)alloy electrodes is shown in Fig.5. It can be observed that the HRD of the alloy electrodes decreases with increasing discharge current density. The different rare earth elements substitution has the different effect on the high rate dischargebility of the alloy.

    Nd substitution can improve the HRD of the alloy. Especially, when the discharge current density is 600 mA·g-1, the HRD of the alloy with Nd substitution is higher than that of the norm alloy. Gd substitution is not beneficial to the high rate discharge ability of the alloy when the discharge current density is small. However, with increasing the discharge current density, the HRD of the alloy can be improved. Ce substitution can not improve the HRD of the alloy.

    Fig.5 HRD of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd,Gd; x=0.01) alloy electrode at 303 K

    Fig.6 Impedance response for Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce,Nd, Gd; x=0.01) alloy electrode

    Fig.6 shows the EIS for Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01) alloy electrodes at 50%depth of discharge (DOD). It can be found that all the electrochemical impedance spectroscopy (EIS) curves consist of two semicircles followed with a straight line.According to the analysis model proposed by Kuriyama et al.[17], the smaller semicircle in the highfrequency region represents the resistance and capacitance between the alloy particles and the current collector, the larger semicircle region represents the charge transfer resistance for electrochemical reaction at the surface, while the straight line is attributed to the Warburg impedance.On the basis of the circuit the charge-transfer resistances Rctare obtained by means of fitting program Z-VIEW. The exchange current density I0is calculated using the following formula when an overpotential is very small and trends to zero, and the results are listed in Table 2.

    I0= RT/(FRct)

    where R is the gas constant, T is the absolute temperature and F is the Faraday constant.

    It is obvious that the radius of the larger semicircle decreases with Nd substitution, which indicate that the charge-transfer resistance for the alloy electrode decreases, Accordingly, the I0increases from 169.5 mA·g-1(x=0.0) to 251.0 mA·g-1(x=0.10), which explains why the HRD of the alloy electrode decreases with Nd substitution.

    With different rare earth element substitutions,the performances of the hydrogen storage alloys vary,some improve and some decrease. Because the reasons are complex, it is still difficult to draw a definite law at present, it needs further in-depth and systematic research.

    Table 2 Electrochemical kinetic parameter of Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01) alloy electrode

    3 Conclusions

    In order to im prove the electrochemical properties of Ti-V-based hydrogen storage alloy, the nonstoichiometric composition with different rare earth elements substitution to Ti-Zr-V-Ni-Mn system alloys have been studied. Norm alloy and Ti0.26Zr0.07V0.24-xMn0.10Ni0.33REx(RE=Ce, Nd, Gd; x=0.01) alloys are consisted of V-based solid solution with bcc structure and C14 Laves phase with hexagonal structure. The lattice parameter and the cell volume of BCC phase monotonically increase with rare earth element Ce substitution, which is mainly attributed to the fact that the atomic radius of Ce is larger than that of other elements.

    Rare-earth elements substitution can improve the activation characteristics of Ti0.26Zr0.07V0.24Mn0.1Ni0.33alloy electrode and the alloys can reach their maximum discharge capacity in the first cycle with rare earth element Ce substitution. The discharge capacity of the alloys is quite sensitive to temperature.The discharge capacity is up to maximum at 333 K with Rare-earth elements Nd and Gd substitution. And the excessively high temperature makes the capacity of the alloy electrodes degraded. Nd substitution improved the high-rate dischargeability of the alloy electrode and the effect on the high-rate dischargeability of Ti0.26Zr0.07V0.24Mn0.1Ni0.33alloy electrode is the most obvious with the discharge current density of 600 mA·g-1. The EIS results show that the exchange current density I0increases to 251.0 mA·g-1with Nd substitution. Gd and Ce substitution is not beneficial for the HRD of the alloy electrode.

    Acknowledgements: This work was financially supported by the Hebei natural science foundation (Grant No.B2010001132) and National Natural Science Foundation of China (Grant No. 20903078).

    [1] Song D, Gao X, Zhang Y, et al. J. Alloys Compd., 1994,206:43-46

    [2] Willems J J G., Buschow K H J. J. Less-Commen Met.,1987,129:13-30

    [3] Sakai T, Miyamura H, Kuriyama N, et al. J. Electrochem.Soc., 1990,137:795-799

    [4] Notten P H L, Hokkeling P. J. Electrochem. Soc., 1991,138:1877-1883

    [5] Pan H, Chen Y, Wang C, et al. Electrochim. Acta, 1999,44:2263-2269

    [6] Wang C, Lei Y, Wang Q. Electrochim Acta, 1998,43:3193-3207

    [7] Pan H, Ma J, Wang C, et al. Electrochim Acta, 1999,44:3977-3987

    [8] Yu J S, Lee S M, Cho K, et al. J. Electrochem Soc., 2000,147:2013-2019

    [9] Kim D, Lee S, Jang K, et a. J. Alloys Compd., 1998,268:241-247

    [10]Iwakura C, Inoue H, Zhang S, et al. J Electrochem Soc.,1999,146:1659-1665

    [11]Tsukahara M, Kamiya T, Takahashi K, et al. J Electrochem.Soc., 2000,147:2941-2947

    [12]Iba. H. Ph. D. Dissertation, Tohoku Univ., Japan, 1997.

    [13]Tsukahara M, Takahashi K, Mishima T, et al. J. Alloys Compd., 1995,226:203-207

    [14]Libowitz G G, Mealand A J. J. Less-common Met., 1987,131:275-282

    [15]Qiao Y,Zhao M,Zhu X,et al.J.Rare Earths,2007,25:341-347

    [16]Iwakura C, Kajiya Y, Yoneyama H, et al. J. Electrochem.Soc., 1989,136:1351-1357

    [17]Kuriyama N, Sakai T, Miyamura H, et al. J. Alloys Compd.,1993,202:183-197

    猜你喜歡
    燕山大學(xué)應(yīng)用化學(xué)秦皇島
    《應(yīng)用化學(xué)》編委團隊介紹-陳義旺研究團隊
    應(yīng)用化學(xué)特色專題實驗群建設(shè)的探索與實踐
    化工管理(2022年14期)2022-12-02 11:43:26
    燕山大學(xué)
    燕山大學(xué)
    燕山大學(xué)
    燕山大學(xué)
    秦皇島煤炭價格行情
    秦皇島煤炭價格行情
    核化學(xué)與放射化學(xué)(2020年6期)2020-12-31 02:33:42
    2019《中華詩詞》第16屆秦皇島·金秋筆會在秦皇島舉行
    中華詩詞(2019年11期)2019-09-19 09:05:22
    国产日韩欧美亚洲二区| 春色校园在线视频观看| 男人操女人黄网站| 精品人妻偷拍中文字幕| 亚洲一码二码三码区别大吗| a级毛片在线看网站| 亚洲精品,欧美精品| 爱豆传媒免费全集在线观看| 王馨瑶露胸无遮挡在线观看| 女人被躁到高潮嗷嗷叫费观| 国产av一区二区精品久久| 国产精品久久久久久久电影| av福利片在线| 国产一区二区在线观看av| 永久免费av网站大全| 男男h啪啪无遮挡| 最近最新中文字幕免费大全7| 欧美精品国产亚洲| 青春草亚洲视频在线观看| 久久人人爽av亚洲精品天堂| 亚洲国产欧美在线一区| 免费看av在线观看网站| 亚洲成人手机| 综合色丁香网| 性色avwww在线观看| 美国免费a级毛片| 曰老女人黄片| 国产亚洲av片在线观看秒播厂| 亚洲中文av在线| 69精品国产乱码久久久| 久久 成人 亚洲| 香蕉精品网在线| 亚洲久久久国产精品| 一区二区三区精品91| 狂野欧美激情性xxxx在线观看| 欧美日韩av久久| 日韩电影二区| 欧美日韩成人在线一区二区| 啦啦啦中文免费视频观看日本| 亚洲av综合色区一区| 尾随美女入室| av福利片在线| 日韩免费高清中文字幕av| av黄色大香蕉| 男女下面插进去视频免费观看 | 97精品久久久久久久久久精品| h视频一区二区三区| 国产成人精品无人区| 一级片'在线观看视频| 日本欧美国产在线视频| 国产午夜精品一二区理论片| 成人手机av| 欧美性感艳星| 另类精品久久| 一级爰片在线观看| 大话2 男鬼变身卡| 在线观看国产h片| 少妇熟女欧美另类| 在线天堂中文资源库| 观看av在线不卡| 国精品久久久久久国模美| 中文字幕制服av| 大香蕉久久网| 日日撸夜夜添| 国产精品一区www在线观看| 日韩精品免费视频一区二区三区 | 大片免费播放器 马上看| 丝瓜视频免费看黄片| 久久精品人人爽人人爽视色| 国产精品人妻久久久影院| 国产亚洲精品久久久com| 一个人免费看片子| 男女啪啪激烈高潮av片| 人人妻人人添人人爽欧美一区卜| 国产在线一区二区三区精| 久久国产精品大桥未久av| 美女国产视频在线观看| 午夜激情av网站| 少妇被粗大的猛进出69影院 | 国产精品久久久久成人av| 国产乱人偷精品视频| 99国产综合亚洲精品| 少妇的丰满在线观看| 热99国产精品久久久久久7| 国产xxxxx性猛交| 久久女婷五月综合色啪小说| 只有这里有精品99| 精品国产露脸久久av麻豆| 最近最新中文字幕免费大全7| 色吧在线观看| 高清av免费在线| 高清不卡的av网站| 丝袜脚勾引网站| 午夜精品国产一区二区电影| h视频一区二区三区| 男女免费视频国产| 极品人妻少妇av视频| 亚洲 欧美一区二区三区| 午夜精品国产一区二区电影| 国产免费一级a男人的天堂| 国产精品欧美亚洲77777| 国产精品99久久99久久久不卡 | 另类精品久久| 在线天堂最新版资源| 在线观看三级黄色| 建设人人有责人人尽责人人享有的| 欧美+日韩+精品| 在线观看免费日韩欧美大片| 国精品久久久久久国模美| 老熟女久久久| 22中文网久久字幕| 校园人妻丝袜中文字幕| 丝袜喷水一区| 蜜臀久久99精品久久宅男| 日韩成人av中文字幕在线观看| 在线亚洲精品国产二区图片欧美| 亚洲欧美一区二区三区黑人 | 亚洲欧美日韩另类电影网站| 欧美人与善性xxx| 久久精品久久久久久噜噜老黄| 欧美日韩国产mv在线观看视频| 欧美精品高潮呻吟av久久| 纵有疾风起免费观看全集完整版| 欧美少妇被猛烈插入视频| 天堂俺去俺来也www色官网| 捣出白浆h1v1| 99热网站在线观看| 国产精品熟女久久久久浪| 成年动漫av网址| 欧美亚洲 丝袜 人妻 在线| 黄色怎么调成土黄色| 自线自在国产av| 免费观看av网站的网址| √禁漫天堂资源中文www| 少妇人妻精品综合一区二区| 久久毛片免费看一区二区三区| 波野结衣二区三区在线| 亚洲一区二区三区欧美精品| 国产深夜福利视频在线观看| 国产男女内射视频| 国产激情久久老熟女| 男男h啪啪无遮挡| 另类精品久久| 国产av一区二区精品久久| 天堂中文最新版在线下载| 免费不卡的大黄色大毛片视频在线观看| 观看美女的网站| 天天躁夜夜躁狠狠躁躁| 国产精品久久久久久久电影| 色哟哟·www| 妹子高潮喷水视频| videosex国产| xxx大片免费视频| 人妻系列 视频| 久久鲁丝午夜福利片| 十分钟在线观看高清视频www| 9热在线视频观看99| 国产毛片在线视频| 少妇人妻 视频| www日本在线高清视频| 热99久久久久精品小说推荐| 最黄视频免费看| 国产在视频线精品| 考比视频在线观看| 免费观看a级毛片全部| 午夜老司机福利剧场| 在线观看免费视频网站a站| 国产精品偷伦视频观看了| 男男h啪啪无遮挡| 日韩电影二区| 亚洲熟女精品中文字幕| 日韩免费高清中文字幕av| 免费看不卡的av| 久久精品久久久久久噜噜老黄| 免费日韩欧美在线观看| 免费看不卡的av| 99热国产这里只有精品6| 亚洲四区av| 亚洲,欧美精品.| 国产麻豆69| 美女国产高潮福利片在线看| 欧美+日韩+精品| 最近最新中文字幕免费大全7| 免费黄色在线免费观看| 免费大片黄手机在线观看| 国产欧美另类精品又又久久亚洲欧美| 日本wwww免费看| a 毛片基地| 看免费成人av毛片| 精品午夜福利在线看| 久久精品久久久久久久性| 久久国产精品大桥未久av| 夫妻午夜视频| 天天躁夜夜躁狠狠躁躁| 天天操日日干夜夜撸| 国产综合精华液| 在线观看人妻少妇| 一区二区三区精品91| 日韩欧美精品免费久久| 热99久久久久精品小说推荐| 国产麻豆69| 国产黄色视频一区二区在线观看| 国产一区二区激情短视频 | 最近中文字幕高清免费大全6| 在线观看人妻少妇| 只有这里有精品99| 亚洲综合精品二区| 亚洲精华国产精华液的使用体验| 久久这里只有精品19| 丝袜脚勾引网站| 国产一区二区激情短视频 | 97精品久久久久久久久久精品| 性高湖久久久久久久久免费观看| 亚洲内射少妇av| 狠狠精品人妻久久久久久综合| 久久99一区二区三区| 免费观看性生交大片5| 巨乳人妻的诱惑在线观看| 午夜av观看不卡| 黄色怎么调成土黄色| 亚洲精品456在线播放app| 国产精品蜜桃在线观看| 人人妻人人添人人爽欧美一区卜| 成人漫画全彩无遮挡| 麻豆精品久久久久久蜜桃| 亚洲第一av免费看| 欧美xxⅹ黑人| 啦啦啦在线观看免费高清www| 亚洲成人手机| 国产在线一区二区三区精| 大陆偷拍与自拍| 亚洲美女视频黄频| 久久国内精品自在自线图片| 亚洲国产毛片av蜜桃av| 亚洲第一区二区三区不卡| 日日撸夜夜添| 水蜜桃什么品种好| av在线老鸭窝| 人体艺术视频欧美日本| 一本—道久久a久久精品蜜桃钙片| 丝袜美足系列| 亚洲少妇的诱惑av| 一级毛片黄色毛片免费观看视频| 日韩三级伦理在线观看| 亚洲成人一二三区av| 色网站视频免费| 免费久久久久久久精品成人欧美视频 | 人妻 亚洲 视频| 国产精品 国内视频| 狂野欧美激情性xxxx在线观看| 51国产日韩欧美| 久久国产精品男人的天堂亚洲 | 夜夜骑夜夜射夜夜干| 日韩电影二区| 亚洲精品日韩在线中文字幕| 日本av手机在线免费观看| 亚洲国产精品国产精品| 高清黄色对白视频在线免费看| 亚洲,一卡二卡三卡| 久久久精品免费免费高清| 国产成人免费观看mmmm| 蜜桃国产av成人99| 欧美精品人与动牲交sv欧美| videossex国产| 99re6热这里在线精品视频| 国产亚洲欧美精品永久| 九九爱精品视频在线观看| 汤姆久久久久久久影院中文字幕| 国语对白做爰xxxⅹ性视频网站| 欧美人与善性xxx| 国产激情久久老熟女| 狠狠精品人妻久久久久久综合| 美女脱内裤让男人舔精品视频| 日本午夜av视频| 色94色欧美一区二区| 街头女战士在线观看网站| 国产男女内射视频| 狂野欧美激情性bbbbbb| 欧美变态另类bdsm刘玥| 久久99蜜桃精品久久| av国产精品久久久久影院| 国产亚洲av片在线观看秒播厂| 欧美精品人与动牲交sv欧美| 午夜福利视频精品| 欧美激情 高清一区二区三区| 777米奇影视久久| 丝瓜视频免费看黄片| 亚洲色图 男人天堂 中文字幕 | a级片在线免费高清观看视频| 国产精品人妻久久久影院| 久久精品国产亚洲av天美| 国产黄频视频在线观看| 人妻少妇偷人精品九色| 九九在线视频观看精品| 日本爱情动作片www.在线观看| 亚洲人成网站在线观看播放| 国产精品国产三级国产av玫瑰| 成年av动漫网址| av播播在线观看一区| 狂野欧美激情性bbbbbb| 久久99一区二区三区| 午夜老司机福利剧场| 亚洲中文av在线| 黄色怎么调成土黄色| 日韩在线高清观看一区二区三区| 国产亚洲欧美精品永久| 午夜福利视频在线观看免费| 国产国语露脸激情在线看| 韩国高清视频一区二区三区| 国产永久视频网站| 国产精品久久久久成人av| 欧美最新免费一区二区三区| 国精品久久久久久国模美| 久久毛片免费看一区二区三区| 中国三级夫妇交换| 中文字幕免费在线视频6| 亚洲精品,欧美精品| 国产老妇伦熟女老妇高清| 女性生殖器流出的白浆| 丰满迷人的少妇在线观看| 国产又爽黄色视频| 日韩制服骚丝袜av| 少妇人妻精品综合一区二区| 精品熟女少妇av免费看| 免费观看无遮挡的男女| 宅男免费午夜| 国产精品免费大片| 精品亚洲成a人片在线观看| 免费在线观看黄色视频的| 日韩一区二区三区影片| 成年美女黄网站色视频大全免费| 永久网站在线| 最后的刺客免费高清国语| 捣出白浆h1v1| 国产片内射在线| 乱码一卡2卡4卡精品| 欧美日韩精品成人综合77777| 免费黄色在线免费观看| 大话2 男鬼变身卡| 亚洲精品国产av成人精品| 久久久国产精品麻豆| 黑人欧美特级aaaaaa片| 考比视频在线观看| 九色成人免费人妻av| 女人被躁到高潮嗷嗷叫费观| 国产精品国产三级专区第一集| 国产精品99久久99久久久不卡 | 91成人精品电影| 日本午夜av视频| 欧美成人午夜精品| 成人毛片a级毛片在线播放| 中文字幕av电影在线播放| 亚洲精品久久成人aⅴ小说| 亚洲国产精品专区欧美| 女的被弄到高潮叫床怎么办| 最新的欧美精品一区二区| 国产 精品1| 交换朋友夫妻互换小说| 五月天丁香电影| 高清黄色对白视频在线免费看| 亚洲av免费高清在线观看| av.在线天堂| 我要看黄色一级片免费的| 九九在线视频观看精品| 一区二区三区乱码不卡18| 久久久久久久久久人人人人人人| 精品少妇内射三级| 欧美最新免费一区二区三区| 精品卡一卡二卡四卡免费| 亚洲经典国产精华液单| 18禁在线无遮挡免费观看视频| 国产免费现黄频在线看| 亚洲成人手机| 成人亚洲欧美一区二区av| 亚洲成人手机| 久久国产精品大桥未久av| 精品国产国语对白av| 免费高清在线观看日韩| 热re99久久国产66热| 日韩熟女老妇一区二区性免费视频| 91精品国产国语对白视频| videosex国产| av国产久精品久网站免费入址| 亚洲人成77777在线视频| 亚洲婷婷狠狠爱综合网| 黑丝袜美女国产一区| 国产免费一区二区三区四区乱码| 国产男女超爽视频在线观看| 9191精品国产免费久久| 99视频精品全部免费 在线| 成人无遮挡网站| 全区人妻精品视频| 国产亚洲精品久久久com| 满18在线观看网站| 人妻少妇偷人精品九色| 亚洲精品视频女| 国产乱来视频区| 亚洲精品,欧美精品| 啦啦啦啦在线视频资源| 亚洲色图 男人天堂 中文字幕 | 一区二区三区精品91| 亚洲成人一二三区av| 欧美日韩精品成人综合77777| 久久久久久人妻| 国产一区二区在线观看av| 乱码一卡2卡4卡精品| 日韩中文字幕视频在线看片| 久久婷婷青草| 久久午夜综合久久蜜桃| 久久精品国产亚洲av涩爱| 亚洲精品av麻豆狂野| 亚洲av电影在线进入| 亚洲综合精品二区| 亚洲国产精品一区二区三区在线| 熟女人妻精品中文字幕| 免费高清在线观看视频在线观看| 国产成人欧美| 少妇人妻 视频| 国产亚洲av片在线观看秒播厂| xxx大片免费视频| 精品人妻在线不人妻| 国产亚洲最大av| 人人妻人人爽人人添夜夜欢视频| 日日爽夜夜爽网站| 最近中文字幕2019免费版| 久久国内精品自在自线图片| 欧美精品一区二区大全| 人妻系列 视频| 一区在线观看完整版| 成年av动漫网址| 成人国产av品久久久| a 毛片基地| 国产极品天堂在线| 婷婷成人精品国产| 婷婷色综合大香蕉| 亚洲美女搞黄在线观看| 成人国语在线视频| 久久这里有精品视频免费| 成人漫画全彩无遮挡| 黄色配什么色好看| 亚洲综合精品二区| 伊人亚洲综合成人网| 国产精品国产三级国产专区5o| 亚洲天堂av无毛| 久久精品国产鲁丝片午夜精品| 少妇的丰满在线观看| 考比视频在线观看| 久久99热这里只频精品6学生| 久久久国产精品麻豆| 春色校园在线视频观看| 久久久亚洲精品成人影院| 最近的中文字幕免费完整| 18禁国产床啪视频网站| 国产亚洲av片在线观看秒播厂| 国产男女超爽视频在线观看| 国精品久久久久久国模美| 99re6热这里在线精品视频| av一本久久久久| 亚洲av在线观看美女高潮| 观看av在线不卡| 久久99热6这里只有精品| 人成视频在线观看免费观看| 亚洲欧美清纯卡通| 成人亚洲欧美一区二区av| 欧美最新免费一区二区三区| 国产成人a∨麻豆精品| 久久人妻熟女aⅴ| 欧美xxⅹ黑人| 人人妻人人澡人人爽人人夜夜| 国产亚洲精品久久久com| 视频在线观看一区二区三区| 国产欧美日韩一区二区三区在线| 少妇的丰满在线观看| 国产成人午夜福利电影在线观看| 国产成人免费无遮挡视频| 一级毛片黄色毛片免费观看视频| 秋霞在线观看毛片| 免费在线观看黄色视频的| 亚洲av综合色区一区| 视频区图区小说| 亚洲第一av免费看| 久久久久人妻精品一区果冻| 国产精品.久久久| 欧美 亚洲 国产 日韩一| 18在线观看网站| 午夜精品国产一区二区电影| 一级毛片 在线播放| 人妻 亚洲 视频| 亚洲 欧美一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 最近的中文字幕免费完整| 最黄视频免费看| 在线观看一区二区三区激情| 狂野欧美激情性xxxx在线观看| 少妇高潮的动态图| 国产精品嫩草影院av在线观看| av播播在线观看一区| 亚洲少妇的诱惑av| 欧美另类一区| 黄色配什么色好看| 国产精品熟女久久久久浪| 视频在线观看一区二区三区| 999精品在线视频| 一级毛片 在线播放| 国产精品人妻久久久久久| 男男h啪啪无遮挡| 成人毛片a级毛片在线播放| 亚洲国产欧美日韩在线播放| 中国三级夫妇交换| 宅男免费午夜| 王馨瑶露胸无遮挡在线观看| 日韩人妻精品一区2区三区| 中文字幕亚洲精品专区| 国产一区亚洲一区在线观看| 尾随美女入室| 性色avwww在线观看| 午夜日本视频在线| 男人舔女人的私密视频| 大片电影免费在线观看免费| 在线精品无人区一区二区三| 欧美人与性动交α欧美软件 | 最近的中文字幕免费完整| 最新中文字幕久久久久| 精品视频人人做人人爽| 亚洲色图综合在线观看| 大话2 男鬼变身卡| 国产一级毛片在线| 精品午夜福利在线看| 久久精品国产亚洲av涩爱| 亚洲av免费高清在线观看| 亚洲熟女精品中文字幕| 免费少妇av软件| 久久久久久久精品精品| 亚洲第一区二区三区不卡| 亚洲av综合色区一区| 精品久久蜜臀av无| 久久久久久久久久成人| 我要看黄色一级片免费的| 中文欧美无线码| 国产一区有黄有色的免费视频| 亚洲国产精品一区三区| 99视频精品全部免费 在线| 麻豆精品久久久久久蜜桃| 我的女老师完整版在线观看| 久久av网站| 最近手机中文字幕大全| 日本与韩国留学比较| 一个人免费看片子| 天堂8中文在线网| 免费观看在线日韩| 三级国产精品片| 一本—道久久a久久精品蜜桃钙片| 午夜福利,免费看| av不卡在线播放| 欧美人与性动交α欧美精品济南到 | 丝袜在线中文字幕| 一级片'在线观看视频| 国产一区二区激情短视频 | 欧美老熟妇乱子伦牲交| 亚洲国产最新在线播放| 欧美亚洲 丝袜 人妻 在线| 精品亚洲成国产av| 观看美女的网站| 国产成人精品无人区| 成年av动漫网址| 国产视频首页在线观看| 国产熟女欧美一区二区| 在线观看www视频免费| 亚洲av福利一区| www.av在线官网国产| 九色亚洲精品在线播放| 菩萨蛮人人尽说江南好唐韦庄| 久久亚洲国产成人精品v| 亚洲欧美清纯卡通| 哪个播放器可以免费观看大片| 日韩电影二区| 亚洲婷婷狠狠爱综合网| 只有这里有精品99| 国产又爽黄色视频| 国产免费视频播放在线视频| 18在线观看网站| 一级爰片在线观看| 啦啦啦视频在线资源免费观看| 男女啪啪激烈高潮av片| 精品亚洲成国产av| 最近中文字幕高清免费大全6| 久久久久久久久久久久大奶| av黄色大香蕉| xxxhd国产人妻xxx| 久久久久久久久久久久大奶| av黄色大香蕉| 日本av手机在线免费观看| 精品人妻偷拍中文字幕| 乱码一卡2卡4卡精品| 91在线精品国自产拍蜜月| 日韩av在线免费看完整版不卡| 91成人精品电影| 国产av国产精品国产| 18在线观看网站| 亚洲第一av免费看| 嫩草影院入口| 街头女战士在线观看网站| 成年女人在线观看亚洲视频| 王馨瑶露胸无遮挡在线观看| 制服诱惑二区| 欧美变态另类bdsm刘玥| 久久国内精品自在自线图片| 成人国产麻豆网| 高清视频免费观看一区二区| 午夜激情av网站| 中国三级夫妇交换| 亚洲中文av在线| 久久精品久久久久久久性| 色哟哟·www| 日本免费在线观看一区|