• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    微波誘導(dǎo)燃燒法合成類花狀ZnO納米材料及其晶體結(jié)構(gòu)、熒光性質(zhì)研究

    2013-10-17 03:02:58劉柏林徐彥芹王亞濤
    關(guān)鍵詞:花狀重慶大學(xué)化工學(xué)院

    曹 淵 文 毅 劉柏林 徐彥芹 王亞濤

    (重慶大學(xué)化學(xué)化工學(xué)院,重慶 400030)

    Zinc oxide(ZnO)is an important direct semiconductor with wide bandgap of 3.37 eV and large exciton bind energy of 60 meV at room temperature.Its unique optical,electronic,chemical,and thermal properties have made ZnO a promising material in various fields,such as room-temperature ultraviolet lasers[1],fieldeffect transistors[2],photodetectors[3],gas sensors[4],photocatalysts[5],and solar cells[6].To meet increasing demand for ZnO in these applications,efforts have been devoted to obtaining ZnO nanocrystals with controlled sizes and architectures because the optical,physicochemical,and electric propertiesofZnO crystals are intimately dependent on their size and shape.Over the pastdecade,many interesting nanostructures of ZnO,such as nanorods[6],nanowires[7],nanorings[8],nanobelts[8],whisker[9],tetrapods[10],flowers[11],and nanospheres[12]have been fabricated.The latest investigations also indicate that a series of specific morphologies and structures of ZnO could possess even more novel properties.Huang et al.[1]observed room-temperature UV lasing in ZnO nanowire arrays and discovered that the nanostructure had a lowerlasing threshold compared with disordered particles or films.Cao et al.[13]found that the energy conversion efficiency of dye-sensitized solar cells could be significantly enhanced using hierarchically structured nanosphere ZnO photoanodes.Through vertically aligned zinc oxide nanowire arrays,Wang et al.fabricated an ultrasonic wave-driven nanogenerator that produces continuous direct-current output[14].

    To date,various synthetic methods,including hydrothermal synthesis[15],pyrolysis[16],the sol-gel technique[17],and chemical vapor deposition[18],have been developed to fabricate ZnO nanocrystals with controlled morphologies.However,most of the synthetic procedures available require expensive equipment and need to be operated under very strict conditions.Moreover,the synthesis of inorganic materials is timeconsuming.

    Compared with various techniques,the combustion synthesis method has many potential advantages,such as low-processing cost,energy efficiency,and timesaving features[19].The microwave-induced combustion technique (MICT)isan economicalmethod for preparing metal oxide materials.Metal nitrates and an organic compound,usually glycine(NH2CH2COOH)or urea [CO(NH2)2],are used as reactants.When igniting the aqueous solution of the reactants using microwave radiation,a combustion reaction takes place and transforms the reactants into a loose product composed of nanocrystalline particles.Y2O3[20],CeO2[21],and TiO2[22]have been successfully synthesized through MICT.

    MICT induces the reactants to reach the reaction temperature fast through heating,and then the reaction takes place.During the process,including the dissolution of nitrate and fuel in a trace of water,the heated solution in the microwave oven decomposes a great deal of flammable gas,plenty of heat as well,reactants burn after reaching the self-ignition temperature.The whole reaction lasts for a few minutes,during which the nitrate plays the role of oxidant,urea and its cleavage product act as the reducing agents,and microwave induces the redox reaction.Nowadays there are relevant reports on Synthesizing inorganic materials based on MICT method.Nanocomposite NiO/YSZ powders for high performance anodes of SOFCs have been synthesized via a microwave-assisted complex-gel auto-combustion approach by Cai et al.[23]Sertkol et al.[24]also synthesized Zn0.7Ni0.3Fe2O4nanoparticles via microwave assisted combustion route,and the product shows superparamagnetic behavior at around the room temperature and ferromagnetic behavior below the blocking temperature of 284 K.

    Microwaves can be used to heat materials.As with all electromagnetic radiation,microwave radiation can be divided into an electric field component and a magnetic field component.The former is responsible for dielectric heating,which is effected via two major mechanisms[25].One of the interactions of the electric field component with the matrix is called the dipolar polarization mechanism.And the other is the conduction mechanism.Microwave processing of materials is fundamentally different from conventional processing,such as the use of heating fluid,gas,steam,or electrical heating,due to its heating mechanism[26].In a microwave oven,heat is generated within the sample by the interaction of microwaves with the material.In conventional heating,the heat is generated by heating elements.The heat is then transferred to the samples surfaces.Based on these details,we speculate that the nanostructures or properties of as-synthesized ZnO would change after microwave radiation.

    In this study,the MICT method is developed for the flash synthesis of ZnO crystals.The development of the MICT method is described and the effects of several experimentalparameters on productquality are discussed.The morphologies necessary to form flowerlike ZnO with different lengths of time are observed.We also suggest a mechanism of formation of flower-like ZnO,and evaluate the photoluminescence properties of the ZnO nanostructures.

    1 Experimental

    1.1 Materials and methods

    All chemicals (analytical grade reagents)were commercially available and used withoutfurther purification.The MICT method involved the dissolution of zinc nitrate[Zn(NO3)2·6H2O]as an oxidizer,and fuel(urea [CO(NH2)2])as a reducer in water.The resulting solution was heated in a microwave oven.Experimental details are as follows.Approximately 6 g of Zn(NO3)2·6H2O was dissolved in 2 mL distilled water in a porcelain crucible.Urea was assembled in an appropriate proportion to form into fuel compounds.The fuel compounds were mixed well with the stock zinc nitrate solution until a ropy paste(hereafter termed as the precursor)wasobtained.The precursorwas introduced into a microwave oven (Galanz D8023CSLK4),and a microwave field of 2.45 GHz was applied to it for decomposition to take place.After boiling,evaporating,and concentrating,the precursor foamed up,deflagrated,and released a certain amount of heat and gases.Microwave radiation was not stopped until the flame was extinguished.Combustion was completed within only a few minutes,and ZnO nanoparticles remained as residues.

    The relative chemical reaction equation can be written as:

    According to the concepts of propellant chemistry,in Eq.(1),1.5Φ-2.5=0 corresponds to the situation where “the reactant composition was set at the condition equivalent to the stoichiometric ratio”,which implies that the oxygen content of zinc nitrate could be completely reacted to oxidize fuels equivalently without demanding oxygen from any external source.Both the rates of reaction and the heat liberated per unit of time are at a maximum under this condition.Referring to Eq.(1),three representative reactant compositions were selected to synthesize ZnO products:(1)Φ=1 is defined as deficient fuel;(2)Φ=1.667 is defined as suitable fuel;and(3)Φ=3 is defined as excess fuel.These also represented the relations between Zn2+concentration and amount of fuel.

    1.2 Characterization

    The precursor powders were investigated using thermogravimetric analysis (TGA)and differential thermal analysis(DTA)between room temperature and 800 ℃ usingaShimadzuDTG-60H instrument.Analyses were performed under a nitrogen atmosphere at a temperature ramp of 10 ℃·min-1.The obtained samples were characterized by infrared spectroscopy(FTIR)(Shimadzu Affinity-1 FTIR spectrophotometer in the range of 2 000~400 cm-1using KBr pellets)and X-ray diffraction(XRD)(Shimadzu XRD-6000 with Cu Kα radiation,λ=0.154 18 nm;diffractograms were obtained under the following conditions:2θ=20°~80°,voltage of 40 kV,current of 40 mA,and scanning speed of 2°·min-1).The morphologies and size of the products were investigated by scanning electron microscopy(SEM)(JEOL JSM-6490LV),field emission scanning electron microscopy(FESEM)(FEI Nova-400),and transmission electron microcopy (TEM) (JEOL JEM-2000EX)combined with selected area electron diffraction(SAED).The room-temperature PL was measured with a fluorescence spectrophotometer(Shimadzu RF-5301PC using a Xe laser with a wavelength of 325 nm as the excitation light source).

    2 Results and discussion

    2.1 Phenomena analysis

    Fuels have an important effect on combustion reactions and the properties of the as-synthesized products because of the main energy released from the exothermic reaction between fuels and zinc nitrate,which could rapidly heatthe system to high temperatures and ensure that synthesis occurs.Therefore,depending on the amount of urea contained in the reactant compartment,three different kinds of reaction phenomena are observed.At low CO(NH2)2contents(Φ=1),heat release is relatively low because of fuel scarcity.Thus,the precursor cannot deflagrate and the product color is not uniform.In the middle of the porcelain crucible,some pink powders containing harder agglomerates are obtained,whereas the white unreacted precursor is left near the vessel wall.The low temperature of the vessel wall is not enough to trigger significant changes.In the case of CO(CH2)2(Φ=1.667 and Φ=3),liberation of the energy during the combustion reaction is enough to ignite the precursor.A stable flame is observed after smoke evolution.Pink powder agglomerates are obtained at Φ=1.667,whereas light yellow color powders in loose shapes are obtained at Φ=3.

    The response characteristic for the shortage of fuel is a slower reaction rate and lack of substantial flame.By contrast,the great response rate exists in the reaction of fuel abundance and the reaction is almost completed at the same time.Under this condition,all the oxygen comes from the precursor.Once NO3-creates oxygen,itimmediately reacts with urea.With increasing fuel content,the key reason for obtaining loose-shaped products is the liberation of a large amount of gases during combustion.The gases hamper the subsequent condensation of particles.When the fuel is in excess,the combustion reaction must be taken outside to increase oxygen.Therefore,the critical factor that limits reaction rates is the amount of oxygen in the system,which enters the reaction zone by diffusion.

    TGA and DTA curves of the ZnO precursor are shown in Fig.1.The major weight loss occurs at about 310℃,and the minor ones at temperatures between 420 and 500℃.The mass remains constant at higher temperatures,indicating oxide formation.A weight loss of about 70% is observed,corresponding to the evolution of absorbed moisture (water and other low molecular weight compounds),the burning out of carbon dioxide,and the presence of excess nitrate gases in the as-prepared precursor ZnO powder.The DTA curve shows the three steps in the decomposition behavior of exothermic peaks between room temperature and 1 000℃.First,a broad peak below 200℃corresponds to the desertion of moisture from the precursor powder and removal of water molecules from the hydroxyl group.The exothermic peaks in the 300~700℃range correspond to the volatile product(COx,N2, NOx, etc.) formation and organic material combustion.The broad peak at about 900 ℃ could be attributed to the crystal phase transition of ZnO.TGA and DTA data display the transformation of precursors in the microwave oven.

    2.2 Crystalstructureandfunctionalgroupanalysis

    The XRD patterns of zinc oxide nanopowders prepared by the MICT are shown in Fig.2.The sharp diffraction peaks match the pattern of the standard hexagonal structure of ZnO (PDF No.36-1451),with lattice constants a=0.324 9 nm and c=0.520 6 nm.The strongest peaks located at 31.72°,34.40°,and 36.18°can be clearly seen and correspond to the(100),(002),and(101)directions of ZnO,respectively.Besides the three most obvious peaks,other peaks representing(102),(110),(103),(200),(112),(201),(004),and (202)directions of ZnO can also be indexed from the ZnO (PDF No.36-1451).No secondary peaks are detected in Figs.2a and 2c,indicating the complete crystallization of single phase hexagonal ZnO.However,comparison of the curve of Fig.2b with those of Figs.2a and 2c show some weak peaks located at 21°~29° (inset,Fig.2b).These peaks indicate that a rapid reaction is not conducive to the formation of the single phase ZnO.

    The formation of ZnO nanostructures is further characterized by FTIR spectroscopy,as shown in Fig.3.The absorption at~1 383 cm-1for the synthesized samples corresponds to the bending vibration of C-N.This indicates the presence of nitrate ions,which are probably absorbed on the surface of ZnO particles.The intense band that rises at 400~500 cm-1in all the spectra is assigned to the stretching vibrations of Zn-O.A sharp Zn-O vibration peak at 449 cm-1appears with a urea/Zn2+molar ratio of 3∶1,and the single peak is attributed to a comparatively large amount of heat energy and the higher temperature.The peaks observed in the FTIR spectra of the powders are found to match well with those previously reported[27].

    2.3 ZnO nanostructures

    Fig.4 shows the SEM and FE-SEM images of the ZnO nanostructures prepared by the MICT at different molar ratios of urea/Zn2+.When the molar ratio of urea/Zn2+is equal to 1,nanostructure flowers can be obtained at all three microwave powers(170,340,and 680 W),as shown in Fig.4.However,the flowers are not fully formed when the microwave power is too low(Fig.4a),and the size of the flower clusters is inhomogeneous(Fig.4c).Moreover,the higher the microwave power,the shorter the time for the occurrence of deflagration.Since a short reaction time is not beneficial to crystal nucleation and growth,moderate microwave radiation power(340 W)is selected to investigate the effect of organic fuels on the nanostructures.Results show that uniform flower-like products are obtained with a 1∶1 molar ratio of urea/Zn2+,as shown in Fig.4b and 5a.The product consists of a large quantity of flower-like microstructures that are approximately 2~5 μm in size.The floral structures result from the accumulation of several hundreds of sharp-tipped ZnO nanorods,which originate from a single center.A urea/Zn2+molar ratio of 5:3 results in incomplete flower-shaped nanostructures.As well,flakes agglomerate around the flowers(Fig.5b).The overall floral morphology fully changes into a blocky structure with a urea/Zn2+molar ratio of 3∶1,as shown in Fig.5c.The lengths of these irregular blockshaped particles range from 100~300 nm.The results illustrate that urea,rather than microwave power,acts as a structure-directing agent,significantly affecting the anisotropic growth of ZnO from flowers to block-like structures.Different single-crystal ZnO nanostructures are obtained after only a few minutes of microwave radiation.

    Fig.6a shows a low-magnification TEM image of flower-shaped ZnO,which is consistent with SEM observations(Fig.5a).The corresponding SAED pattern(Fig.6b)indicates that the structure evolves from polycrystalline phases into single crystals.Characteristics of single-crystal diffraction spots and poly-crystalline diffusion rings can be seen from the SAED pattern.A high resolution TEM (HRTEM)image(Fig.6c)of the corresponding flowers clearly reveals that the lattice fringes between two adjacent planes are about 0.52 nm apart,which is equal to the lattice constant of ZnO,indicating that the obtained structures have wurtzite hexagonal phases and are preferentially grown along the(0001)direction.These findings are in accordance with the SAED pattern obtained.

    2.4 Morphology evolution

    In principle,the formation of 3D structures may be divided into two processes,i.e.,nucleation and growth.In the experiments,urea mediates the nucleation and growth of ZnO crystals by modifying the basicity of the precursor solutions.The following chemical reactions take place in the precursor solutions:

    Due to the hydrolysis of urea,the hydroxyl ion plays a crucial role in the nucleation process.At early stages of the reaction,ZnO nucleates from the Zn(OH)42-solution to form multi-nuclei aggregates.With constant stirring,the multi-nuclei aggregates serve as sites for ZnO nanostructure growth along the (001)direction.This direction has a high capability for inducing the nucleation of ZnO[28],according to the mechanism of polar crystal growth.In Fig.7a,the precursor solutions form the ZnO nanorods prior to microwave radiation.The similar phenomenon of ZnO crystal nucleus growth in solution has been reported in several studies[29].Due to molecular polarization in the reaction solution and the dipole moment formed in the dielectric,the level of excitation of Zn-O bonds is higher than normal under microwave radiation[30].Thus,the material coupled in the microwave field heats up more rapidly than in a convectional heating system.After microwave radiation for 5 min,the reaction solution boils and becomes concentrated before burning.ZnO columns/rods are formed,as illustrated in Fig.7b.When the solution burns with a stable flame,flower-like single-crystal ZnO nanostructures are formed with rapid growth rate in the combustion process after the combustion reaction(Figs.7c and 7d).The formation of flake-like ZnO and nanoparticles can be attributed to the liberation of large amounts of gases during combustion.A full description of these mechanisms would require more evidence from future work.

    2.5 Photoluminescence studies

    To investigate the effectofmorphology on photoluminescence characteristics, the room temperature photoluminescence (PL)spectra of(a)flower-like,(b)flake-like,and (c)block-like ZnO are shown in Fig.8.The resulting ZnO nanopowders display an ultraviolet emission at 366 nm and a relatively broad blue light emission in the range of 380~500 nm.

    The ultraviolet emission is attributed to the near band-edge emission ofthe wide band-gap ZnO,specifically,the recombination of free excitons through an exciton-exciton collision process[31].The emission at 366 nm is frequently observed in ZnO thin films deposited on gold substrates[32].Lin et al.found violet emissions at 390 nm (3.18 eV)during the DC reactive sputtering of ZnO films onto Si substrates[33].They believe that the violet emission originates from the electron transition from the conduction band to the valence band.We believe that the emission at 394 nm is due to the electron transition from the conduction band tail states to the valence band tail states.The 410 nm violet luminescence is thought to relate to interface traps at the grain boundaries and emissions from the radiative transition between this level and the valence band[34].Teng et al.[35]believe that this emission could be due to the transition from the top of the valence band to the Znilevel(interstitial zinc,2.9 eV).A weak blue emission at 442 nm (2.81 eV)was observed in the ZnO nanoflowers;this emission has also been found in ZnO films and whiskers[36].Previous studies on ZnO films prove that the blue emission is related to oxygen vacancies in the ZnO film[37].The 452 nm (2.74 eV)emission is assigned to rather shallow donor level of Zni recombined with VZn(vacancies zinc)by recent study[38-39].The 468 nm(2.64 eV)emission is not widely observed,although it is usually considered to be related to intrinsic defects generated during the preparation and post-treatment of nanostructures,such as single negatively charged zinc vacancies,the origins of which remain unclear.The hump at 485 nm in the PL spectra of ZnO can be attributed to the transition between the vacancies of oxygen and interstitial oxygen[40].Such an emission can also result from surface-deep traps,which are typical of porous ZnO nanostructures[41].The shoulder peak at 493 nm is related to singly ionized oxygen vacancies.This emission results from the recombination of a photogenerated hole with a singly ionized charge state of the specific defect[42].The green luminescence(500~550 nm)of ZnO nanostructures is not obvious.The peak intensity of the sample obtained at the urea/Zn2+molar ratio of 3∶1 is stronger than that at 1∶1.It is possible that the surface defects contribute to the emission because the block-like nanoparticles have smaller size and larger surface area.Zhang et al.[43]reported that surface states may play a more important role in visible emissions than previously thought.Hence,in our case,it may be reasonably inferred that both oxygen vacancies and surface states may respond to the yellow-green emission of the flower-like ZnO nanorods.

    The origins of different defect emissions are not completely understood,but we can speculate that differences in the optical properties of the present ZnO nanostructures originate from lattice defects related to either the oxygen interstitial spaces or Zn vacancies.

    3 Conclusions

    A rapid and simple method was developed for preparing flower-like ZnO nanocrystals through the MICT.Results reveal that the molar ratio of urea/Zn2+significantly influences the morphology of ZnO.The effect of ZnO morphologies is attributed to the induction of hydroxyl ions,which orients nucleation and promotes rapid growth under microwave radiation.Our results reveal that ZnO nanorods are created from ZnO nuclei,resulting in the formation of flower-like ZnO nanostructures.Photoluminescence spectra of ZnO flowers,flakes,and block-like nanostructures reveal several emission bands.The distinctive advantage of the proposed method is that the process requires no heat treatment or calcination at high temperature.

    [1]Huang M H,Mao S,Feick H,et al.Science,2001,292:1897-1899

    [2]Yuan H,Shimotani H,Tsukazaki A,et al.Adv.Func.Mater.,2009,19:1046-1053

    [3]Al-Hardan N H,Abdullah M J,Ahmad H,et al.Sol.St.Electr.,2011,55:59-63

    [4]Anderson T,Ren F,Pearton S,et al.Sensors,2009,9:4669-4694

    [5]Yang J L,An S J,Park W I,et al.Adv.Mater.,2004,16:1661-1664

    [6]Zhang R,Kumar S,Zou S,et al.Cryst.Growth Des.,2008,8:381-383

    [7]Pung S Y,Choy K L,Hou X,et al.Nanotechnol.,2010,21:345-602

    [8]Pan Z W,Dai Z R,Wang Z L.Science,2001,291:1947-1949

    [9]Qiu Z,Wong K S,Wu M,et al.Appl.Phys.Lett.,2004,84:2739-2741

    [10]Wang Q,Yu K,Wang T H,et al.Appl.Phys.Lett.,2003,83:2253-2255

    [11]CaoY,LiuBL,HuangR,etal.Mater.Lett.,2011,65:160-163

    [12]Zhang Y,Liu Y,Wu L,et al.Appl.Surf.Sci.,2009,255:4801-4805

    [13]Chou T P,Zhang Q,Fryxell G E,et al.Adv.Mater.,2007,19:2588-2592

    [14]Wang X,Song J,Liu J,et al.Science,2007,316:102-105

    [15]Zhang H,Yang D,Ji Y,et al.J.Phys.Chem.B.,2004,108:3955-3958

    [16]Puspharajah P,Radhakrishna S.J.Mater.Sci.,1997,32:3001-3006

    [17]Shan G,Xiao X,Wang X,et al.J.Colloid Interface Sci.,2006,298:172-176

    [18]Wu J J,Liu S C.Adv.Mater.,2002,14:215-218

    [19]Mangalaraja R V,Mouzon J,Hedstrm P,et al.J.Mater.Process.Tech.,2008,208:415-422

    [20]Mangalaraja R V,Mouzon J,Hedstrm P,et al.Powder Technol.,2009,191:309-314

    [21]Fu Y P,Lin C H,Hsu C S.J.Alloys Compd.,2005,391:110-114

    [22]Gressel-Michel E,Chaumont D,Stuerga D.J Colloid Interface Sci.,2005,285:674-679

    [23]Sertkol M,K?seolu Y,Baykal A,et al.J.Magn.Magn.Mater.,2010,322:866-871

    [24]Cai T X,Zeng Y W,Zhang W,et al.J.Power Sources,2010,195:1308-1315

    [25]Lidstr?m P,Tierney J,Wathey B,et al.Tetrahedron,2001,579:225-283

    [26]Fu Y P,Su Y H,Lin C H.Solid State Ionics,2004,166:137-146

    [27]Fernandes D M,Silva R,Winkler Hechenleitner A A,et al.Mater.Chem.Phys.,2009,115:110-115

    [28]Sun Y,Riley D J,Ashfold M N R.J.Phys.Chem.B,2006,110:15186-15192

    [29]Feng L,Liu J,She J J.et al.Cryst.Growth,2009,311:1435-1440

    [30]Tompsett G A,Conner W C,Yngvesson K S.Chem.Phys.Chem.,2006,7:296-319

    [31]Kong Y C,Yu D P,Zhang B,et al.Appl.Phys.Lett.,2001,78:407-409

    [32]Laurent K,Wang B Q,Yu D P,et al.Thin Sol.Films,2008,517:617-621

    [33]Lin B,Fu Z,Jia Y.Appl.Phys.Lett.,2001,79:943-945

    [34]Wang Y,Chu B.Superlattice Microst.,2008,44:54-61

    [35]Teng X M,Fan H T,Pan S S,et al.J.Phys.D:Appl.Phys.,2006,39:471-476

    [36]Dai L,Chen X L,Wang W J,et al.J.Phys.:Condens.Mat.,2003,15:2221-2226

    [37]Bachari E M,Baud G,Amor S B,et al.Thin Sol.Films,1999,348:165-172

    [38]Patra M K,Manzoor K,Manoth M,et al.J.Lumin.,2008,128:267-272

    [39]Chawla S,Karar N,Chander H.Phys.B(Amsterdam,Neth.),2010,405:198-203

    [40]Mahamuni S,Borgohain K,Bendre B S,et al.J.Appl.Phys.,1999,85:2861-2865

    [41]Song R Q,Xu A W,Deng B,et al.Adv.Funct.Mater.,2007,17:296-306

    [42]Tian Y,Lu H B,Wu Y,et al.Mater.Sci.Tech-Lond.,2010,26:1248-1252

    [43]Zhang H,Shen L,Guo S W.J.Phys.Chem.C,2007,111:12939-12943

    猜你喜歡
    花狀重慶大學(xué)化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    重慶大學(xué)學(xué)報(bào)征稿簡(jiǎn)則
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    花狀金屬氧化物Ni-Mn-O在鋰硫電池中的應(yīng)用
    Who Is The Master?
    大東方(2018年9期)2018-10-21 15:29:02
    一種制備空心花狀氫氧化鋅的方法及利用空心花狀氫氧化鋅制備空心花狀氧化鋅的方法
    《化工學(xué)報(bào)》贊助單位
    “精益管理五原則”在高校圖書(shū)館社區(qū)服務(wù)中的應(yīng)用——以重慶大學(xué)城為例
    三維花狀BiOBr/CNTs復(fù)合光催化劑降解羅丹明廢水研究
    国产精品久久久久久久电影| 亚洲五月天丁香| 国产麻豆成人av免费视频| 国内久久婷婷六月综合欲色啪| 精品国内亚洲2022精品成人| 插逼视频在线观看| 国产伦精品一区二区三区视频9| 久久久精品94久久精品| 麻豆精品久久久久久蜜桃| 啦啦啦韩国在线观看视频| 婷婷亚洲欧美| 国产一区二区在线观看日韩| 一个人免费在线观看电影| 在线免费观看不下载黄p国产| 乱码一卡2卡4卡精品| 日日摸夜夜添夜夜添av毛片| 亚洲av中文av极速乱| 国产亚洲91精品色在线| 国产片特级美女逼逼视频| 人妻久久中文字幕网| 免费观看精品视频网站| 国产极品精品免费视频能看的| 日本色播在线视频| or卡值多少钱| 久久精品国产亚洲网站| 午夜日韩欧美国产| 一区二区三区高清视频在线| 国产一区二区激情短视频| 18禁在线无遮挡免费观看视频 | 亚洲中文字幕日韩| 丰满人妻一区二区三区视频av| 欧美激情在线99| 欧美丝袜亚洲另类| 欧美+日韩+精品| 日本免费一区二区三区高清不卡| 午夜福利在线在线| 日韩欧美精品v在线| 成人三级黄色视频| 久久精品国产自在天天线| 日日撸夜夜添| 亚洲无线在线观看| 日本爱情动作片www.在线观看 | 国产毛片a区久久久久| 全区人妻精品视频| 97碰自拍视频| 国产真实伦视频高清在线观看| 一区福利在线观看| 亚洲18禁久久av| 日本免费a在线| 性色avwww在线观看| 韩国av在线不卡| 日本在线视频免费播放| 大又大粗又爽又黄少妇毛片口| av在线老鸭窝| 99久久精品一区二区三区| 中国美白少妇内射xxxbb| 一级黄片播放器| 麻豆精品久久久久久蜜桃| 久久精品国产鲁丝片午夜精品| 午夜久久久久精精品| 小蜜桃在线观看免费完整版高清| 亚洲性久久影院| 成年女人看的毛片在线观看| 日本与韩国留学比较| 精品乱码久久久久久99久播| 国产一区二区亚洲精品在线观看| 国产精品女同一区二区软件| 亚洲四区av| 午夜久久久久精精品| 熟女电影av网| 亚洲精品粉嫩美女一区| 别揉我奶头~嗯~啊~动态视频| 99久久成人亚洲精品观看| 一个人看的www免费观看视频| 五月伊人婷婷丁香| 日韩高清综合在线| 国产高清三级在线| 人人妻,人人澡人人爽秒播| 国产成人福利小说| 国产69精品久久久久777片| 久久久久免费精品人妻一区二区| 神马国产精品三级电影在线观看| 我要看日韩黄色一级片| 欧美极品一区二区三区四区| h日本视频在线播放| 菩萨蛮人人尽说江南好唐韦庄 | 日韩欧美精品v在线| 日韩成人av中文字幕在线观看 | 久久久成人免费电影| 美女内射精品一级片tv| 亚洲欧美日韩高清在线视频| 熟女电影av网| АⅤ资源中文在线天堂| 欧美3d第一页| 老熟妇乱子伦视频在线观看| 国内揄拍国产精品人妻在线| 偷拍熟女少妇极品色| 亚洲精品影视一区二区三区av| 一级黄片播放器| 内地一区二区视频在线| 黄色日韩在线| 国产黄a三级三级三级人| 亚洲欧美中文字幕日韩二区| 欧美高清成人免费视频www| 午夜福利18| 嫩草影院新地址| 亚洲av不卡在线观看| 久久鲁丝午夜福利片| 欧美bdsm另类| 久久6这里有精品| 在线看三级毛片| 免费看光身美女| 欧美又色又爽又黄视频| 18禁在线无遮挡免费观看视频 | 国产一区二区亚洲精品在线观看| 在线免费观看不下载黄p国产| 少妇的逼水好多| 国产一区二区三区av在线 | 男人狂女人下面高潮的视频| 在线a可以看的网站| 免费电影在线观看免费观看| 精品一区二区三区视频在线| 欧美高清成人免费视频www| 国产真实伦视频高清在线观看| 一夜夜www| 免费看av在线观看网站| 天天一区二区日本电影三级| 国产蜜桃级精品一区二区三区| 一级毛片我不卡| 亚洲在线自拍视频| 麻豆久久精品国产亚洲av| 国产精品三级大全| 久久久久性生活片| 国产免费男女视频| 亚洲真实伦在线观看| 少妇裸体淫交视频免费看高清| 美女高潮的动态| 亚洲色图av天堂| 国产伦精品一区二区三区视频9| 一级毛片我不卡| 欧美最黄视频在线播放免费| 久久久午夜欧美精品| 两个人视频免费观看高清| 日本在线视频免费播放| 身体一侧抽搐| 亚洲内射少妇av| 国产视频内射| 白带黄色成豆腐渣| 天堂动漫精品| 99在线视频只有这里精品首页| 成人一区二区视频在线观看| 人人妻人人澡欧美一区二区| 岛国在线免费视频观看| 在线播放国产精品三级| 黄色日韩在线| 亚州av有码| 韩国av在线不卡| 亚洲av五月六月丁香网| 99久久精品热视频| 国内精品宾馆在线| 精品国内亚洲2022精品成人| 神马国产精品三级电影在线观看| 欧美性感艳星| 亚洲精品乱码久久久v下载方式| 亚洲av二区三区四区| 我的女老师完整版在线观看| 狂野欧美白嫩少妇大欣赏| 真人做人爱边吃奶动态| 蜜臀久久99精品久久宅男| 久久6这里有精品| 亚洲av成人精品一区久久| 91午夜精品亚洲一区二区三区| 国产一区二区激情短视频| 亚洲无线在线观看| 无遮挡黄片免费观看| 深夜精品福利| av卡一久久| 99热这里只有是精品50| ponron亚洲| 九色成人免费人妻av| 亚洲成a人片在线一区二区| 色5月婷婷丁香| 男女做爰动态图高潮gif福利片| 欧美成人一区二区免费高清观看| 国产精品久久电影中文字幕| 亚洲专区国产一区二区| 国产又黄又爽又无遮挡在线| 麻豆久久精品国产亚洲av| 欧美性感艳星| 99久久成人亚洲精品观看| 男女啪啪激烈高潮av片| 日韩av在线大香蕉| 久久精品国产亚洲av天美| 国产高潮美女av| 最近中文字幕高清免费大全6| 成人亚洲精品av一区二区| 国产午夜福利久久久久久| 日韩欧美免费精品| 欧美中文日本在线观看视频| 伦理电影大哥的女人| 国产精品免费一区二区三区在线| 欧美色视频一区免费| 国产探花在线观看一区二区| 村上凉子中文字幕在线| 欧美成人a在线观看| 人妻丰满熟妇av一区二区三区| 老熟妇仑乱视频hdxx| 亚洲内射少妇av| 成熟少妇高潮喷水视频| 成人特级黄色片久久久久久久| 国产成年人精品一区二区| 麻豆av噜噜一区二区三区| 国产亚洲精品久久久久久毛片| 亚洲18禁久久av| 久久草成人影院| 中文亚洲av片在线观看爽| 亚洲国产欧美人成| 国产久久久一区二区三区| 悠悠久久av| 搡老妇女老女人老熟妇| 欧洲精品卡2卡3卡4卡5卡区| 日本黄大片高清| 两个人视频免费观看高清| 亚洲在线观看片| 村上凉子中文字幕在线| 欧美xxxx黑人xx丫x性爽| 成人欧美大片| 五月伊人婷婷丁香| 麻豆成人午夜福利视频| 国产精品乱码一区二三区的特点| 色噜噜av男人的天堂激情| 精品免费久久久久久久清纯| 精品人妻熟女av久视频| 99热精品在线国产| 免费观看在线日韩| 国产精品免费一区二区三区在线| 午夜亚洲福利在线播放| 嫩草影院新地址| 免费观看的影片在线观看| 成年女人毛片免费观看观看9| 久久99热6这里只有精品| 中文字幕av在线有码专区| 国产精品综合久久久久久久免费| 九九久久精品国产亚洲av麻豆| 一个人免费在线观看电影| 国产v大片淫在线免费观看| 又黄又爽又免费观看的视频| 22中文网久久字幕| 国产男人的电影天堂91| 国产精品美女特级片免费视频播放器| a级一级毛片免费在线观看| avwww免费| 熟女人妻精品中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 丰满人妻一区二区三区视频av| 日韩 亚洲 欧美在线| 精品福利观看| 亚洲国产欧美人成| 乱码一卡2卡4卡精品| 精品人妻视频免费看| 亚洲最大成人手机在线| 99久久九九国产精品国产免费| 亚洲av成人av| 国产亚洲欧美98| 免费无遮挡裸体视频| 欧美性猛交黑人性爽| 国内久久婷婷六月综合欲色啪| 精品人妻偷拍中文字幕| 日韩欧美精品免费久久| 欧美+日韩+精品| 亚洲av成人av| 色av中文字幕| 1000部很黄的大片| 一个人观看的视频www高清免费观看| 精品一区二区三区av网在线观看| 久久久午夜欧美精品| 午夜福利视频1000在线观看| 内射极品少妇av片p| 99在线人妻在线中文字幕| 成熟少妇高潮喷水视频| 22中文网久久字幕| 午夜免费激情av| 欧美日韩国产亚洲二区| 国产亚洲91精品色在线| 欧美国产日韩亚洲一区| 久久久午夜欧美精品| 亚洲欧美日韩高清专用| 亚洲av五月六月丁香网| 麻豆国产97在线/欧美| 中文在线观看免费www的网站| 国产男靠女视频免费网站| 一个人观看的视频www高清免费观看| 欧美潮喷喷水| 国产蜜桃级精品一区二区三区| 久久久久性生活片| 成人av一区二区三区在线看| 国产黄色小视频在线观看| 99精品在免费线老司机午夜| 五月伊人婷婷丁香| 非洲黑人性xxxx精品又粗又长| 国产高清不卡午夜福利| 我要搜黄色片| 人人妻人人看人人澡| 色吧在线观看| 日本在线视频免费播放| 亚洲国产精品sss在线观看| 别揉我奶头~嗯~啊~动态视频| 网址你懂的国产日韩在线| 日韩欧美免费精品| 免费人成在线观看视频色| 美女黄网站色视频| 欧美高清性xxxxhd video| 欧美又色又爽又黄视频| 国产人妻一区二区三区在| 国产精品亚洲一级av第二区| 我要搜黄色片| 在线国产一区二区在线| 亚洲av美国av| 99热这里只有精品一区| 91av网一区二区| 久久精品国产亚洲网站| 免费在线观看影片大全网站| 夜夜爽天天搞| 久久亚洲国产成人精品v| 亚洲熟妇熟女久久| 欧美另类亚洲清纯唯美| 神马国产精品三级电影在线观看| 性色avwww在线观看| 国产黄片美女视频| 日日干狠狠操夜夜爽| 亚洲中文日韩欧美视频| 国产av不卡久久| 国产 一区 欧美 日韩| 一区福利在线观看| 欧美成人精品欧美一级黄| 午夜福利在线在线| 欧美xxxx性猛交bbbb| 午夜福利在线观看免费完整高清在 | 在线观看一区二区三区| 97超级碰碰碰精品色视频在线观看| 不卡一级毛片| 欧美在线一区亚洲| 超碰av人人做人人爽久久| 亚洲精华国产精华液的使用体验 | 亚洲va在线va天堂va国产| 国产精品国产高清国产av| 亚洲最大成人av| 人妻丰满熟妇av一区二区三区| 国内揄拍国产精品人妻在线| 晚上一个人看的免费电影| 日韩欧美精品v在线| 99热这里只有是精品在线观看| 亚洲一区二区三区色噜噜| 99riav亚洲国产免费| 日韩,欧美,国产一区二区三区 | 香蕉av资源在线| 免费黄网站久久成人精品| 3wmmmm亚洲av在线观看| 精品日产1卡2卡| 大型黄色视频在线免费观看| 一区二区三区免费毛片| 亚洲av二区三区四区| 天天躁日日操中文字幕| 欧美不卡视频在线免费观看| 国产高清有码在线观看视频| 搞女人的毛片| 乱人视频在线观看| 久久久久免费精品人妻一区二区| 麻豆国产97在线/欧美| 99热精品在线国产| 哪里可以看免费的av片| 丝袜喷水一区| 99热网站在线观看| 级片在线观看| 日韩中字成人| 国产v大片淫在线免费观看| 亚洲成人中文字幕在线播放| 国产v大片淫在线免费观看| 精华霜和精华液先用哪个| 最新在线观看一区二区三区| 12—13女人毛片做爰片一| 欧美成人一区二区免费高清观看| 久久久久国产精品人妻aⅴ院| 亚洲最大成人av| 97超碰精品成人国产| 欧美性猛交黑人性爽| 亚洲人成网站在线观看播放| 国产精品日韩av在线免费观看| 日本一本二区三区精品| 久久久久久久久久黄片| 久久久a久久爽久久v久久| 99热只有精品国产| 中文字幕人妻熟人妻熟丝袜美| 看非洲黑人一级黄片| 欧美成人精品欧美一级黄| 欧美又色又爽又黄视频| 国产亚洲精品久久久com| 国产精品电影一区二区三区| 国产综合懂色| 欧美一区二区精品小视频在线| 国产精品女同一区二区软件| 一级毛片aaaaaa免费看小| 丰满人妻一区二区三区视频av| 麻豆av噜噜一区二区三区| 永久网站在线| 嫩草影院入口| 欧美绝顶高潮抽搐喷水| 色噜噜av男人的天堂激情| 一边摸一边抽搐一进一小说| 午夜精品国产一区二区电影 | 免费不卡的大黄色大毛片视频在线观看 | 性色avwww在线观看| 国产精品不卡视频一区二区| 日韩欧美 国产精品| 99久久无色码亚洲精品果冻| 国产在线男女| 日韩制服骚丝袜av| 成人性生交大片免费视频hd| 久久久久国产网址| 有码 亚洲区| 丝袜喷水一区| 色在线成人网| 成人无遮挡网站| 国产午夜精品论理片| 亚洲无线在线观看| 国产午夜精品论理片| 日本爱情动作片www.在线观看 | 亚洲五月天丁香| 亚洲经典国产精华液单| 俺也久久电影网| 亚洲成人久久性| 在现免费观看毛片| 久久精品人妻少妇| 男人狂女人下面高潮的视频| 日本 av在线| 99久国产av精品| 午夜a级毛片| 一卡2卡三卡四卡精品乱码亚洲| 成人国产麻豆网| 国产在视频线在精品| 亚州av有码| 日日摸夜夜添夜夜添小说| 亚洲av成人av| 精品国内亚洲2022精品成人| 国产黄a三级三级三级人| 午夜精品一区二区三区免费看| 哪里可以看免费的av片| 久久久久久久久中文| 97在线视频观看| av在线亚洲专区| 欧美在线一区亚洲| 成人特级黄色片久久久久久久| 亚洲四区av| 国内少妇人妻偷人精品xxx网站| 热99re8久久精品国产| 日韩一本色道免费dvd| 又爽又黄无遮挡网站| 热99在线观看视频| 最近最新中文字幕大全电影3| 成年女人看的毛片在线观看| 99久国产av精品国产电影| 天天躁夜夜躁狠狠久久av| 女人被狂操c到高潮| 亚洲国产精品sss在线观看| 色尼玛亚洲综合影院| 久久久久久久久大av| 午夜精品一区二区三区免费看| 国产国拍精品亚洲av在线观看| 可以在线观看毛片的网站| 变态另类丝袜制服| 久久久久免费精品人妻一区二区| 最近中文字幕高清免费大全6| 亚洲色图av天堂| 在线观看午夜福利视频| 精品熟女少妇av免费看| 51国产日韩欧美| 无遮挡黄片免费观看| 国产av一区在线观看免费| 久久99热这里只有精品18| 淫妇啪啪啪对白视频| 精品久久国产蜜桃| 日本熟妇午夜| 午夜免费激情av| 身体一侧抽搐| 国产视频内射| 丰满的人妻完整版| 大又大粗又爽又黄少妇毛片口| 亚洲无线在线观看| 黄色一级大片看看| 麻豆成人午夜福利视频| 精品人妻视频免费看| 亚洲天堂国产精品一区在线| 亚洲内射少妇av| 两性午夜刺激爽爽歪歪视频在线观看| 一个人观看的视频www高清免费观看| 在线观看免费视频日本深夜| 国产亚洲精品久久久com| 久久欧美精品欧美久久欧美| 亚洲精品456在线播放app| 久久久久久伊人网av| a级一级毛片免费在线观看| 亚洲七黄色美女视频| 精品一区二区三区视频在线观看免费| 亚洲成人久久爱视频| 精华霜和精华液先用哪个| 99热这里只有是精品50| 亚洲性夜色夜夜综合| 日韩,欧美,国产一区二区三区 | av在线天堂中文字幕| 国产视频一区二区在线看| 久99久视频精品免费| 日韩精品青青久久久久久| 免费看日本二区| 亚洲av.av天堂| 看黄色毛片网站| 男女之事视频高清在线观看| 国产高清不卡午夜福利| 最近的中文字幕免费完整| 久久精品久久久久久噜噜老黄 | 成年女人毛片免费观看观看9| www日本黄色视频网| av在线老鸭窝| 免费看美女性在线毛片视频| av.在线天堂| 久久99热6这里只有精品| 久久精品国产清高在天天线| 日韩大尺度精品在线看网址| 观看美女的网站| 精品一区二区三区视频在线观看免费| 国产中年淑女户外野战色| 国产蜜桃级精品一区二区三区| 中文字幕久久专区| 久久6这里有精品| 国产免费一级a男人的天堂| 99久国产av精品| 国产精品一区二区三区四区久久| 日日摸夜夜添夜夜添av毛片| 日韩高清综合在线| 嫩草影视91久久| 直男gayav资源| 欧美性猛交黑人性爽| .国产精品久久| 最近2019中文字幕mv第一页| 久久这里只有精品中国| a级一级毛片免费在线观看| 亚洲国产精品成人综合色| 亚洲成人久久性| 日本黄色片子视频| 亚洲综合色惰| 搡老熟女国产l中国老女人| 六月丁香七月| 嫩草影视91久久| 级片在线观看| 国产一区二区亚洲精品在线观看| 成人高潮视频无遮挡免费网站| 六月丁香七月| 神马国产精品三级电影在线观看| 中文字幕免费在线视频6| 国产成人福利小说| 欧美不卡视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 热99在线观看视频| 午夜日韩欧美国产| 亚洲欧美清纯卡通| 自拍偷自拍亚洲精品老妇| 亚洲人成网站高清观看| 日本a在线网址| 老熟妇仑乱视频hdxx| 亚洲精品456在线播放app| 亚洲熟妇中文字幕五十中出| 又黄又爽又免费观看的视频| 在现免费观看毛片| 国产不卡一卡二| 亚洲三级黄色毛片| 免费搜索国产男女视频| 欧美一区二区精品小视频在线| 精品午夜福利视频在线观看一区| 99热只有精品国产| 亚洲性久久影院| 99久久精品国产国产毛片| 五月伊人婷婷丁香| 天堂av国产一区二区熟女人妻| 免费大片18禁| 亚洲欧美精品自产自拍| 精品久久久久久成人av| 亚洲内射少妇av| 一级黄色大片毛片| 亚洲一区高清亚洲精品| 深夜精品福利| 人妻制服诱惑在线中文字幕| 国产成人aa在线观看| 国产精品一及| 国产伦在线观看视频一区| 老司机影院成人| 热99在线观看视频| 国产伦在线观看视频一区| 国产欧美日韩一区二区精品| 精华霜和精华液先用哪个| 天堂av国产一区二区熟女人妻| 嫩草影院入口| 亚洲欧美日韩无卡精品| 老师上课跳d突然被开到最大视频| 舔av片在线| 亚洲一区二区三区色噜噜| 亚洲久久久久久中文字幕| 成人漫画全彩无遮挡| 亚洲成人久久性| 色av中文字幕| 日韩强制内射视频| 国产极品精品免费视频能看的| 欧美中文日本在线观看视频| 免费不卡的大黄色大毛片视频在线观看 | 国产精品国产高清国产av| 免费人成视频x8x8入口观看| 全区人妻精品视频|