• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    微波誘導(dǎo)燃燒法合成類花狀ZnO納米材料及其晶體結(jié)構(gòu)、熒光性質(zhì)研究

    2013-10-17 03:02:58劉柏林徐彥芹王亞濤
    關(guān)鍵詞:花狀重慶大學(xué)化工學(xué)院

    曹 淵 文 毅 劉柏林 徐彥芹 王亞濤

    (重慶大學(xué)化學(xué)化工學(xué)院,重慶 400030)

    Zinc oxide(ZnO)is an important direct semiconductor with wide bandgap of 3.37 eV and large exciton bind energy of 60 meV at room temperature.Its unique optical,electronic,chemical,and thermal properties have made ZnO a promising material in various fields,such as room-temperature ultraviolet lasers[1],fieldeffect transistors[2],photodetectors[3],gas sensors[4],photocatalysts[5],and solar cells[6].To meet increasing demand for ZnO in these applications,efforts have been devoted to obtaining ZnO nanocrystals with controlled sizes and architectures because the optical,physicochemical,and electric propertiesofZnO crystals are intimately dependent on their size and shape.Over the pastdecade,many interesting nanostructures of ZnO,such as nanorods[6],nanowires[7],nanorings[8],nanobelts[8],whisker[9],tetrapods[10],flowers[11],and nanospheres[12]have been fabricated.The latest investigations also indicate that a series of specific morphologies and structures of ZnO could possess even more novel properties.Huang et al.[1]observed room-temperature UV lasing in ZnO nanowire arrays and discovered that the nanostructure had a lowerlasing threshold compared with disordered particles or films.Cao et al.[13]found that the energy conversion efficiency of dye-sensitized solar cells could be significantly enhanced using hierarchically structured nanosphere ZnO photoanodes.Through vertically aligned zinc oxide nanowire arrays,Wang et al.fabricated an ultrasonic wave-driven nanogenerator that produces continuous direct-current output[14].

    To date,various synthetic methods,including hydrothermal synthesis[15],pyrolysis[16],the sol-gel technique[17],and chemical vapor deposition[18],have been developed to fabricate ZnO nanocrystals with controlled morphologies.However,most of the synthetic procedures available require expensive equipment and need to be operated under very strict conditions.Moreover,the synthesis of inorganic materials is timeconsuming.

    Compared with various techniques,the combustion synthesis method has many potential advantages,such as low-processing cost,energy efficiency,and timesaving features[19].The microwave-induced combustion technique (MICT)isan economicalmethod for preparing metal oxide materials.Metal nitrates and an organic compound,usually glycine(NH2CH2COOH)or urea [CO(NH2)2],are used as reactants.When igniting the aqueous solution of the reactants using microwave radiation,a combustion reaction takes place and transforms the reactants into a loose product composed of nanocrystalline particles.Y2O3[20],CeO2[21],and TiO2[22]have been successfully synthesized through MICT.

    MICT induces the reactants to reach the reaction temperature fast through heating,and then the reaction takes place.During the process,including the dissolution of nitrate and fuel in a trace of water,the heated solution in the microwave oven decomposes a great deal of flammable gas,plenty of heat as well,reactants burn after reaching the self-ignition temperature.The whole reaction lasts for a few minutes,during which the nitrate plays the role of oxidant,urea and its cleavage product act as the reducing agents,and microwave induces the redox reaction.Nowadays there are relevant reports on Synthesizing inorganic materials based on MICT method.Nanocomposite NiO/YSZ powders for high performance anodes of SOFCs have been synthesized via a microwave-assisted complex-gel auto-combustion approach by Cai et al.[23]Sertkol et al.[24]also synthesized Zn0.7Ni0.3Fe2O4nanoparticles via microwave assisted combustion route,and the product shows superparamagnetic behavior at around the room temperature and ferromagnetic behavior below the blocking temperature of 284 K.

    Microwaves can be used to heat materials.As with all electromagnetic radiation,microwave radiation can be divided into an electric field component and a magnetic field component.The former is responsible for dielectric heating,which is effected via two major mechanisms[25].One of the interactions of the electric field component with the matrix is called the dipolar polarization mechanism.And the other is the conduction mechanism.Microwave processing of materials is fundamentally different from conventional processing,such as the use of heating fluid,gas,steam,or electrical heating,due to its heating mechanism[26].In a microwave oven,heat is generated within the sample by the interaction of microwaves with the material.In conventional heating,the heat is generated by heating elements.The heat is then transferred to the samples surfaces.Based on these details,we speculate that the nanostructures or properties of as-synthesized ZnO would change after microwave radiation.

    In this study,the MICT method is developed for the flash synthesis of ZnO crystals.The development of the MICT method is described and the effects of several experimentalparameters on productquality are discussed.The morphologies necessary to form flowerlike ZnO with different lengths of time are observed.We also suggest a mechanism of formation of flower-like ZnO,and evaluate the photoluminescence properties of the ZnO nanostructures.

    1 Experimental

    1.1 Materials and methods

    All chemicals (analytical grade reagents)were commercially available and used withoutfurther purification.The MICT method involved the dissolution of zinc nitrate[Zn(NO3)2·6H2O]as an oxidizer,and fuel(urea [CO(NH2)2])as a reducer in water.The resulting solution was heated in a microwave oven.Experimental details are as follows.Approximately 6 g of Zn(NO3)2·6H2O was dissolved in 2 mL distilled water in a porcelain crucible.Urea was assembled in an appropriate proportion to form into fuel compounds.The fuel compounds were mixed well with the stock zinc nitrate solution until a ropy paste(hereafter termed as the precursor)wasobtained.The precursorwas introduced into a microwave oven (Galanz D8023CSLK4),and a microwave field of 2.45 GHz was applied to it for decomposition to take place.After boiling,evaporating,and concentrating,the precursor foamed up,deflagrated,and released a certain amount of heat and gases.Microwave radiation was not stopped until the flame was extinguished.Combustion was completed within only a few minutes,and ZnO nanoparticles remained as residues.

    The relative chemical reaction equation can be written as:

    According to the concepts of propellant chemistry,in Eq.(1),1.5Φ-2.5=0 corresponds to the situation where “the reactant composition was set at the condition equivalent to the stoichiometric ratio”,which implies that the oxygen content of zinc nitrate could be completely reacted to oxidize fuels equivalently without demanding oxygen from any external source.Both the rates of reaction and the heat liberated per unit of time are at a maximum under this condition.Referring to Eq.(1),three representative reactant compositions were selected to synthesize ZnO products:(1)Φ=1 is defined as deficient fuel;(2)Φ=1.667 is defined as suitable fuel;and(3)Φ=3 is defined as excess fuel.These also represented the relations between Zn2+concentration and amount of fuel.

    1.2 Characterization

    The precursor powders were investigated using thermogravimetric analysis (TGA)and differential thermal analysis(DTA)between room temperature and 800 ℃ usingaShimadzuDTG-60H instrument.Analyses were performed under a nitrogen atmosphere at a temperature ramp of 10 ℃·min-1.The obtained samples were characterized by infrared spectroscopy(FTIR)(Shimadzu Affinity-1 FTIR spectrophotometer in the range of 2 000~400 cm-1using KBr pellets)and X-ray diffraction(XRD)(Shimadzu XRD-6000 with Cu Kα radiation,λ=0.154 18 nm;diffractograms were obtained under the following conditions:2θ=20°~80°,voltage of 40 kV,current of 40 mA,and scanning speed of 2°·min-1).The morphologies and size of the products were investigated by scanning electron microscopy(SEM)(JEOL JSM-6490LV),field emission scanning electron microscopy(FESEM)(FEI Nova-400),and transmission electron microcopy (TEM) (JEOL JEM-2000EX)combined with selected area electron diffraction(SAED).The room-temperature PL was measured with a fluorescence spectrophotometer(Shimadzu RF-5301PC using a Xe laser with a wavelength of 325 nm as the excitation light source).

    2 Results and discussion

    2.1 Phenomena analysis

    Fuels have an important effect on combustion reactions and the properties of the as-synthesized products because of the main energy released from the exothermic reaction between fuels and zinc nitrate,which could rapidly heatthe system to high temperatures and ensure that synthesis occurs.Therefore,depending on the amount of urea contained in the reactant compartment,three different kinds of reaction phenomena are observed.At low CO(NH2)2contents(Φ=1),heat release is relatively low because of fuel scarcity.Thus,the precursor cannot deflagrate and the product color is not uniform.In the middle of the porcelain crucible,some pink powders containing harder agglomerates are obtained,whereas the white unreacted precursor is left near the vessel wall.The low temperature of the vessel wall is not enough to trigger significant changes.In the case of CO(CH2)2(Φ=1.667 and Φ=3),liberation of the energy during the combustion reaction is enough to ignite the precursor.A stable flame is observed after smoke evolution.Pink powder agglomerates are obtained at Φ=1.667,whereas light yellow color powders in loose shapes are obtained at Φ=3.

    The response characteristic for the shortage of fuel is a slower reaction rate and lack of substantial flame.By contrast,the great response rate exists in the reaction of fuel abundance and the reaction is almost completed at the same time.Under this condition,all the oxygen comes from the precursor.Once NO3-creates oxygen,itimmediately reacts with urea.With increasing fuel content,the key reason for obtaining loose-shaped products is the liberation of a large amount of gases during combustion.The gases hamper the subsequent condensation of particles.When the fuel is in excess,the combustion reaction must be taken outside to increase oxygen.Therefore,the critical factor that limits reaction rates is the amount of oxygen in the system,which enters the reaction zone by diffusion.

    TGA and DTA curves of the ZnO precursor are shown in Fig.1.The major weight loss occurs at about 310℃,and the minor ones at temperatures between 420 and 500℃.The mass remains constant at higher temperatures,indicating oxide formation.A weight loss of about 70% is observed,corresponding to the evolution of absorbed moisture (water and other low molecular weight compounds),the burning out of carbon dioxide,and the presence of excess nitrate gases in the as-prepared precursor ZnO powder.The DTA curve shows the three steps in the decomposition behavior of exothermic peaks between room temperature and 1 000℃.First,a broad peak below 200℃corresponds to the desertion of moisture from the precursor powder and removal of water molecules from the hydroxyl group.The exothermic peaks in the 300~700℃range correspond to the volatile product(COx,N2, NOx, etc.) formation and organic material combustion.The broad peak at about 900 ℃ could be attributed to the crystal phase transition of ZnO.TGA and DTA data display the transformation of precursors in the microwave oven.

    2.2 Crystalstructureandfunctionalgroupanalysis

    The XRD patterns of zinc oxide nanopowders prepared by the MICT are shown in Fig.2.The sharp diffraction peaks match the pattern of the standard hexagonal structure of ZnO (PDF No.36-1451),with lattice constants a=0.324 9 nm and c=0.520 6 nm.The strongest peaks located at 31.72°,34.40°,and 36.18°can be clearly seen and correspond to the(100),(002),and(101)directions of ZnO,respectively.Besides the three most obvious peaks,other peaks representing(102),(110),(103),(200),(112),(201),(004),and (202)directions of ZnO can also be indexed from the ZnO (PDF No.36-1451).No secondary peaks are detected in Figs.2a and 2c,indicating the complete crystallization of single phase hexagonal ZnO.However,comparison of the curve of Fig.2b with those of Figs.2a and 2c show some weak peaks located at 21°~29° (inset,Fig.2b).These peaks indicate that a rapid reaction is not conducive to the formation of the single phase ZnO.

    The formation of ZnO nanostructures is further characterized by FTIR spectroscopy,as shown in Fig.3.The absorption at~1 383 cm-1for the synthesized samples corresponds to the bending vibration of C-N.This indicates the presence of nitrate ions,which are probably absorbed on the surface of ZnO particles.The intense band that rises at 400~500 cm-1in all the spectra is assigned to the stretching vibrations of Zn-O.A sharp Zn-O vibration peak at 449 cm-1appears with a urea/Zn2+molar ratio of 3∶1,and the single peak is attributed to a comparatively large amount of heat energy and the higher temperature.The peaks observed in the FTIR spectra of the powders are found to match well with those previously reported[27].

    2.3 ZnO nanostructures

    Fig.4 shows the SEM and FE-SEM images of the ZnO nanostructures prepared by the MICT at different molar ratios of urea/Zn2+.When the molar ratio of urea/Zn2+is equal to 1,nanostructure flowers can be obtained at all three microwave powers(170,340,and 680 W),as shown in Fig.4.However,the flowers are not fully formed when the microwave power is too low(Fig.4a),and the size of the flower clusters is inhomogeneous(Fig.4c).Moreover,the higher the microwave power,the shorter the time for the occurrence of deflagration.Since a short reaction time is not beneficial to crystal nucleation and growth,moderate microwave radiation power(340 W)is selected to investigate the effect of organic fuels on the nanostructures.Results show that uniform flower-like products are obtained with a 1∶1 molar ratio of urea/Zn2+,as shown in Fig.4b and 5a.The product consists of a large quantity of flower-like microstructures that are approximately 2~5 μm in size.The floral structures result from the accumulation of several hundreds of sharp-tipped ZnO nanorods,which originate from a single center.A urea/Zn2+molar ratio of 5:3 results in incomplete flower-shaped nanostructures.As well,flakes agglomerate around the flowers(Fig.5b).The overall floral morphology fully changes into a blocky structure with a urea/Zn2+molar ratio of 3∶1,as shown in Fig.5c.The lengths of these irregular blockshaped particles range from 100~300 nm.The results illustrate that urea,rather than microwave power,acts as a structure-directing agent,significantly affecting the anisotropic growth of ZnO from flowers to block-like structures.Different single-crystal ZnO nanostructures are obtained after only a few minutes of microwave radiation.

    Fig.6a shows a low-magnification TEM image of flower-shaped ZnO,which is consistent with SEM observations(Fig.5a).The corresponding SAED pattern(Fig.6b)indicates that the structure evolves from polycrystalline phases into single crystals.Characteristics of single-crystal diffraction spots and poly-crystalline diffusion rings can be seen from the SAED pattern.A high resolution TEM (HRTEM)image(Fig.6c)of the corresponding flowers clearly reveals that the lattice fringes between two adjacent planes are about 0.52 nm apart,which is equal to the lattice constant of ZnO,indicating that the obtained structures have wurtzite hexagonal phases and are preferentially grown along the(0001)direction.These findings are in accordance with the SAED pattern obtained.

    2.4 Morphology evolution

    In principle,the formation of 3D structures may be divided into two processes,i.e.,nucleation and growth.In the experiments,urea mediates the nucleation and growth of ZnO crystals by modifying the basicity of the precursor solutions.The following chemical reactions take place in the precursor solutions:

    Due to the hydrolysis of urea,the hydroxyl ion plays a crucial role in the nucleation process.At early stages of the reaction,ZnO nucleates from the Zn(OH)42-solution to form multi-nuclei aggregates.With constant stirring,the multi-nuclei aggregates serve as sites for ZnO nanostructure growth along the (001)direction.This direction has a high capability for inducing the nucleation of ZnO[28],according to the mechanism of polar crystal growth.In Fig.7a,the precursor solutions form the ZnO nanorods prior to microwave radiation.The similar phenomenon of ZnO crystal nucleus growth in solution has been reported in several studies[29].Due to molecular polarization in the reaction solution and the dipole moment formed in the dielectric,the level of excitation of Zn-O bonds is higher than normal under microwave radiation[30].Thus,the material coupled in the microwave field heats up more rapidly than in a convectional heating system.After microwave radiation for 5 min,the reaction solution boils and becomes concentrated before burning.ZnO columns/rods are formed,as illustrated in Fig.7b.When the solution burns with a stable flame,flower-like single-crystal ZnO nanostructures are formed with rapid growth rate in the combustion process after the combustion reaction(Figs.7c and 7d).The formation of flake-like ZnO and nanoparticles can be attributed to the liberation of large amounts of gases during combustion.A full description of these mechanisms would require more evidence from future work.

    2.5 Photoluminescence studies

    To investigate the effectofmorphology on photoluminescence characteristics, the room temperature photoluminescence (PL)spectra of(a)flower-like,(b)flake-like,and (c)block-like ZnO are shown in Fig.8.The resulting ZnO nanopowders display an ultraviolet emission at 366 nm and a relatively broad blue light emission in the range of 380~500 nm.

    The ultraviolet emission is attributed to the near band-edge emission ofthe wide band-gap ZnO,specifically,the recombination of free excitons through an exciton-exciton collision process[31].The emission at 366 nm is frequently observed in ZnO thin films deposited on gold substrates[32].Lin et al.found violet emissions at 390 nm (3.18 eV)during the DC reactive sputtering of ZnO films onto Si substrates[33].They believe that the violet emission originates from the electron transition from the conduction band to the valence band.We believe that the emission at 394 nm is due to the electron transition from the conduction band tail states to the valence band tail states.The 410 nm violet luminescence is thought to relate to interface traps at the grain boundaries and emissions from the radiative transition between this level and the valence band[34].Teng et al.[35]believe that this emission could be due to the transition from the top of the valence band to the Znilevel(interstitial zinc,2.9 eV).A weak blue emission at 442 nm (2.81 eV)was observed in the ZnO nanoflowers;this emission has also been found in ZnO films and whiskers[36].Previous studies on ZnO films prove that the blue emission is related to oxygen vacancies in the ZnO film[37].The 452 nm (2.74 eV)emission is assigned to rather shallow donor level of Zni recombined with VZn(vacancies zinc)by recent study[38-39].The 468 nm(2.64 eV)emission is not widely observed,although it is usually considered to be related to intrinsic defects generated during the preparation and post-treatment of nanostructures,such as single negatively charged zinc vacancies,the origins of which remain unclear.The hump at 485 nm in the PL spectra of ZnO can be attributed to the transition between the vacancies of oxygen and interstitial oxygen[40].Such an emission can also result from surface-deep traps,which are typical of porous ZnO nanostructures[41].The shoulder peak at 493 nm is related to singly ionized oxygen vacancies.This emission results from the recombination of a photogenerated hole with a singly ionized charge state of the specific defect[42].The green luminescence(500~550 nm)of ZnO nanostructures is not obvious.The peak intensity of the sample obtained at the urea/Zn2+molar ratio of 3∶1 is stronger than that at 1∶1.It is possible that the surface defects contribute to the emission because the block-like nanoparticles have smaller size and larger surface area.Zhang et al.[43]reported that surface states may play a more important role in visible emissions than previously thought.Hence,in our case,it may be reasonably inferred that both oxygen vacancies and surface states may respond to the yellow-green emission of the flower-like ZnO nanorods.

    The origins of different defect emissions are not completely understood,but we can speculate that differences in the optical properties of the present ZnO nanostructures originate from lattice defects related to either the oxygen interstitial spaces or Zn vacancies.

    3 Conclusions

    A rapid and simple method was developed for preparing flower-like ZnO nanocrystals through the MICT.Results reveal that the molar ratio of urea/Zn2+significantly influences the morphology of ZnO.The effect of ZnO morphologies is attributed to the induction of hydroxyl ions,which orients nucleation and promotes rapid growth under microwave radiation.Our results reveal that ZnO nanorods are created from ZnO nuclei,resulting in the formation of flower-like ZnO nanostructures.Photoluminescence spectra of ZnO flowers,flakes,and block-like nanostructures reveal several emission bands.The distinctive advantage of the proposed method is that the process requires no heat treatment or calcination at high temperature.

    [1]Huang M H,Mao S,Feick H,et al.Science,2001,292:1897-1899

    [2]Yuan H,Shimotani H,Tsukazaki A,et al.Adv.Func.Mater.,2009,19:1046-1053

    [3]Al-Hardan N H,Abdullah M J,Ahmad H,et al.Sol.St.Electr.,2011,55:59-63

    [4]Anderson T,Ren F,Pearton S,et al.Sensors,2009,9:4669-4694

    [5]Yang J L,An S J,Park W I,et al.Adv.Mater.,2004,16:1661-1664

    [6]Zhang R,Kumar S,Zou S,et al.Cryst.Growth Des.,2008,8:381-383

    [7]Pung S Y,Choy K L,Hou X,et al.Nanotechnol.,2010,21:345-602

    [8]Pan Z W,Dai Z R,Wang Z L.Science,2001,291:1947-1949

    [9]Qiu Z,Wong K S,Wu M,et al.Appl.Phys.Lett.,2004,84:2739-2741

    [10]Wang Q,Yu K,Wang T H,et al.Appl.Phys.Lett.,2003,83:2253-2255

    [11]CaoY,LiuBL,HuangR,etal.Mater.Lett.,2011,65:160-163

    [12]Zhang Y,Liu Y,Wu L,et al.Appl.Surf.Sci.,2009,255:4801-4805

    [13]Chou T P,Zhang Q,Fryxell G E,et al.Adv.Mater.,2007,19:2588-2592

    [14]Wang X,Song J,Liu J,et al.Science,2007,316:102-105

    [15]Zhang H,Yang D,Ji Y,et al.J.Phys.Chem.B.,2004,108:3955-3958

    [16]Puspharajah P,Radhakrishna S.J.Mater.Sci.,1997,32:3001-3006

    [17]Shan G,Xiao X,Wang X,et al.J.Colloid Interface Sci.,2006,298:172-176

    [18]Wu J J,Liu S C.Adv.Mater.,2002,14:215-218

    [19]Mangalaraja R V,Mouzon J,Hedstrm P,et al.J.Mater.Process.Tech.,2008,208:415-422

    [20]Mangalaraja R V,Mouzon J,Hedstrm P,et al.Powder Technol.,2009,191:309-314

    [21]Fu Y P,Lin C H,Hsu C S.J.Alloys Compd.,2005,391:110-114

    [22]Gressel-Michel E,Chaumont D,Stuerga D.J Colloid Interface Sci.,2005,285:674-679

    [23]Sertkol M,K?seolu Y,Baykal A,et al.J.Magn.Magn.Mater.,2010,322:866-871

    [24]Cai T X,Zeng Y W,Zhang W,et al.J.Power Sources,2010,195:1308-1315

    [25]Lidstr?m P,Tierney J,Wathey B,et al.Tetrahedron,2001,579:225-283

    [26]Fu Y P,Su Y H,Lin C H.Solid State Ionics,2004,166:137-146

    [27]Fernandes D M,Silva R,Winkler Hechenleitner A A,et al.Mater.Chem.Phys.,2009,115:110-115

    [28]Sun Y,Riley D J,Ashfold M N R.J.Phys.Chem.B,2006,110:15186-15192

    [29]Feng L,Liu J,She J J.et al.Cryst.Growth,2009,311:1435-1440

    [30]Tompsett G A,Conner W C,Yngvesson K S.Chem.Phys.Chem.,2006,7:296-319

    [31]Kong Y C,Yu D P,Zhang B,et al.Appl.Phys.Lett.,2001,78:407-409

    [32]Laurent K,Wang B Q,Yu D P,et al.Thin Sol.Films,2008,517:617-621

    [33]Lin B,Fu Z,Jia Y.Appl.Phys.Lett.,2001,79:943-945

    [34]Wang Y,Chu B.Superlattice Microst.,2008,44:54-61

    [35]Teng X M,Fan H T,Pan S S,et al.J.Phys.D:Appl.Phys.,2006,39:471-476

    [36]Dai L,Chen X L,Wang W J,et al.J.Phys.:Condens.Mat.,2003,15:2221-2226

    [37]Bachari E M,Baud G,Amor S B,et al.Thin Sol.Films,1999,348:165-172

    [38]Patra M K,Manzoor K,Manoth M,et al.J.Lumin.,2008,128:267-272

    [39]Chawla S,Karar N,Chander H.Phys.B(Amsterdam,Neth.),2010,405:198-203

    [40]Mahamuni S,Borgohain K,Bendre B S,et al.J.Appl.Phys.,1999,85:2861-2865

    [41]Song R Q,Xu A W,Deng B,et al.Adv.Funct.Mater.,2007,17:296-306

    [42]Tian Y,Lu H B,Wu Y,et al.Mater.Sci.Tech-Lond.,2010,26:1248-1252

    [43]Zhang H,Shen L,Guo S W.J.Phys.Chem.C,2007,111:12939-12943

    猜你喜歡
    花狀重慶大學(xué)化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    重慶大學(xué)學(xué)報(bào)征稿簡(jiǎn)則
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    花狀金屬氧化物Ni-Mn-O在鋰硫電池中的應(yīng)用
    Who Is The Master?
    大東方(2018年9期)2018-10-21 15:29:02
    一種制備空心花狀氫氧化鋅的方法及利用空心花狀氫氧化鋅制備空心花狀氧化鋅的方法
    《化工學(xué)報(bào)》贊助單位
    “精益管理五原則”在高校圖書(shū)館社區(qū)服務(wù)中的應(yīng)用——以重慶大學(xué)城為例
    三維花狀BiOBr/CNTs復(fù)合光催化劑降解羅丹明廢水研究
    国产色爽女视频免费观看| 简卡轻食公司| 嫁个100分男人电影在线观看| 国产淫片久久久久久久久 | 欧美xxxx性猛交bbbb| 国产色爽女视频免费观看| 国产精品1区2区在线观看.| 亚洲乱码一区二区免费版| 久久人人爽人人爽人人片va | 国内精品一区二区在线观看| 在线观看av片永久免费下载| 成人国产一区最新在线观看| 永久网站在线| 精品一区二区三区视频在线观看免费| 精品不卡国产一区二区三区| 国内精品美女久久久久久| 免费在线观看影片大全网站| 婷婷精品国产亚洲av在线| av国产免费在线观看| 精品一区二区免费观看| 久久人人爽人人爽人人片va | 校园春色视频在线观看| 久久久久久久亚洲中文字幕 | 我要搜黄色片| 亚洲欧美清纯卡通| 国产视频内射| 亚洲最大成人中文| 欧美bdsm另类| 日日干狠狠操夜夜爽| 首页视频小说图片口味搜索| 国产毛片a区久久久久| 久久国产乱子伦精品免费另类| 国产一区二区三区在线臀色熟女| 免费在线观看成人毛片| 国产伦在线观看视频一区| 午夜福利在线在线| 嫩草影院新地址| 丁香欧美五月| 亚洲七黄色美女视频| 热99re8久久精品国产| av专区在线播放| 国产精品久久久久久久电影| 亚洲av五月六月丁香网| 一个人免费在线观看的高清视频| 国产蜜桃级精品一区二区三区| www日本黄色视频网| 日韩欧美 国产精品| 欧美日韩黄片免| 99热只有精品国产| 熟女人妻精品中文字幕| 成人永久免费在线观看视频| 国产一区二区在线观看日韩| 久久天躁狠狠躁夜夜2o2o| 亚洲男人的天堂狠狠| 国产探花极品一区二区| 99久久精品热视频| 久9热在线精品视频| 国产在线精品亚洲第一网站| 欧美一区二区精品小视频在线| 亚洲熟妇熟女久久| 在线看三级毛片| 欧美日韩国产亚洲二区| 久久精品夜夜夜夜夜久久蜜豆| 欧美激情在线99| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人免费电影在线观看| 女生性感内裤真人,穿戴方法视频| 国产精品美女特级片免费视频播放器| 亚洲,欧美,日韩| 久久国产乱子免费精品| 日本 欧美在线| 高清在线国产一区| 人妻夜夜爽99麻豆av| 久久久成人免费电影| 亚洲熟妇熟女久久| 成年免费大片在线观看| 淫妇啪啪啪对白视频| 国产黄片美女视频| 在线免费观看的www视频| 青草久久国产| 午夜免费男女啪啪视频观看 | 超碰av人人做人人爽久久| 亚洲成人久久性| 99视频精品全部免费 在线| 村上凉子中文字幕在线| 日韩中字成人| 国产精品久久久久久精品电影| 男女视频在线观看网站免费| 久久久精品大字幕| 嫩草影视91久久| 久久久久久大精品| 精品久久久久久成人av| 成人特级黄色片久久久久久久| 国产精品一区二区三区四区久久| 精品熟女少妇八av免费久了| 亚洲午夜理论影院| 色综合亚洲欧美另类图片| 亚洲精品久久国产高清桃花| 亚洲三级黄色毛片| 丁香欧美五月| 给我免费播放毛片高清在线观看| 亚洲三级黄色毛片| 91av网一区二区| 欧美黑人巨大hd| 级片在线观看| 91久久精品电影网| 亚洲狠狠婷婷综合久久图片| 国产成人啪精品午夜网站| 国产老妇女一区| 波多野结衣高清作品| 亚洲人成电影免费在线| 亚洲欧美日韩东京热| 亚洲片人在线观看| 99在线视频只有这里精品首页| 欧美最黄视频在线播放免费| 亚洲成人精品中文字幕电影| 久久性视频一级片| 亚洲无线观看免费| 国产私拍福利视频在线观看| 非洲黑人性xxxx精品又粗又长| 91狼人影院| 一区福利在线观看| 午夜精品久久久久久毛片777| 午夜日韩欧美国产| 久久99热这里只有精品18| 午夜免费激情av| 欧美最黄视频在线播放免费| 美女大奶头视频| 日本 欧美在线| 亚洲在线自拍视频| 亚洲国产精品999在线| 69av精品久久久久久| 又爽又黄a免费视频| 每晚都被弄得嗷嗷叫到高潮| а√天堂www在线а√下载| 久久精品国产亚洲av天美| 日韩中文字幕欧美一区二区| 18禁在线播放成人免费| 别揉我奶头~嗯~啊~动态视频| 丝袜美腿在线中文| 91午夜精品亚洲一区二区三区 | 国产男靠女视频免费网站| 一级毛片久久久久久久久女| 国产色爽女视频免费观看| 91字幕亚洲| 国产精品爽爽va在线观看网站| 免费看日本二区| 亚洲专区国产一区二区| 国产精品自产拍在线观看55亚洲| 精品久久久久久久久久久久久| 麻豆久久精品国产亚洲av| 黄色视频,在线免费观看| 人妻久久中文字幕网| 国产老妇女一区| 亚洲国产欧美人成| 国产久久久一区二区三区| 亚洲人成网站在线播放欧美日韩| 床上黄色一级片| 欧美中文日本在线观看视频| 亚洲中文字幕一区二区三区有码在线看| 亚洲av日韩精品久久久久久密| 免费看日本二区| 小说图片视频综合网站| 亚洲性夜色夜夜综合| 精品日产1卡2卡| 亚洲电影在线观看av| 欧美日韩中文字幕国产精品一区二区三区| 直男gayav资源| 一进一出抽搐gif免费好疼| 欧美性感艳星| 久久久久久九九精品二区国产| 九九热线精品视视频播放| 国产v大片淫在线免费观看| 日韩中文字幕欧美一区二区| 嫩草影院新地址| 国产高清三级在线| 搡老岳熟女国产| 中国美女看黄片| 高潮久久久久久久久久久不卡| 国产男靠女视频免费网站| 久久天躁狠狠躁夜夜2o2o| 精品国内亚洲2022精品成人| 中文字幕人成人乱码亚洲影| 成人性生交大片免费视频hd| 亚洲精品一卡2卡三卡4卡5卡| 色哟哟·www| 色av中文字幕| 国产精品久久久久久亚洲av鲁大| 午夜老司机福利剧场| 淫妇啪啪啪对白视频| 国产av在哪里看| 老鸭窝网址在线观看| 欧美最黄视频在线播放免费| 婷婷六月久久综合丁香| 精品无人区乱码1区二区| 波野结衣二区三区在线| 国产精品女同一区二区软件 | 亚洲国产高清在线一区二区三| 久久久久久大精品| 精品一区二区三区av网在线观看| 在线观看一区二区三区| 国产淫片久久久久久久久 | 欧美性猛交╳xxx乱大交人| 丰满人妻熟妇乱又伦精品不卡| 91午夜精品亚洲一区二区三区 | 天堂影院成人在线观看| 亚洲精品日韩av片在线观看| 欧美xxxx性猛交bbbb| 亚洲av二区三区四区| 国产一区二区激情短视频| 精品日产1卡2卡| 一区二区三区高清视频在线| 久久久久久久精品吃奶| 欧美日韩国产亚洲二区| 天堂动漫精品| av黄色大香蕉| 3wmmmm亚洲av在线观看| 午夜激情欧美在线| 国内精品美女久久久久久| 日日干狠狠操夜夜爽| 99精品在免费线老司机午夜| 国产精品久久久久久精品电影| 99热6这里只有精品| 欧美最新免费一区二区三区 | 免费在线观看日本一区| 国产精品久久久久久精品电影| 国产中年淑女户外野战色| 一级黄色大片毛片| 51午夜福利影视在线观看| 免费人成在线观看视频色| 欧美bdsm另类| 女人被狂操c到高潮| 国产午夜福利久久久久久| 超碰av人人做人人爽久久| 午夜精品一区二区三区免费看| 丁香欧美五月| 97超级碰碰碰精品色视频在线观看| 亚洲人成网站在线播放欧美日韩| 免费搜索国产男女视频| 特级一级黄色大片| 国产黄a三级三级三级人| 色av中文字幕| 全区人妻精品视频| 变态另类成人亚洲欧美熟女| 国内久久婷婷六月综合欲色啪| 国产探花极品一区二区| 久久精品国产清高在天天线| 成人性生交大片免费视频hd| 赤兔流量卡办理| 在线观看免费视频日本深夜| 亚洲精品成人久久久久久| 天美传媒精品一区二区| 精品99又大又爽又粗少妇毛片 | 国产精品不卡视频一区二区 | 男人狂女人下面高潮的视频| 亚洲欧美日韩东京热| 自拍偷自拍亚洲精品老妇| 午夜亚洲福利在线播放| 精品99又大又爽又粗少妇毛片 | 日本免费一区二区三区高清不卡| a级毛片a级免费在线| 桃色一区二区三区在线观看| 757午夜福利合集在线观看| 精品国产三级普通话版| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品久久久久久毛片| 免费大片18禁| 成人精品一区二区免费| 亚洲精品粉嫩美女一区| 亚洲欧美日韩高清在线视频| 久久婷婷人人爽人人干人人爱| 最新在线观看一区二区三区| 午夜福利在线在线| 热99re8久久精品国产| 亚洲精品在线美女| www.www免费av| 人妻制服诱惑在线中文字幕| 国产黄色小视频在线观看| a级一级毛片免费在线观看| 宅男免费午夜| 精品久久久久久久久久久久久| 丁香欧美五月| 男人狂女人下面高潮的视频| 亚洲美女黄片视频| 亚洲七黄色美女视频| 99热这里只有是精品在线观看 | 精品99又大又爽又粗少妇毛片 | 亚洲国产精品合色在线| 18禁黄网站禁片免费观看直播| 99久久无色码亚洲精品果冻| 精品一区二区三区av网在线观看| 亚洲av成人不卡在线观看播放网| 嫩草影院新地址| 国产在视频线在精品| 免费在线观看影片大全网站| 国产精品精品国产色婷婷| 特大巨黑吊av在线直播| 国产视频一区二区在线看| 国产精品三级大全| 性欧美人与动物交配| 又紧又爽又黄一区二区| 精品久久久久久久久av| 蜜桃亚洲精品一区二区三区| 欧美一区二区精品小视频在线| 午夜免费激情av| 国语自产精品视频在线第100页| 嫩草影院精品99| 日韩大尺度精品在线看网址| 亚洲av免费在线观看| 国产久久久一区二区三区| 美女免费视频网站| 久久久国产成人精品二区| 日韩欧美国产一区二区入口| 非洲黑人性xxxx精品又粗又长| 亚洲成人久久性| 日本一二三区视频观看| 一区二区三区激情视频| www.www免费av| 国产乱人伦免费视频| 色尼玛亚洲综合影院| 久久人人精品亚洲av| 美女 人体艺术 gogo| 999久久久精品免费观看国产| 一区二区三区免费毛片| 欧美日韩综合久久久久久 | 男人的好看免费观看在线视频| 白带黄色成豆腐渣| 久久久久久久精品吃奶| 精品福利观看| 久久午夜福利片| 黄色配什么色好看| 一个人观看的视频www高清免费观看| 日本熟妇午夜| 亚洲欧美日韩卡通动漫| 白带黄色成豆腐渣| 18美女黄网站色大片免费观看| 搡老熟女国产l中国老女人| a级毛片a级免费在线| 日日夜夜操网爽| 免费电影在线观看免费观看| 9191精品国产免费久久| 男人舔奶头视频| 日韩欧美精品v在线| 亚洲av熟女| 九色国产91popny在线| 日本与韩国留学比较| 日本一二三区视频观看| 国产精品亚洲美女久久久| 亚洲,欧美,日韩| 99热只有精品国产| 色av中文字幕| 嫩草影视91久久| 久久久久久国产a免费观看| 最近最新免费中文字幕在线| 啦啦啦观看免费观看视频高清| 成人三级黄色视频| 国产精华一区二区三区| 看片在线看免费视频| 日韩成人在线观看一区二区三区| 俺也久久电影网| 久久久久免费精品人妻一区二区| 国产私拍福利视频在线观看| 两人在一起打扑克的视频| 日韩中文字幕欧美一区二区| 日韩欧美免费精品| 日韩大尺度精品在线看网址| 国产不卡一卡二| 国产美女午夜福利| 伦理电影大哥的女人| 国产精品日韩av在线免费观看| 国产久久久一区二区三区| 又粗又爽又猛毛片免费看| 男女视频在线观看网站免费| 真人做人爱边吃奶动态| www.色视频.com| 国产视频内射| 亚洲中文字幕日韩| 91久久精品国产一区二区成人| 国产伦在线观看视频一区| 少妇的逼好多水| 亚洲第一电影网av| 18禁黄网站禁片免费观看直播| 久9热在线精品视频| 三级男女做爰猛烈吃奶摸视频| 免费看美女性在线毛片视频| 午夜视频国产福利| 天堂√8在线中文| 国产色爽女视频免费观看| 精品一区二区免费观看| 特大巨黑吊av在线直播| 婷婷精品国产亚洲av在线| 别揉我奶头~嗯~啊~动态视频| 激情在线观看视频在线高清| 欧美性感艳星| 真人做人爱边吃奶动态| 久久人人爽人人爽人人片va | 国产在线精品亚洲第一网站| 欧美黑人欧美精品刺激| 亚洲三级黄色毛片| 亚洲最大成人av| 色5月婷婷丁香| 我要看日韩黄色一级片| 亚洲中文日韩欧美视频| www.999成人在线观看| 别揉我奶头 嗯啊视频| 国产精品影院久久| 亚洲成av人片免费观看| 搞女人的毛片| 美女高潮喷水抽搐中文字幕| 国产精品亚洲av一区麻豆| 两个人的视频大全免费| av天堂在线播放| 高清日韩中文字幕在线| 高清毛片免费观看视频网站| 亚洲一区二区三区不卡视频| 亚洲av成人av| 久久草成人影院| 不卡一级毛片| 国产一区二区在线av高清观看| 三级毛片av免费| 国内精品美女久久久久久| 一个人免费在线观看电影| 国产高清三级在线| 最新中文字幕久久久久| 99热这里只有是精品在线观看 | 91在线精品国自产拍蜜月| 国产欧美日韩精品一区二区| 午夜a级毛片| 欧美3d第一页| 91久久精品电影网| 岛国在线免费视频观看| 精品国内亚洲2022精品成人| 国产蜜桃级精品一区二区三区| 亚洲第一欧美日韩一区二区三区| 永久网站在线| 两个人视频免费观看高清| 欧美绝顶高潮抽搐喷水| 制服丝袜大香蕉在线| 国产成人a区在线观看| 亚洲av免费在线观看| 国产高清三级在线| 免费看a级黄色片| 天堂动漫精品| 99精品在免费线老司机午夜| 999久久久精品免费观看国产| 狠狠狠狠99中文字幕| 国产亚洲精品综合一区在线观看| 免费高清视频大片| 淫妇啪啪啪对白视频| 国产av不卡久久| 中文字幕久久专区| 热99在线观看视频| 国产中年淑女户外野战色| 精品人妻1区二区| 色视频www国产| 婷婷精品国产亚洲av在线| 欧美成狂野欧美在线观看| 麻豆久久精品国产亚洲av| 麻豆成人午夜福利视频| 亚洲电影在线观看av| 麻豆国产av国片精品| 国产高清视频在线播放一区| 18禁黄网站禁片午夜丰满| 午夜福利在线在线| 非洲黑人性xxxx精品又粗又长| 午夜免费成人在线视频| 国产成人av教育| 亚洲一区二区三区色噜噜| 18禁裸乳无遮挡免费网站照片| 婷婷精品国产亚洲av| 午夜老司机福利剧场| 欧美区成人在线视频| 免费无遮挡裸体视频| 亚洲av免费在线观看| 日韩欧美三级三区| 亚洲男人的天堂狠狠| 少妇人妻一区二区三区视频| 别揉我奶头~嗯~啊~动态视频| 亚洲精品在线美女| 男人的好看免费观看在线视频| 国内精品美女久久久久久| 亚洲人成电影免费在线| 午夜福利在线在线| 国产成人欧美在线观看| eeuss影院久久| 亚洲av不卡在线观看| 国产真实伦视频高清在线观看 | 毛片一级片免费看久久久久 | 国产午夜精品久久久久久一区二区三区 | 亚洲aⅴ乱码一区二区在线播放| 午夜日韩欧美国产| 亚洲精品粉嫩美女一区| 亚洲欧美日韩高清在线视频| 我的女老师完整版在线观看| 亚洲久久久久久中文字幕| 97超视频在线观看视频| 91狼人影院| 亚洲精品久久国产高清桃花| 日韩欧美 国产精品| 99久国产av精品| 亚洲,欧美精品.| 欧美日本视频| 97热精品久久久久久| 嫩草影视91久久| 免费黄网站久久成人精品 | 欧美高清成人免费视频www| 亚洲黑人精品在线| 国内少妇人妻偷人精品xxx网站| 欧美中文日本在线观看视频| 亚州av有码| 国产精品亚洲美女久久久| 99riav亚洲国产免费| 国产三级中文精品| 在线播放国产精品三级| 中文字幕熟女人妻在线| 亚洲专区国产一区二区| 一级黄片播放器| 国产免费av片在线观看野外av| 精品久久久久久久人妻蜜臀av| 色播亚洲综合网| av在线蜜桃| 久久草成人影院| 日本精品一区二区三区蜜桃| 欧美激情国产日韩精品一区| 免费观看的影片在线观看| 人人妻人人澡欧美一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品人妻一区二区三区麻豆 | 成人三级黄色视频| 午夜精品一区二区三区免费看| 日本免费a在线| 永久网站在线| 婷婷丁香在线五月| 亚洲熟妇熟女久久| 黄色配什么色好看| 精品熟女少妇八av免费久了| 午夜福利欧美成人| 亚洲av中文字字幕乱码综合| 中亚洲国语对白在线视频| 亚洲精品亚洲一区二区| 国内久久婷婷六月综合欲色啪| 淫秽高清视频在线观看| 国产老妇女一区| 色视频www国产| 美女高潮喷水抽搐中文字幕| 伊人久久精品亚洲午夜| 别揉我奶头~嗯~啊~动态视频| 在线观看一区二区三区| 国产精品野战在线观看| 色精品久久人妻99蜜桃| 国产男靠女视频免费网站| 九色国产91popny在线| 少妇裸体淫交视频免费看高清| 在线天堂最新版资源| 国产69精品久久久久777片| 欧美黄色片欧美黄色片| 日本熟妇午夜| 欧美日韩福利视频一区二区| 久久99热这里只有精品18| 国产亚洲精品综合一区在线观看| 俺也久久电影网| 亚洲欧美日韩无卡精品| 高潮久久久久久久久久久不卡| 欧美激情在线99| 91午夜精品亚洲一区二区三区 | 九九在线视频观看精品| 久久久国产成人精品二区| 久久精品影院6| 国产精品国产高清国产av| 三级毛片av免费| 国产精品,欧美在线| 伊人久久精品亚洲午夜| 可以在线观看的亚洲视频| 色综合亚洲欧美另类图片| 国产精品亚洲美女久久久| 久9热在线精品视频| 久久这里只有精品中国| 亚洲午夜理论影院| 欧美成狂野欧美在线观看| 在线观看一区二区三区| 免费av观看视频| 毛片女人毛片| 最新中文字幕久久久久| 亚洲成av人片在线播放无| 欧美乱妇无乱码| 日本 av在线| 免费av观看视频| 成年人黄色毛片网站| 最新中文字幕久久久久| 欧美日本视频| 欧美色视频一区免费| 婷婷六月久久综合丁香| 国产伦在线观看视频一区| 午夜精品久久久久久毛片777| 国产蜜桃级精品一区二区三区| 国产伦一二天堂av在线观看| 麻豆成人午夜福利视频| 国产精品久久久久久精品电影| 欧美日韩国产亚洲二区| 99精品久久久久人妻精品| 一进一出好大好爽视频| 日本熟妇午夜| 精品无人区乱码1区二区| 亚洲自偷自拍三级| h日本视频在线播放| 亚洲一区高清亚洲精品| 精品久久久久久久久av| 99视频精品全部免费 在线| 男人狂女人下面高潮的视频| 久久精品综合一区二区三区| 日本黄色视频三级网站网址| 麻豆av噜噜一区二区三区| 国产精品久久久久久精品电影| 99精品在免费线老司机午夜| 一级毛片久久久久久久久女|