• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Dynamic Time Warping Algorithm for Recognition of Multi-Stroke On-Line Handwritten Characters

    2013-08-16 05:47:32HaroldMouchreLiJinpengChristianViardGaudinChenZhaoxin

    Harold Mouchère Li Jin-peng Christian Viard-Gaudin Chen Zhao-xin,2

    (1.IRCCyN Laboratory,LUNAM Université,Université de Nantes,Nantes 44300,F(xiàn)rance;2.School of Electronic and Information Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China)

    0 Introduction

    In this paper,a distance applied to on-line handwriting,whose basic elements are temporal point sequences(strokes),is proposed.A sequence is started from the pen-down point and is ended at the pen-up point,with variable point number.Based on the elastic point-to-point matching,the famous DTW algorithm computes the distance between two sequences[1],i.e.two single-stroke symbols,and obeys continuity and boundary constraints during the matching.

    Many works[2]extend the temporal continuity constraint to a spatial continuity constraint in two spatial dimensions.It aims at finding a mapping between two sets of points(pixels).The contribution of this paper is to focus on how to design a matching between two sets of sequences,i.e.two multi-stroke symbols.

    Each instance of a handwritten graphical symbol is different from the other because of the variability of human handwriting.Different people may write a visually same symbol with different stroke directions and orders.In writer identification,these characteristics help to efficiently distinguish writers[3].However,to understand or communicate the same symbol written by different writers,stroke direction and order could be ignored.For instance,a symbol containing a horizontal stroke“—”can be written by two different approaches,namely the way from left to right“ ”or an inverse way“ ”.Comparing two opposite direction strokes,the DTW distance distDTW( , )naturally produces a large value because of two inverse directions.A simple solution is to choose the smaller distance between two possible directions of one stroke:min(distDTW( , ),distDTW(inv(),()),where inv(·)is an operator for reversing stroke trajectory direction.

    However,when comparing two multi-stroke symbols,the number of possible directions and orders increases very fast as a function of the stroke number.Table 1 illustrates an example of how to write“E”within four strokes.With this example,384 different writing sequences are possible.This example shows the complexity of the combination of different stroke directions and orders.In general,the number of different temporal writing paths for a symbol is given by

    where N is the stroke number of a symbol.For calculating the DTW distance between two multi-stroke symbols,a simple solution is to concatenate the strokes using different stroke directions and orders.

    Table 1 Variability of stroke direction and order of on-line handwritten symbol

    For example,for the DTW distance between(4 strokes)and(2 strokes),384×8=3092 possible matching should be calculated.This large combination number is due to different writing orders of N strokes(N!)and due to the two directions of each written order(2N).

    In a more extreme case,we can get rid of all the temporal information and consider the symbol as a set of points ignoring the sequences they produce.This leads to the use of the Hausdorff distance[4].This metric is mainly used in image processing domain.Furthermore,another varied version is the modified Hausdorff distance(MHD)[5].

    However,there exists one disadvantage that the temporal continuity property of sequences is ignored.In this paper,a distance between two multi-stroke symbols is proposed,which is called DTW A*and preserves the temporal continuity constraint.In the investigation,the classical DTW between two sequences is first recalled,and is then extended to process two sets of sequences.Finally,the corresponding experimental results are presented and a conclusion is drawn.

    1 DTW Between Two Point Sequences

    We start with the simple case in which the two characters are composed of only one stroke,respectively.In this case,two strokes(two time-varying-data sequences),denoted as S1=(p1(1),p1(2),…,p1(N1))and S2=(p2(1),p2(2),…,p2(N2)),are compared.Giving a warping path P(h)=(i(h),j(h)),1≤h≤H,defining the point-to-point associated pairs where h is a pair index from the i(h)th point in S1and from the j(h)th point in S2.P(h)should consider the boundary constraint and the continuity constraint.It means that the first two beginning points should be matched in the two strokes,and so do the two ending points.The second temporal continuity constraint implies that the point-to-point matching shift is equal to one.In addition,all the points are matched at least for one time.Calculating the distance between two sequences involves the search of a warping path that minimizes the sum of the point-to-point associated cost function:

    where dist(·,·)is the Euclidean distance in the point feature space.

    The solution to Eq.(2)can be resolved by means of dynamic programming.The dynamic programming searches the minimum warping path from a cumulative distance matrix

    with D(i,j;0)=0 for initialization.Once the cumulative distance matrix is computed,we can use backtracking to find the minimum warping path.

    Fig.1 illustrates an example of matching two single-stroke symbols.The starting point couple is marked with the two circled points.The search for the next couple is obtained with Eq.(3).We first compute a cumulative distance matrix as explained in Fig.2.The best warping path can be found by means of backtracking from the ending point couple to the starting point couple to obtain:P(1),P(2),…,P(9)=(1,1),(2,2),(3,3),(3,4),(4,5),(5,5),(6,6),(6,7),(6,8).We can see that,once we define the starting point couple and the ending point couple,the best warping path will be found.In Section 2,a comparison between two sets of point sequences will be introduced.

    Fig.1 Two point sequences(two single-stroke symbols)

    Fig.2 The cumulative distance matrix D(i,j;h)of Eq.(3)illustration and the best warping path

    2 DTW Between Two Sets of Sequences

    Here,we propose to extend the DTW algorithm to compare two multi-stroke symbols(i.e.two sets of sequences).A traditional method is to concatenate the strokes in the handwritten order[6].Therefore,the distance between two multi-stroke symbols can be computed using DTW[1].We call this method the classical DTW.However, because of the stroke-order and stroke-direction variation among writers,the classical DTW cannot easily match some symbols as discussed in the introduction.The MHD is a possible solution to cope with this variation.In this paper,the MHD between two symbols(S1={pti1}and S2={pti2})is defined as

    where hd(S1,S2)The MHD here is slightly different from that defined in Ref.[5].We choose an average distance rather than a maximum distance between two point sets to prevent the effect of outliers.However,the MHD does not consider the continuity constraint.

    We now introduce a new distance called DTW A*to compare two multi-stroke symbols by keeping the continuity constraint.

    Basically,as with the classical DTW,a point-topoint distance matrix is built via the dynamic programming.Giving two multi-stroke symbols,rows and columns of this matrix represent the two symbols,respectively,as shown in Fig.3.The strokes of one symbol are placed in one side(rows or columns).The respective positions of the strokes in the two sequences are irrelevant and their matching has not to respect the temporal order.

    The main idea insists in iteratively constructing a small warping path until all the points are used.Once we choose a starting point couple,four possible directions of warping path are possible.Each direction represents a point-to-point distance matrix for matching two strokes or two sub-parts from two strokes.In each iteration,we search a warping path that minimizes warping cost and finishes at least one stroke.To find the best warping path,four cumulative distance matrices(see Fig.3)are explored in four directions,respectively.

    Fig.3 Defining a starting point couple(the rectangle)and finding a warping path between the two-stroke symbol(Symbol 1)and the single-stroke symbol(Symbol 2)in four directions

    For example,giving two symbols,one contains two strokes while the other contains one stroke,the two strokes of the first symbol are placed in rows and the stroke of the second symbol is placed in columns(one for each point),as shown in Fig.3.Once we define a starting point(the small rectangle in the middle of Fig.3),there are four possible matching directions(four possible warping paths)corresponding to four cumulative matrices.In each cumulative matrix,we can apply the classical DTW algorithm described in Fig.2 to find the minimum cost warping path.We allow,however,DTW algorithm to not stop at the diagonal opposed point(the ending point)in the cumulative distance matrix but along the borders of the matrix(cross signs).

    In fact,from Fig.2,it can be found that the warping path stopping at P(9)=(6,8)is not the best as the distance increases after P(7).This warping path can be cut by choosing the minimum distance among the points of the cumulative matrix edges:D(1,N2),D(2,N2),…,D(N1,N2)and D(N1,1),D(N1,2),…,D(N1,N2).In reality,we first calculate the whole cumulative distance matrix till to the end of both two strokes.Then the warping path stops when finishing with at least one of two strokes.Thus,a new ending point couple is obtained.For example,in Fig.2,we choose the sub-path:(1,1),(2,2),(3,3),(3,4),(4,5),(5,5),(6,6).

    With this strategy,starting point couples are chosen to associate the two sub-sequences with respect to the continuity constraint in each step.In each step,we choose a starting point couple again from non-used points of the two strokes.The searching procedure finishes until all the points are associated in the warping path.Our objective is to find the warping path that minimizes the associated cost in Eq.(2).The distance of DTW A*is normalized by the number of couples.

    Fig.4 shows the best warping path for associating two sets of point sequences.This solution contains four DTW sub-warping paths,which are obtained from Step 1 to Step 4.The matching directions are not necessary to be the same.A set of sub-warping paths which minimizes the associated cost(the sum of point-to-point distances)are searched.

    Fig.4 A solution of warping path between two symbols(graphic and matrix views)

    However,there are a large number of possibilities.To search the best warping path,an A*algorithm[7]is used to accelerate the search as discussed in Section 2.1.

    2.1 A*Algorithm

    In this section,the A*algorithm(A star)[7]to limit some futureless explorations is introduced.It iteratively searches the best path in a graph from the starting node(empty associated point)to the ending node(all associated points).However,not all the possible nodes are generated because of a heuristic function in the A*algorithm.In each step,only the best hypothesis is explored for the next step.

    The A*algorithm uses a distance-plus-cost heuristic function f(x)=g(x)+h(x)at each step x.The cost g(x)represents the cost of the best warping path from the starting step to the current step x,and the heuristic cost h(x)estimates the minimum distance to the ending step.Ref.[7]described the A*algorithm in detail.In this section,we define the two functions,namely g(x)and h(x),for our problem.Considering the heuristic distance h(·),it should be as large as possible but equal to or less than the real optimal distance for reaching the ending step,which means that h(·)is admissible.

    We first define each step x by a warping path Px(h)=(ix(h),jx(h)),1≤h≤ Hx,between the two symbols S1=(p1(1),p1(2),…,p1(N1))and S2=(p2(1),p2(2),…,p2(N2)).The warping path is a sequence of associated index pairs.Its cost is defined by the sum of pair costs:

    Defining a set of non-used points NUPt(Sym,x)for a symbol Sym in step x,the heuristic cost h(·)therefore can be defined by

    where

    and nnp(p1,Sb)This heuristic distance h(·)is admissible because we always choose the minimum distance between the two sets of non-used pair points during the association of the point pairs.

    Even though the A*algorithm is used to accelerate the searching,the number of combinations is still large.In order to further reduce the combination numbers,we try to limit the number of starting point couples rather than using all the non-used point couples.This strategy will be developed in Section 2.2.

    2.2 Choosing Starting Points

    In order to generate next steps from step x,one have to choose a non-used starting point couple,which is used for starting up two sequences with a matching in four directions in maximum.For each direction,a new step is obtained.Although the A*algorithm can reduce the searching complexity,there are still many possibilities when using all the non-used points for a next step.In this section,we propose a strategy to limit the starting point couple generation.

    Defining the non-used segments in step x for each stroke in a symbol Sym by Segs(Sym,x),the boundary points of these segments are defined by Fseg(Sym,x).A set of new starting point couples{(pi,pj)}between two symbols,S1and S2,are produced from Fseg(S1,x)to the closest points in Segs(S2,x),and vice versa:

    Fig.5 shows the possible starting point couples of the first step in Fig.4 which is as considered as the step x.In this case,there exist three starting couples,namely(P1,P6)with only one direction,(P1,P8)with two possible directions and(P5,P11)with only one possible direction.In the general case,up to four directions have to be considered.All the possibilities are explored by the A*algorithm for searching the best warping path.

    By limiting the number of starting couples,fewer branches are explored from the current step.It has two consequences:the system is faster but we cannot guarantee to select the best solution.In the next section,we will present experimental results of DTW A*algorithm.

    Fig.5 Three starting point couples(P1,P6),(P1,P8)and(P5,P11)for starting the second step in Fig.4

    3 Experiments

    In this section,we first display a qualitative matching between two patterns so that we can intuitively understand how it works.Second,a handwriting dataset is presented.Then,the performances of three distances(DTW A*,Classical DTW and MHD)are compared on a handwriting dataset.

    Fig.6 illustrates the matching between two allographs of“x”.Our algorithm finds the best solution in 5 steps which are 5 sub-warping paths.The first two steps show the point-to-point matching of the top-left branch of“x”.The bottom-right branch is matched in the third step,etc.Our algorithm can cut the strokes into sub-graphemes which minimize the DTW distance between segments from two symbols.

    Fig.6 The best solution of two“x”In order to assess the recognition efficiency of

    DTW A*,we first present a handwriting dataset evaluated by a k-NN classifier.The handwriting dataset is a realistic handwritten flowchart dataset named FC dataset[8].We also use six different graphical symbols(six classes)that represent the basic operations(data,terminator,process,decision,connection and arrow)without any handwritten text,as displayed in Fig.7.This data set contains a training part(3 641 symbols)and a test part(2494 symbols).In average,each symbol contains 2.4 strokes.As we can see,most symbols on the FC dataset are composed of more than one stroke.People may write strokes in a symbol with different orders and directions.

    Table 2 shows the recognition rates of three algorithms.DTW A*is slightly better(97.47%)than

    Fig.7 An example of flowchart on the FC dataset

    Table 2 Results of k-NN classification(k=5)and cross-validation on the FC dataset %

    the classical DTW(96.79%),and more surprisingly MHD is also very efficient(97.31%).One explanation is that,for flowcharts,the sequence information is very irrelevant,and that it is better not to rely on.With the classical DTW,the strokes from one symbol are just concatenated,so that the time information is strongly kept.Thus,when a symbol is written in a different stroke order,the same stroke order should exist in the train dataset of the k-NN.To study the sensitivity with respect to the training size set,a 5-fold cross validation with a smaller training set size is also proposed.We can notice that DTW A*is quite stable(96.90%)although only one fifth of the training samples are available.Conversely,the performance of the classical DTW drops to 91.33%,in that case missing samples of the training set are not compensated by the flexibility of the matching process.

    Even though we have optimized a lot for the A*algorithm in terms of time,it is still time-consuming and memory-consuming(storing a large number of hypotheses).In average,each comparison takes 0.04 s,but some of them consume several seconds.

    4 Conclusions

    As the brute force method produces a large number of possibilities,a distance between two sets of sequences is proposed,which keeps the continuity during each small matching.The proposed distance,namely DTW A*,uses the A*algorithm to reduce the com-

    plexity and only the promising candidates are considered.In addition,we limit the starting point couples.By the test on the FC dataset which contains flowchart symbols,it is found that the proposed DTW A*distance slightly outperforms the classical distances of DTW and MHD.The DTW A*remains quite stable during the cross-validation test.However,it is still not fast enough in practical usage.Further limitation of the starting point couples is a possible solution.

    [1]Vuori V.Adaptive methods for on-line recognition of isolated handwritten characters[D].Espoo:Department of Computer Science and Engineering,Helsinki University of Technology,2002.

    [2]Uchida S,Sakoe H.A survey of elastic matching techniques for handwritten character recognition [J].The Institute of Electronics,Information and Communication Engineers(IEICE)Transactions,2005,88-D(8):1781-1790.

    [3]Tan G X,Viard-Gaudin C,Kot A C.Automatic writer identification framework for online handwritten documents using character prototypes [J].Pattern Recognition,2009,42(12):3313-3323.

    [4]Huttenlocher D P,Klanderman G A,Rucklidge W A.Comparing images using the Hausdorff distance [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(9):850-863.

    [5]Dubuisson M P,Jain A K.A modified Hausdorff distance for object matching[C]∥Proceedings of the 12th IAPR International Conference on Pattern Recongnition.Jerusalem:IEEE,1994:566-568.

    [6]Ding K,Deng G,Jin L.An investigation of imaginary stroke techinique for cursive online handwriting Chinese character recognition[C]∥Proceedings of the 10th International Conference on Document Analysis and Recognition.Barcelona:IEEE Computer Society,2009:531-535.

    [7]Hart P,Nilsson N,Raphael B.A Formal basis for the heuristic determination of minimum cost paths[J].IEEE Transactions on Systems Science and Cybernetics,1968,4(2):100-107.

    [8]Awal A M,F(xiàn)eng G,Mouchère H,et al.First experiments on a new online handwritten flowchart database[C]∥Document Recognition and Retrieval XVIII.San Fransisco:états-Unis,2011:1-10.

    欧美乱妇无乱码| 日韩大码丰满熟妇| 国产单亲对白刺激| 搞女人的毛片| 亚洲乱码一区二区免费版| 一二三四社区在线视频社区8| 午夜福利在线观看吧| 免费看日本二区| 国产亚洲精品综合一区在线观看 | 亚洲国产欧美一区二区综合| 特大巨黑吊av在线直播| 色老头精品视频在线观看| 亚洲美女黄片视频| 最近视频中文字幕2019在线8| 一级作爱视频免费观看| 欧美最黄视频在线播放免费| 国产午夜福利久久久久久| 亚洲美女视频黄频| 色播亚洲综合网| 可以免费在线观看a视频的电影网站| 亚洲av片天天在线观看| 精品人妻1区二区| 欧美一区二区国产精品久久精品 | 777久久人妻少妇嫩草av网站| 天天躁狠狠躁夜夜躁狠狠躁| 一个人免费在线观看电影 | 韩国av一区二区三区四区| 成人特级黄色片久久久久久久| 两个人的视频大全免费| 熟女电影av网| 日本黄色视频三级网站网址| 麻豆成人av在线观看| 欧美日韩瑟瑟在线播放| 国产熟女xx| 日日摸夜夜添夜夜添小说| 精品国产乱子伦一区二区三区| 99热这里只有是精品50| 国产又黄又爽又无遮挡在线| 亚洲天堂国产精品一区在线| 欧美大码av| 精品久久久久久久人妻蜜臀av| 无限看片的www在线观看| 亚洲中文日韩欧美视频| 无限看片的www在线观看| 热99re8久久精品国产| 欧美黄色淫秽网站| a级毛片a级免费在线| 嫁个100分男人电影在线观看| 五月玫瑰六月丁香| 久久99热这里只有精品18| 男人舔奶头视频| 亚洲成人中文字幕在线播放| 国产伦在线观看视频一区| 国产aⅴ精品一区二区三区波| 精品久久久久久久久久久久久| 国产精品国产高清国产av| 巨乳人妻的诱惑在线观看| а√天堂www在线а√下载| 少妇的丰满在线观看| 又黄又粗又硬又大视频| 一区福利在线观看| 一本久久中文字幕| 免费观看精品视频网站| 国产av在哪里看| 欧美性猛交╳xxx乱大交人| 99热6这里只有精品| 精品高清国产在线一区| 无遮挡黄片免费观看| 日韩欧美免费精品| 欧洲精品卡2卡3卡4卡5卡区| 夜夜看夜夜爽夜夜摸| 久久中文看片网| 日本一二三区视频观看| 国产激情偷乱视频一区二区| 成人三级黄色视频| 中国美女看黄片| 中文字幕最新亚洲高清| 久久久久久人人人人人| 19禁男女啪啪无遮挡网站| 午夜精品久久久久久毛片777| 日韩大尺度精品在线看网址| 精品人妻1区二区| 国内毛片毛片毛片毛片毛片| 蜜桃久久精品国产亚洲av| 老司机在亚洲福利影院| 亚洲av成人av| 日韩有码中文字幕| 老司机深夜福利视频在线观看| 亚洲成人中文字幕在线播放| 一个人观看的视频www高清免费观看 | 91老司机精品| av天堂在线播放| 欧美日韩亚洲综合一区二区三区_| 国内精品久久久久久久电影| 91九色精品人成在线观看| 亚洲成人精品中文字幕电影| 欧美在线一区亚洲| 制服人妻中文乱码| 身体一侧抽搐| 一个人免费在线观看电影 | 激情在线观看视频在线高清| av在线播放免费不卡| 亚洲一码二码三码区别大吗| √禁漫天堂资源中文www| 国产精品一区二区三区四区免费观看 | 欧美高清成人免费视频www| 欧美又色又爽又黄视频| 色播亚洲综合网| www.精华液| 亚洲精品一卡2卡三卡4卡5卡| 色噜噜av男人的天堂激情| 日韩av在线大香蕉| 啦啦啦韩国在线观看视频| 久久久久久九九精品二区国产 | 欧美日韩瑟瑟在线播放| 免费在线观看完整版高清| 毛片女人毛片| 看片在线看免费视频| 99国产极品粉嫩在线观看| 欧美一区二区国产精品久久精品 | 久久婷婷成人综合色麻豆| videosex国产| 欧美成人免费av一区二区三区| 老熟妇乱子伦视频在线观看| 免费电影在线观看免费观看| 给我免费播放毛片高清在线观看| 国产亚洲精品综合一区在线观看 | 最新美女视频免费是黄的| 国产99白浆流出| 色综合站精品国产| 国产成人啪精品午夜网站| 国产视频一区二区在线看| 一二三四社区在线视频社区8| 黄色片一级片一级黄色片| 搡老熟女国产l中国老女人| 国产成人系列免费观看| 亚洲色图 男人天堂 中文字幕| 天堂av国产一区二区熟女人妻 | 狂野欧美白嫩少妇大欣赏| 国产伦一二天堂av在线观看| 黄片小视频在线播放| 99精品久久久久人妻精品| 亚洲国产日韩欧美精品在线观看 | 女人高潮潮喷娇喘18禁视频| a在线观看视频网站| 成人一区二区视频在线观看| 在线视频色国产色| 俺也久久电影网| 天堂av国产一区二区熟女人妻 | 午夜激情福利司机影院| 国产精品99久久99久久久不卡| 国产私拍福利视频在线观看| 国产区一区二久久| 国产精品一区二区精品视频观看| 久久久久久大精品| 国产av一区在线观看免费| 身体一侧抽搐| 亚洲aⅴ乱码一区二区在线播放 | 18禁美女被吸乳视频| 国产成人啪精品午夜网站| 身体一侧抽搐| 免费搜索国产男女视频| 日韩欧美在线乱码| 国产精品一及| bbb黄色大片| 欧美日韩瑟瑟在线播放| 亚洲成人国产一区在线观看| 免费搜索国产男女视频| 亚洲av熟女| 老汉色∧v一级毛片| 亚洲男人天堂网一区| 一夜夜www| av片东京热男人的天堂| 亚洲av成人一区二区三| av国产免费在线观看| 久久天躁狠狠躁夜夜2o2o| 精品久久蜜臀av无| 九色国产91popny在线| 激情在线观看视频在线高清| 国产精品久久久久久亚洲av鲁大| 久久久久久国产a免费观看| 99久久无色码亚洲精品果冻| e午夜精品久久久久久久| 日日夜夜操网爽| 国产精品一区二区精品视频观看| 日韩欧美国产一区二区入口| 18禁国产床啪视频网站| av视频在线观看入口| 三级毛片av免费| 黄色丝袜av网址大全| 亚洲国产精品合色在线| 久久人人精品亚洲av| 这个男人来自地球电影免费观看| 国产成+人综合+亚洲专区| 亚洲成人国产一区在线观看| 又爽又黄无遮挡网站| 中文亚洲av片在线观看爽| 淫秽高清视频在线观看| 精品第一国产精品| 欧美在线黄色| 午夜激情福利司机影院| 亚洲精品在线美女| 亚洲黑人精品在线| 久久精品国产综合久久久| 日韩欧美一区二区三区在线观看| 免费在线观看黄色视频的| 手机成人av网站| 天堂√8在线中文| 国产v大片淫在线免费观看| 精品国产亚洲在线| 久久亚洲真实| 精品高清国产在线一区| 中文字幕人妻丝袜一区二区| 亚洲国产中文字幕在线视频| 国产亚洲精品第一综合不卡| 最近在线观看免费完整版| 免费在线观看视频国产中文字幕亚洲| 琪琪午夜伦伦电影理论片6080| 亚洲国产精品久久男人天堂| 亚洲 国产 在线| 日本 欧美在线| 亚洲av片天天在线观看| 少妇被粗大的猛进出69影院| 欧美黄色淫秽网站| 国产爱豆传媒在线观看 | 国产亚洲精品综合一区在线观看 | 亚洲中文日韩欧美视频| 国产高清视频在线观看网站| 国内久久婷婷六月综合欲色啪| 97碰自拍视频| 欧美成人一区二区免费高清观看 | 久久人人精品亚洲av| 男人的好看免费观看在线视频 | 高清毛片免费观看视频网站| 国产午夜精品论理片| 国产成年人精品一区二区| 国产单亲对白刺激| 人人妻,人人澡人人爽秒播| 日韩大码丰满熟妇| 老司机在亚洲福利影院| 国产伦人伦偷精品视频| 麻豆一二三区av精品| 国产av一区二区精品久久| bbb黄色大片| 国产精品亚洲一级av第二区| cao死你这个sao货| 国产伦一二天堂av在线观看| 久久久久久大精品| 日日爽夜夜爽网站| 国产精品免费一区二区三区在线| 国产精品 欧美亚洲| 国产精品久久久久久亚洲av鲁大| 1024手机看黄色片| 欧美成人午夜精品| 黄频高清免费视频| 亚洲精品av麻豆狂野| 久久精品aⅴ一区二区三区四区| 国产成人一区二区三区免费视频网站| 不卡一级毛片| 嫁个100分男人电影在线观看| 天天一区二区日本电影三级| 最近视频中文字幕2019在线8| 国产在线精品亚洲第一网站| 国产不卡一卡二| 美女 人体艺术 gogo| 国产视频一区二区在线看| 一夜夜www| 波多野结衣巨乳人妻| 久久中文看片网| 特大巨黑吊av在线直播| 精品久久久久久,| 成人av在线播放网站| 亚洲专区国产一区二区| av视频在线观看入口| 人人妻人人看人人澡| 欧美黑人欧美精品刺激| 观看免费一级毛片| 他把我摸到了高潮在线观看| 狂野欧美激情性xxxx| 大型黄色视频在线免费观看| 99在线视频只有这里精品首页| 婷婷精品国产亚洲av| 国内毛片毛片毛片毛片毛片| 免费一级毛片在线播放高清视频| 亚洲熟妇熟女久久| 黄色a级毛片大全视频| 欧美黑人精品巨大| 99热这里只有精品一区 | 日本 av在线| xxxwww97欧美| 久久久久亚洲av毛片大全| 制服诱惑二区| 亚洲成人免费电影在线观看| 亚洲五月天丁香| 天天一区二区日本电影三级| 舔av片在线| 一级毛片女人18水好多| 亚洲18禁久久av| 亚洲第一电影网av| 国产精品久久久人人做人人爽| 欧美一级毛片孕妇| 巨乳人妻的诱惑在线观看| 老司机午夜十八禁免费视频| 午夜福利在线在线| 亚洲人成伊人成综合网2020| 此物有八面人人有两片| 三级毛片av免费| 免费在线观看影片大全网站| 一本一本综合久久| 国产午夜福利久久久久久| 麻豆av在线久日| 欧美日韩瑟瑟在线播放| 亚洲av熟女| 成人永久免费在线观看视频| 91av网站免费观看| 国产精品亚洲美女久久久| videosex国产| 亚洲国产欧美网| 久久久水蜜桃国产精品网| 久久人妻av系列| 国产免费av片在线观看野外av| 91麻豆av在线| av国产免费在线观看| 欧美黄色淫秽网站| 亚洲国产精品999在线| 久久久精品国产亚洲av高清涩受| 久久久久亚洲av毛片大全| 操出白浆在线播放| 999久久久国产精品视频| 亚洲色图 男人天堂 中文字幕| 夜夜看夜夜爽夜夜摸| 久久精品成人免费网站| 在线观看免费视频日本深夜| 99riav亚洲国产免费| 国产黄片美女视频| av超薄肉色丝袜交足视频| 成人高潮视频无遮挡免费网站| 欧美性猛交╳xxx乱大交人| 色综合婷婷激情| 国产亚洲欧美在线一区二区| 一级毛片精品| 90打野战视频偷拍视频| 中文资源天堂在线| 91av网站免费观看| 国产精品亚洲美女久久久| 最近视频中文字幕2019在线8| 中文字幕av在线有码专区| 天堂√8在线中文| 黄色a级毛片大全视频| 岛国视频午夜一区免费看| 国产aⅴ精品一区二区三区波| 他把我摸到了高潮在线观看| 久久热在线av| 亚洲国产欧洲综合997久久,| 看免费av毛片| 久久久久久国产a免费观看| 亚洲精品av麻豆狂野| 黄色视频不卡| 精品高清国产在线一区| 听说在线观看完整版免费高清| 麻豆一二三区av精品| 国产亚洲欧美在线一区二区| 亚洲成av人片在线播放无| 亚洲av电影在线进入| 麻豆一二三区av精品| 色综合站精品国产| 欧美乱码精品一区二区三区| 制服丝袜大香蕉在线| 欧美绝顶高潮抽搐喷水| 亚洲七黄色美女视频| 日韩国内少妇激情av| 香蕉丝袜av| 搞女人的毛片| 99久久无色码亚洲精品果冻| 国产精品亚洲一级av第二区| 后天国语完整版免费观看| 久久婷婷成人综合色麻豆| 久9热在线精品视频| 色哟哟哟哟哟哟| 后天国语完整版免费观看| 12—13女人毛片做爰片一| 亚洲人成电影免费在线| 日本五十路高清| 欧美色欧美亚洲另类二区| 男女午夜视频在线观看| 老司机福利观看| 国产主播在线观看一区二区| 级片在线观看| 男女床上黄色一级片免费看| 窝窝影院91人妻| 欧美一区二区国产精品久久精品 | 国产欧美日韩精品亚洲av| 欧美一级a爱片免费观看看 | 亚洲av五月六月丁香网| 这个男人来自地球电影免费观看| 日本黄大片高清| 久久久国产成人免费| 亚洲专区中文字幕在线| 国产亚洲欧美98| 亚洲欧美日韩无卡精品| 欧洲精品卡2卡3卡4卡5卡区| 亚洲av美国av| 免费一级毛片在线播放高清视频| 99国产综合亚洲精品| 熟妇人妻久久中文字幕3abv| 亚洲aⅴ乱码一区二区在线播放 | a在线观看视频网站| 日本黄色视频三级网站网址| 免费在线观看黄色视频的| 日韩欧美国产一区二区入口| 老司机午夜福利在线观看视频| 一a级毛片在线观看| 久久伊人香网站| 久久精品国产清高在天天线| 欧美最黄视频在线播放免费| av在线天堂中文字幕| 不卡av一区二区三区| 色播亚洲综合网| 国产亚洲av高清不卡| 亚洲成av人片免费观看| 91字幕亚洲| av片东京热男人的天堂| av欧美777| 欧美大码av| 免费高清视频大片| 人人妻人人看人人澡| 日本免费a在线| 曰老女人黄片| 久久九九热精品免费| 每晚都被弄得嗷嗷叫到高潮| 精品无人区乱码1区二区| 亚洲自拍偷在线| 美女扒开内裤让男人捅视频| 国产精品,欧美在线| 国产探花在线观看一区二区| 亚洲九九香蕉| 白带黄色成豆腐渣| 欧美乱妇无乱码| 好男人电影高清在线观看| 欧美3d第一页| av国产免费在线观看| 亚洲第一电影网av| 国产黄a三级三级三级人| 日韩欧美在线乱码| 免费人成视频x8x8入口观看| 深夜精品福利| 天堂av国产一区二区熟女人妻 | 国产精品电影一区二区三区| 亚洲九九香蕉| 一二三四在线观看免费中文在| 欧美成狂野欧美在线观看| 亚洲专区中文字幕在线| 精品欧美一区二区三区在线| 国产欧美日韩一区二区三| 日韩大尺度精品在线看网址| 国内毛片毛片毛片毛片毛片| 国产精品免费视频内射| 欧美日韩福利视频一区二区| 在线视频色国产色| 国产又黄又爽又无遮挡在线| a级毛片a级免费在线| 天天一区二区日本电影三级| 日本一二三区视频观看| 欧美又色又爽又黄视频| 蜜桃久久精品国产亚洲av| 岛国视频午夜一区免费看| 中文字幕高清在线视频| 两个人视频免费观看高清| 亚洲熟女毛片儿| 狂野欧美白嫩少妇大欣赏| 精华霜和精华液先用哪个| 精品久久久久久久久久久久久| 99在线人妻在线中文字幕| 亚洲av成人一区二区三| 亚洲国产欧美一区二区综合| 久久久久久人人人人人| 91麻豆av在线| 日本精品一区二区三区蜜桃| 久久久久免费精品人妻一区二区| a级毛片在线看网站| 悠悠久久av| 首页视频小说图片口味搜索| 亚洲成人国产一区在线观看| 亚洲国产欧美网| 99久久无色码亚洲精品果冻| 国产高清视频在线播放一区| 婷婷丁香在线五月| 久久久久久久久久黄片| 在线观看舔阴道视频| 亚洲五月天丁香| 久久久久久人人人人人| 成人三级做爰电影| 亚洲av成人av| 日韩国内少妇激情av| 亚洲五月婷婷丁香| 午夜影院日韩av| 亚洲成人久久性| 日韩有码中文字幕| 男人舔女人下体高潮全视频| 日韩大尺度精品在线看网址| 51午夜福利影视在线观看| 日韩中文字幕欧美一区二区| 亚洲18禁久久av| 在线国产一区二区在线| 色精品久久人妻99蜜桃| 久久精品人妻少妇| 精品久久久久久成人av| 国产一区二区在线av高清观看| 99国产精品一区二区三区| 日本一二三区视频观看| 亚洲成人精品中文字幕电影| 国产精品一区二区免费欧美| 国产精品精品国产色婷婷| 又紧又爽又黄一区二区| 久久久久性生活片| 少妇被粗大的猛进出69影院| 亚洲国产欧美网| 久久精品91无色码中文字幕| 好男人电影高清在线观看| 国产精品久久电影中文字幕| 老汉色av国产亚洲站长工具| 亚洲va日本ⅴa欧美va伊人久久| 18美女黄网站色大片免费观看| 亚洲专区中文字幕在线| 国产精品 欧美亚洲| 久久精品综合一区二区三区| 手机成人av网站| 日韩有码中文字幕| 久久这里只有精品中国| 亚洲中文日韩欧美视频| 18美女黄网站色大片免费观看| 日韩精品青青久久久久久| 国产精品 欧美亚洲| 久久久久久大精品| 久久国产精品影院| av片东京热男人的天堂| 99热只有精品国产| 特级一级黄色大片| 亚洲欧美日韩高清专用| 99re在线观看精品视频| 久久 成人 亚洲| 老鸭窝网址在线观看| 成人国产一区最新在线观看| 国产av一区在线观看免费| 嫩草影院精品99| 中文亚洲av片在线观看爽| 久久久久久亚洲精品国产蜜桃av| 88av欧美| 久久久久国产精品人妻aⅴ院| 久9热在线精品视频| 国产精品香港三级国产av潘金莲| 成人欧美大片| 国产精品久久久久久人妻精品电影| 999久久久国产精品视频| 国产精品 欧美亚洲| 亚洲狠狠婷婷综合久久图片| 国产亚洲av高清不卡| 成年免费大片在线观看| 亚洲18禁久久av| 岛国在线观看网站| 免费在线观看黄色视频的| 国产av一区二区精品久久| 黑人操中国人逼视频| 在线观看免费日韩欧美大片| 一级a爱片免费观看的视频| 免费在线观看日本一区| 人成视频在线观看免费观看| 此物有八面人人有两片| 观看免费一级毛片| 一夜夜www| 日本免费一区二区三区高清不卡| 国产成人啪精品午夜网站| 精品久久久久久久毛片微露脸| 国产亚洲精品久久久久久毛片| 久久久国产成人精品二区| 99在线人妻在线中文字幕| 欧美精品亚洲一区二区| 97超级碰碰碰精品色视频在线观看| 欧美黄色片欧美黄色片| 亚洲最大成人中文| 99久久国产精品久久久| 美女黄网站色视频| www日本在线高清视频| 可以在线观看的亚洲视频| 免费av毛片视频| 免费在线观看视频国产中文字幕亚洲| 在线观看日韩欧美| 色综合亚洲欧美另类图片| 亚洲专区字幕在线| 精品熟女少妇八av免费久了| 欧美午夜高清在线| 欧美高清成人免费视频www| 国产精华一区二区三区| 丁香欧美五月| 精品久久久久久久人妻蜜臀av| 国产成人影院久久av| 国产精品久久久av美女十八| 亚洲精品av麻豆狂野| 母亲3免费完整高清在线观看| 亚洲精品一区av在线观看| 精品久久久久久久久久免费视频| 人成视频在线观看免费观看| 国产av在哪里看| 怎么达到女性高潮| 午夜福利在线观看吧| 美女大奶头视频| 国产精品野战在线观看| a级毛片在线看网站| 伊人久久大香线蕉亚洲五| 国产在线精品亚洲第一网站| 免费搜索国产男女视频| 亚洲av成人不卡在线观看播放网| 久久人妻av系列| 色播亚洲综合网| 精品久久久久久久久久久久久|