• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Annulus and Disk Complex Is Contractible and Quasi-convex

    2013-08-10 06:49:24GUOQILONGQIURUIFENGZOUYANQINGANDZHANGFAZE
    關(guān)鍵詞:斷裂強(qiáng)度超高速靶板

    GUO QI-LONG,QIU RUI-FENG,ZOU YAN-QINGAND ZHANG FA-ZE

    (1.School of Mathematics Sciences,Dalian University of Technology,Dalian,Liaoning,116023) (2.Department of Mathematics,East China Normal University,Shanghai,200062)

    Communicated by Lei Feng-chun

    Annulus and Disk Complex Is Contractible and Quasi-convex

    GUO QI-LONG1,QIU RUI-FENG2,ZOU YAN-QING1AND ZHANG FA-ZE1

    (1.School of Mathematics Sciences,Dalian University of Technology,Dalian,Liaoning,116023) (2.Department of Mathematics,East China Normal University,Shanghai,200062)

    Communicated by Lei Feng-chun

    The annulus and disk complex is defined and researched.Especially,we prove that this complex is contractible and quasi-convex in the curve complex.

    annulus and disk complex,contractible,quasi-convex

    1 Introduction

    Let S be a closed orientable surface with genus at least 2.Harvey[1]defined the curve complex of S as follows.The curve complex of S is the complex whose vertices are the isotopy classes of essential simple closed curves on S,and k+1 vertices in the curve complex span a k-simplex if they are represented by pairwise disjoint curves.We denote the curve complex of S by C(S).Harer[2]proved that C(S)is homotopy equivalent to a bouquet of spheres of dimension-χ(S).

    If S is a boundary component of an irreducible 3-manifold M,then we can define the disk complex Δ(M,S)as in[3].A vertex of Δ(M,S)is an isotopy class of an essential curve in S which bounds a disk in M.As in the Definition of C(S),k+1 vertices in Δ(M,S) span a k-simplex if they are represented by pairwise disjoint curves.It is easy to see that Δ(M,S)is a subcomplex of C(S).McCullough[3]researched this complex and proved that it is contractible.

    In Section 2,we define a new complex associated to a compression body as a generalization of both curve complex and disk complex of a handlebody.For a compression body C, we denote this new complex by AD(C)and call it annulus and disk complex.By using the techniques in[3],we prove the following theorem:

    Theorem 1.1The annulus and disk complex AD(C)is contractible.

    A metric space(X,d)is geodesic,if for any pair of points there is a path connecting them which is a geodesic;and a subset Y of(X,d)is K-quasi-convex if for any pair of points in Y,any geodesic in X connecting them lies in a K-neighborhood of Y.A result in[4] implies that Δ(M,S)is quasi-convex in C(S).By the aid of their results,we prove

    Theorem 1.2AD(C)is K-quasi-convex in C(S),where K depends only on the genus of S.

    2 Preliminaries

    Definition 2.1A compression body C is a 3-manifold obtained from an orientable connected closed surface Σ by attaching 2-handles to Σ×{1}?Σ×[0,1]and 3-balls to 2-sphere boundaries thereby created.We write

    When C=Σ×[0,1],we say that C is a trivial compression body.When?-C=?,we say that C is a handlebody.

    Remark 2.1If F is an essential annulus properly embeded in a compression body C,then this annulus must have one boundary component in?+C as the other boundary component in?-C.Furthermore,if F1and F2are two essential annuli such that F1∩?+C is isotopic to F2∩?+C in?+C,then F1is isotopic to F2in C.

    Essential annuli play an important role in the following definition.

    Definition 2.2For a compression body C,the annulus and disk complex AD(C)is defined as follows:A vertex of AD(C)is an isotopy class of an essential curve on?+C which bounds an essential disk in C or cobounds an essential annulus in C with another curve in

    Remark 2.2If C is a trivial compression body,then AD(C)is nothing but the curve complex C(?+C).If C is a handlebody,then AD(C)is the disk complex Δ(C,?+C).

    Then we define another complex associated to a compression body C without concerning?+C.

    Definition 2.3For a compression body C,the complexis defined as follows:A vertex ofis an isotopy class of an essential disk in C or an essential annulus in C. k+1 vertices[F0],···,[Fk]determine an k-simplex if and only if we can isotopy F0,···,Fkso that they are mutually disjoint.

    Lemma 2.1The map]can be extended to be an isomorphism from

    As in[5],we give the Definition of δ-hyperbolic spaces.

    Definition 2.4A geodesic space X is said to be δ-hyperbolic with constant δ≥0,if for every geodesic triangle xyz in X,one sideis contained in the closed δ-neighborhood of the union of the other two sides

    Lemma 2.2[6]C(S)is δ-hyperbolic for some constant δ>0,where δ depends only on the genus of S.

    Lemma 2.3[4]Suppose that M is a compact,orientable 3-manifold M with boundary component S.Then Δ(M,S)is a K-quasi-convex subset of C(S),where K depends only on the genus of S. and

    3 Proof of Theorem 1.1

    The proof of Theorem 1.1 is similar to the proof of Theorem 5.3 in[3].

    It is easy to see that we only need to prove that any map from any sphere to X is null-homotopic.Suppose that the map f:Sq→X is given.

    Define Ω:={(K,g):K is a triangulation of Sq,g:Sq→X is homotopic to f,and g:K→X is simplicial}.

    Next,we define a complexity function P on Ω as follows.

    Let E be an essential disk of C.Then a=[E]is a vertex of X.

    For any pair(K,g)∈Ω,define Pi(K,g)to be the number of vertices v of K such that g(v)·a=i.The complexity P(K,g)is defined by(···,P3(K,g),P2(K,g),P1(K,g)),and the complexities are ordered lexicographically.

    Suppose that(K,g)has the minimal complexity among all elements in Ω.

    If Pi(K,g)=0 for each i,then each vertex of K is carried intoby g.Since g is simplicial and,by Lemmas 2.2 and 2.3,g is null-homotopic.Hence f is also null-homotopic.

    Therefore,suppose that Pi(K,g)=0 for all i>n and Pn(K,g)>0 for some n>0. Choose a vertex v0∈K such that g(v0)·a=n.Let v1,v2,···,vkbe the vertices in Kadjacent to v0,and we can choose representatives Fifor each g(vi)so that Fiintersects Fjminimally∩for eachand each Fiintersects E minimally(i.e.,=? for each i/=0.

    中等厚度靶(中厚靶)通常是指靶板厚度與撞擊形成的坑深大致相等。如上所述,當(dāng)厚靶的厚度遠(yuǎn)大于坑的深度時,靶板的后表面,即自由面對成坑幾何尺寸沒有影響。但是實際上,靶都是有限厚的,無限厚靶屬于一種極限情況。彈丸超高速侵徹中厚靶的瞬態(tài)階段及主要侵徹階段與彈丸超高速侵徹?zé)o限厚靶的情況完全相同,只有當(dāng)靶板后表面反射的稀疏波到達(dá)侵徹坑底部之后,才會表現(xiàn)出與無限厚靶板侵徹過程的差異,即向前的應(yīng)力波和靶板后表面反射的稀疏波相遇產(chǎn)生拉伸應(yīng)力,當(dāng)拉伸應(yīng)力大于靶板的拉伸斷裂強(qiáng)度時,靶板后表面發(fā)生層裂。圖5為球形彈丸超高速侵徹中等厚度靶導(dǎo)致靶板后表面產(chǎn)生層裂的現(xiàn)象。

    Since n>0,F0is not disjoint from E.Consider an arc α of their intersection which is outermost in E.There is a disc B?E such that?B?α∪?E and int(B)∩F0=?.

    There are two possibilities.

    Since F0intersects E minimally,by surgery on F0along B we get two essential surfaces, one of which is an essential disk(denoted by)and the another is a spanning annulus or an essential disk,and we can see that∩.Since(F0∪B)∩Fi=? for each i/=0, and∩we get that if[Fi1],···,[Fim]and[F0]are contained in a common simplex of X for some i1,···,im,then Fi1,···,Fim,F0and F′0are mutually disjoint.Hence[Fi1], ···,[Fim],[F0]and[F′0]are also contained in a common simplex of X.

    Claim 3.1is homotopic to g.

    Proof.Since the difference part of the two maps is only on the carrier simplex of{v0,···,vk} in K,we canfind a homotopy gtsuch that

    and gt(v0)slides on the 1-simplex〉when t increases from 0 to 1.Actually,if Δ is a simplex of K which does not contain v0,then

    and if Δ is a simplex of K containing v0,then gt|Δis defined by linear expansion,and this can be done since g|t(v0),···,g|t(vk)are contained in a common simplex of X.

    Let β be an arc of intersection of some Fiand B which is outermost in B and contains no arcs of any Fjwhich is disjoint from Fi(note that β may still intersect an arc of some B∩Fjfor some j/=i).Then by surgery Fialong B,we get an essential diskas above, and can see that.Hence ifand[F0](or[Fi]) are contained in a common simplex of X for some i1,···,im,then[Fi1],···,[Fim],[F0](or [Fi])andare also contained in a common simplex of X.

    Claim 3.2g′is homotopic to g.

    Proof.Since F0,Fi,are mutually disjoint,and[F0],[Fi],are contained in a simplex of X,which also contains,there is a segment connectingand.For each t∈[0,1],we define gt(x)=x if x/=viandto be a point in the segmentsuch that

    Then we can extend each gtto the whole Sqas follows.If Δ is a simplex which does not contains,then define gt|Δ=g0|Δ.If Δ contains,then gt|Δis defined by linear expansion in Δ.It is easy to see that

    and gtis a homotopy between g and g′.

    Now P(K1,g1)>P(K,g),because we have added the new vertex v′mapping toBut·[E]<[Fk]·[E]<n since n is maximal,and hence

    Repeating finitely many times,we obtain a subdivision K2of K and a simplicial map g2:K2→X homotopic to g such that

    and int(B)is disjoint from the representative surfaces for the vertices{g2(v1),···,g2(vk)}. Now,by surgery F0along B as in Case 1,we can find a simplicial map g3:K2→X which is homotopic to g2and satisfies that

    and

    Hence P(K2,g3)<P(K,g),which contradicts the choice of(K,g).

    4 Proof of Theorem 1.2

    For any pair of two vertices[F1],[F2]in AD(C),let γ be any geodesic joining them.Let K be the constant in Lemma 2.5 in the case that M=C and S=?+C.

    There are three cases about F1and F2.

    Case 1.Both are disks.

    In this case,Lemma 2.5 implies Theorem 1.2.

    Case 2.F1is a disk,while F2is an annulus.

    Choose an essential disk D of C such that D∩F2=?.Let β be the 1-simplex joining [D]and[F2],and α be a geodesic joining[D]and[F1].By the hyperbolicity of C(S),α is in the δ-neighborhood of β∪γ.By Lemma 2.6,γ is in the K-neighborhood of Δ(M,S).Since Δ(M,S)?AD(C)and β is in the 1-neighborhood of AD(C),α is in the(K+δ+1)-neighborhood of AD(C).

    Case 3.Both F1and F2are annuli.

    The proof of this case is similar to that in Case 2,and we can choose the constant to be K+2β+1.

    [1]Harvey W J.Boundary Structure of the Modular Group.In:Kra I,Maskit B.Riemann Surfaces and Related Topics:Proceedings of the 1978 Stony Brook Conference.New Jersey:Princeton Univ.Press,1981:245–251.

    [2]Harer J.The virtual cohomological dimension of the mapping class group of an orientable surface.Invent.Math.,1986,84:157–176.

    [3]McCullough D.Virtually geometrically finite mapping class groups of 3-manifolds.J.differential Geom.,1991,33:1–65.

    [4]Masur H,Minsky Y.Quasiconvexity in the Curve Complex.in:Abikof fW.In the tradition of Ahlfors and Bers III.Amer.Math.Soc.RI:Providence,2004:309–320.

    [5]Bridson M R,Haef l iger A.Metric Spaces of Non-positive Curvature.Grundlehrender Mathematischen Wissenschaften,319.Berlin:Springer,1999.

    [6]Masur H,Minsky Y.Geometry of the complex of curves I:Hyperbolicity.Invent.Math.,1999, 138:103–149.

    57M99

    A

    1674-5647(2013)04-0377-06

    Received date:April 6,2012.

    The NSF(10901029)of China.

    E-mail address:guoqilong1984@hotmail.com(Guo Q L).

    猜你喜歡
    斷裂強(qiáng)度超高速靶板
    陶瓷破片侵徹鈦合金薄靶實驗及數(shù)值模擬研究
    疊合雙層靶抗球形破片的侵徹能耗
    纖維性能及細(xì)紗捻系數(shù)對棉紗斷裂強(qiáng)度的影響
    PBS纖維的化學(xué)穩(wěn)定性研究
    新型高彈滌綸仿棉紗線的開發(fā)和生產(chǎn)
    具有攻角的鎢合金彈侵徹運動靶板的數(shù)值模擬研究
    彈丸斜撞擊間隔靶板的數(shù)值模擬
    聚苯硫醚復(fù)合濾料熱熔性能研究
    中國風(fēng)投行業(yè)迎來超高速發(fā)展
    金橋(2018年1期)2018-09-28 02:24:38
    采用超高速離心鑄造技術(shù)開發(fā)耐磨薄壁鑄管
    四川冶金(2018年1期)2018-09-25 02:39:26
    精品一区二区免费观看| 伊人久久精品亚洲午夜| 99国产精品一区二区蜜桃av| 黄片wwwwww| 插逼视频在线观看| 91精品一卡2卡3卡4卡| 国产精品一二三区在线看| 毛片一级片免费看久久久久| 九色成人免费人妻av| 哪个播放器可以免费观看大片| 国内精品美女久久久久久| a级一级毛片免费在线观看| 国产精品伦人一区二区| 亚洲成人av在线免费| 亚洲国产精品国产精品| 给我免费播放毛片高清在线观看| 噜噜噜噜噜久久久久久91| 国产成年人精品一区二区| 日韩人妻高清精品专区| 伦理电影大哥的女人| 成人欧美大片| 精品久久久久久久久久免费视频| 精品日产1卡2卡| 亚洲精品影视一区二区三区av| 菩萨蛮人人尽说江南好唐韦庄 | 午夜福利成人在线免费观看| 成人无遮挡网站| 听说在线观看完整版免费高清| 97超视频在线观看视频| 欧美日韩精品成人综合77777| 久久久久久九九精品二区国产| 亚洲av二区三区四区| 欧美日韩国产亚洲二区| 老师上课跳d突然被开到最大视频| 人妻系列 视频| 国产成人影院久久av| 国产黄色小视频在线观看| 麻豆国产97在线/欧美| 3wmmmm亚洲av在线观看| 男的添女的下面高潮视频| av福利片在线观看| 欧美激情国产日韩精品一区| 中文在线观看免费www的网站| 久久精品久久久久久久性| 好男人视频免费观看在线| 3wmmmm亚洲av在线观看| 男女啪啪激烈高潮av片| 国产高潮美女av| 国产高清不卡午夜福利| 日韩国内少妇激情av| 99久久精品一区二区三区| 直男gayav资源| 午夜激情欧美在线| 如何舔出高潮| 美女 人体艺术 gogo| 一区二区三区免费毛片| 欧美一区二区亚洲| 床上黄色一级片| 亚洲18禁久久av| 国产精品三级大全| 五月伊人婷婷丁香| 神马国产精品三级电影在线观看| 日本成人三级电影网站| 变态另类成人亚洲欧美熟女| 黄色配什么色好看| 日日摸夜夜添夜夜添av毛片| 国产色爽女视频免费观看| 免费黄网站久久成人精品| 国产精品一二三区在线看| 国产精品久久久久久精品电影小说 | 校园人妻丝袜中文字幕| 日本五十路高清| 日本黄大片高清| 色综合色国产| 欧美人与善性xxx| 精品久久久噜噜| 日本爱情动作片www.在线观看| 亚洲精品色激情综合| 国产 一区精品| 国产精品福利在线免费观看| 男人舔奶头视频| 91午夜精品亚洲一区二区三区| 亚洲激情五月婷婷啪啪| 欧美精品一区二区大全| 亚洲中文字幕一区二区三区有码在线看| 国产毛片a区久久久久| 亚洲成av人片在线播放无| 国产精品麻豆人妻色哟哟久久 | 永久网站在线| 岛国毛片在线播放| kizo精华| 久久久久免费精品人妻一区二区| 国产大屁股一区二区在线视频| 51国产日韩欧美| 亚洲最大成人手机在线| 欧美zozozo另类| 国产精品精品国产色婷婷| 亚洲av免费在线观看| 欧美性猛交黑人性爽| av免费在线看不卡| 美女大奶头视频| 2021天堂中文幕一二区在线观| 男的添女的下面高潮视频| 亚洲欧美精品自产自拍| av天堂中文字幕网| 久久鲁丝午夜福利片| 欧美+日韩+精品| 中文字幕av在线有码专区| 国产在视频线在精品| 晚上一个人看的免费电影| 一级黄片播放器| 好男人视频免费观看在线| 69人妻影院| 免费大片18禁| 久久久久久国产a免费观看| 亚洲av成人av| 亚洲自拍偷在线| 亚洲精品日韩在线中文字幕 | 欧美性猛交黑人性爽| 波多野结衣高清作品| 丰满的人妻完整版| 国内揄拍国产精品人妻在线| 哪个播放器可以免费观看大片| 亚洲真实伦在线观看| 欧美+亚洲+日韩+国产| 国产亚洲精品久久久久久毛片| 人妻制服诱惑在线中文字幕| 不卡视频在线观看欧美| 成人永久免费在线观看视频| 欧美日韩国产亚洲二区| 91狼人影院| 欧美日韩国产亚洲二区| 亚洲无线观看免费| 国产亚洲精品av在线| 97超碰精品成人国产| 日韩在线高清观看一区二区三区| 18+在线观看网站| 国产激情偷乱视频一区二区| 亚洲丝袜综合中文字幕| 可以在线观看毛片的网站| 国产午夜精品一二区理论片| 国产成人精品一,二区 | 男的添女的下面高潮视频| 国产极品精品免费视频能看的| 国产老妇女一区| 人体艺术视频欧美日本| 美女脱内裤让男人舔精品视频 | 51国产日韩欧美| 三级毛片av免费| 国产精品一区www在线观看| 久久久久网色| 三级毛片av免费| 久久精品国产99精品国产亚洲性色| 欧美成人免费av一区二区三区| 免费黄网站久久成人精品| 十八禁国产超污无遮挡网站| 青春草视频在线免费观看| 大又大粗又爽又黄少妇毛片口| 国产高清三级在线| 成人一区二区视频在线观看| 中国美白少妇内射xxxbb| .国产精品久久| 国产精品综合久久久久久久免费| av在线观看视频网站免费| 男女下面进入的视频免费午夜| 久久久久久伊人网av| 亚洲熟妇中文字幕五十中出| 欧美一区二区国产精品久久精品| 亚洲欧美日韩卡通动漫| 噜噜噜噜噜久久久久久91| 欧美性猛交黑人性爽| 69人妻影院| 日本av手机在线免费观看| 性插视频无遮挡在线免费观看| 中国美女看黄片| 国产片特级美女逼逼视频| 极品教师在线视频| 日本一本二区三区精品| 国产午夜精品一二区理论片| 内射极品少妇av片p| 欧美区成人在线视频| 12—13女人毛片做爰片一| 日韩av不卡免费在线播放| av国产免费在线观看| 亚洲一级一片aⅴ在线观看| 成年女人永久免费观看视频| 69人妻影院| 禁无遮挡网站| 人妻系列 视频| 蜜桃久久精品国产亚洲av| 精品久久久久久久久久免费视频| 18+在线观看网站| av天堂中文字幕网| 日韩av不卡免费在线播放| 欧美日韩精品成人综合77777| 爱豆传媒免费全集在线观看| 亚洲无线在线观看| 欧美成人一区二区免费高清观看| 国产美女午夜福利| 亚洲精品456在线播放app| 国产精品久久久久久久久免| 欧美成人免费av一区二区三区| 欧美极品一区二区三区四区| 精品人妻一区二区三区麻豆| 波多野结衣巨乳人妻| 伦理电影大哥的女人| 国产精品久久久久久久电影| 在线观看av片永久免费下载| 少妇丰满av| 有码 亚洲区| 狠狠狠狠99中文字幕| 一级毛片我不卡| 51国产日韩欧美| 在线播放国产精品三级| 日韩欧美在线乱码| 精品不卡国产一区二区三区| av天堂在线播放| 99久久中文字幕三级久久日本| 亚洲最大成人av| 精品久久久久久久末码| 非洲黑人性xxxx精品又粗又长| 极品教师在线视频| 天堂网av新在线| 国产成人一区二区在线| av.在线天堂| 亚洲精品自拍成人| 日韩制服骚丝袜av| 国产一区二区亚洲精品在线观看| 亚洲欧美日韩卡通动漫| 一本久久中文字幕| 又爽又黄无遮挡网站| 真实男女啪啪啪动态图| 国产伦在线观看视频一区| 成人特级黄色片久久久久久久| 边亲边吃奶的免费视频| 成人三级黄色视频| 97超视频在线观看视频| 在线观看美女被高潮喷水网站| 国产亚洲av嫩草精品影院| 桃色一区二区三区在线观看| 精品久久久久久成人av| 久久这里有精品视频免费| 看十八女毛片水多多多| 日韩精品青青久久久久久| 亚洲av.av天堂| 日韩成人av中文字幕在线观看| 亚洲av免费高清在线观看| 久久午夜亚洲精品久久| 免费在线观看成人毛片| 又爽又黄无遮挡网站| 中文字幕人妻熟人妻熟丝袜美| 亚洲欧美成人精品一区二区| 欧美区成人在线视频| 日产精品乱码卡一卡2卡三| 国产精品,欧美在线| 五月伊人婷婷丁香| 欧美bdsm另类| 99在线人妻在线中文字幕| av视频在线观看入口| 亚洲人与动物交配视频| 女的被弄到高潮叫床怎么办| 99热精品在线国产| 亚洲经典国产精华液单| 2021天堂中文幕一二区在线观| 长腿黑丝高跟| 校园人妻丝袜中文字幕| 简卡轻食公司| 日本在线视频免费播放| 美女被艹到高潮喷水动态| 黄色配什么色好看| 精品人妻偷拍中文字幕| 国产精品,欧美在线| 免费人成视频x8x8入口观看| 在线免费十八禁| 高清毛片免费看| 国产色婷婷99| av天堂中文字幕网| 精品久久久久久久久亚洲| 有码 亚洲区| 六月丁香七月| 国产日本99.免费观看| 欧美一级a爱片免费观看看| 欧美激情久久久久久爽电影| 一进一出抽搐gif免费好疼| 91麻豆精品激情在线观看国产| 一级毛片久久久久久久久女| 国产亚洲精品久久久com| 欧美极品一区二区三区四区| 国产精品99久久久久久久久| 国产高潮美女av| 国产精品久久久久久精品电影| 91在线精品国自产拍蜜月| 免费在线观看成人毛片| 久久久精品大字幕| 三级经典国产精品| 国产一区二区三区av在线 | 午夜精品国产一区二区电影 | 三级毛片av免费| 国产色婷婷99| av天堂中文字幕网| 日韩欧美精品v在线| 亚洲精品粉嫩美女一区| 午夜免费激情av| 蜜桃久久精品国产亚洲av| 久久久久久久久久成人| 男女啪啪激烈高潮av片| 婷婷六月久久综合丁香| 免费观看人在逋| 亚洲成人久久爱视频| 日韩欧美国产在线观看| 日韩国内少妇激情av| 此物有八面人人有两片| 哪里可以看免费的av片| 中国美女看黄片| 91精品国产九色| 国产成人一区二区在线| 日韩人妻高清精品专区| 国产成人福利小说| 亚洲av免费高清在线观看| 乱码一卡2卡4卡精品| 国语自产精品视频在线第100页| 少妇人妻一区二区三区视频| 国产精品爽爽va在线观看网站| 在现免费观看毛片| 中文字幕免费在线视频6| 亚洲性久久影院| av免费观看日本| 一级毛片久久久久久久久女| 热99re8久久精品国产| 精品人妻一区二区三区麻豆| 免费观看在线日韩| 久久这里只有精品中国| 狠狠狠狠99中文字幕| 如何舔出高潮| 成年版毛片免费区| 国产精品无大码| 久久精品综合一区二区三区| 老司机影院成人| 久久久精品大字幕| 边亲边吃奶的免费视频| 亚洲国产欧美在线一区| 久久午夜亚洲精品久久| 国产 一区 欧美 日韩| 亚洲经典国产精华液单| 亚洲欧洲国产日韩| 国产成人a∨麻豆精品| 国产又黄又爽又无遮挡在线| 人体艺术视频欧美日本| 久久精品国产清高在天天线| 卡戴珊不雅视频在线播放| 一卡2卡三卡四卡精品乱码亚洲| www.av在线官网国产| 亚洲美女视频黄频| 性插视频无遮挡在线免费观看| 高清毛片免费看| av在线亚洲专区| 深夜a级毛片| 久久韩国三级中文字幕| 99久久成人亚洲精品观看| 亚洲av二区三区四区| 99久久精品热视频| 97热精品久久久久久| 亚洲av成人精品一区久久| 亚洲成人久久性| 国产精品一区二区三区四区久久| 日韩亚洲欧美综合| 午夜精品一区二区三区免费看| 黄色日韩在线| 免费观看a级毛片全部| a级毛片免费高清观看在线播放| 欧美成人a在线观看| 日本三级黄在线观看| 欧美最新免费一区二区三区| 精品国产三级普通话版| 午夜福利在线观看吧| 99久久人妻综合| 一进一出抽搐动态| 一级毛片aaaaaa免费看小| 天堂中文最新版在线下载 | 天堂av国产一区二区熟女人妻| 亚洲精品亚洲一区二区| 噜噜噜噜噜久久久久久91| 色视频www国产| 日本熟妇午夜| 一区福利在线观看| 午夜福利在线观看吧| 老女人水多毛片| 欧美精品一区二区大全| 欧美一区二区国产精品久久精品| 国产人妻一区二区三区在| 欧美变态另类bdsm刘玥| 99国产极品粉嫩在线观看| 在线观看美女被高潮喷水网站| 干丝袜人妻中文字幕| www.av在线官网国产| 国产伦精品一区二区三区视频9| 国模一区二区三区四区视频| 国产亚洲av片在线观看秒播厂 | 国产亚洲5aaaaa淫片| 久久婷婷人人爽人人干人人爱| 日韩成人av中文字幕在线观看| 欧美3d第一页| 99久久九九国产精品国产免费| 国产高清激情床上av| 亚洲精品国产av成人精品| 国产色婷婷99| 神马国产精品三级电影在线观看| 免费观看人在逋| 国产久久久一区二区三区| 亚洲人成网站在线播放欧美日韩| 国产精品人妻久久久影院| 春色校园在线视频观看| 午夜精品一区二区三区免费看| 91久久精品电影网| 99九九线精品视频在线观看视频| 一级av片app| 日日摸夜夜添夜夜添av毛片| 美女大奶头视频| 六月丁香七月| 久久久久久久亚洲中文字幕| 麻豆久久精品国产亚洲av| АⅤ资源中文在线天堂| 日本撒尿小便嘘嘘汇集6| 看免费成人av毛片| 91麻豆精品激情在线观看国产| 插阴视频在线观看视频| 日韩欧美国产在线观看| 国产精品综合久久久久久久免费| 中国国产av一级| 别揉我奶头 嗯啊视频| 人妻夜夜爽99麻豆av| or卡值多少钱| 蜜桃久久精品国产亚洲av| 亚洲一区二区三区色噜噜| 在线观看美女被高潮喷水网站| 99热这里只有精品一区| 大型黄色视频在线免费观看| 天美传媒精品一区二区| 国产在视频线在精品| 一进一出抽搐gif免费好疼| 在线观看美女被高潮喷水网站| 又黄又爽又刺激的免费视频.| 久久欧美精品欧美久久欧美| 岛国在线免费视频观看| 黄色欧美视频在线观看| 免费观看a级毛片全部| 男人的好看免费观看在线视频| 午夜视频国产福利| 男女做爰动态图高潮gif福利片| 国产真实乱freesex| 免费看光身美女| 国产精品,欧美在线| 久久久国产成人精品二区| 国产精品1区2区在线观看.| 天堂√8在线中文| 欧洲精品卡2卡3卡4卡5卡区| 亚洲一区二区三区色噜噜| 一个人免费在线观看电影| 久久久a久久爽久久v久久| av又黄又爽大尺度在线免费看 | 在线观看一区二区三区| 男人和女人高潮做爰伦理| 久久久久久久久久成人| 天堂√8在线中文| 又爽又黄无遮挡网站| 美女脱内裤让男人舔精品视频 | 亚洲最大成人手机在线| 亚洲,欧美,日韩| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品国产清高在天天线| 狂野欧美白嫩少妇大欣赏| 国内精品一区二区在线观看| 我的女老师完整版在线观看| 日本黄色片子视频| 欧美三级亚洲精品| 天美传媒精品一区二区| 国产精品电影一区二区三区| 亚洲真实伦在线观看| 欧美成人一区二区免费高清观看| 亚洲av中文字字幕乱码综合| 国产伦精品一区二区三区视频9| av女优亚洲男人天堂| 日本熟妇午夜| 国产男人的电影天堂91| 欧美成人免费av一区二区三区| 麻豆久久精品国产亚洲av| 欧美成人a在线观看| 97超碰精品成人国产| 99久久中文字幕三级久久日本| 极品教师在线视频| 欧美+亚洲+日韩+国产| 嫩草影院入口| 日韩欧美在线乱码| 美女国产视频在线观看| 麻豆精品久久久久久蜜桃| 欧美日韩一区二区视频在线观看视频在线 | 校园春色视频在线观看| 麻豆成人午夜福利视频| 欧美日韩国产亚洲二区| 国产一区亚洲一区在线观看| 一卡2卡三卡四卡精品乱码亚洲| 悠悠久久av| 18禁在线播放成人免费| 欧美高清成人免费视频www| 久久亚洲精品不卡| av女优亚洲男人天堂| 国产白丝娇喘喷水9色精品| 国国产精品蜜臀av免费| 蜜桃久久精品国产亚洲av| av在线蜜桃| 在线观看午夜福利视频| 日日摸夜夜添夜夜添av毛片| 亚洲国产欧美在线一区| 国产久久久一区二区三区| 久久99精品国语久久久| 一本一本综合久久| 国产精品1区2区在线观看.| 欧美一区二区亚洲| 一级毛片aaaaaa免费看小| 菩萨蛮人人尽说江南好唐韦庄 | 欧美精品国产亚洲| 国产精品永久免费网站| 国产 一区精品| 久久精品夜色国产| 国产成人精品久久久久久| 插阴视频在线观看视频| www.av在线官网国产| av在线天堂中文字幕| 亚洲三级黄色毛片| 久久精品国产清高在天天线| 校园春色视频在线观看| 国产av在哪里看| 久久久国产成人免费| 国产熟女欧美一区二区| 免费搜索国产男女视频| 久久鲁丝午夜福利片| 久久久精品欧美日韩精品| 日韩视频在线欧美| 男女做爰动态图高潮gif福利片| 干丝袜人妻中文字幕| 国产三级中文精品| 亚洲欧美日韩高清专用| 三级男女做爰猛烈吃奶摸视频| 久久综合国产亚洲精品| 大又大粗又爽又黄少妇毛片口| 99热网站在线观看| 亚洲图色成人| 国产一区二区在线观看日韩| 青春草国产在线视频 | 国产成人精品婷婷| 亚洲久久久久久中文字幕| 亚洲欧美日韩无卡精品| 秋霞在线观看毛片| 成人毛片a级毛片在线播放| 男人的好看免费观看在线视频| 国产探花极品一区二区| 久久久久久国产a免费观看| 国产成人a区在线观看| 丰满的人妻完整版| 女的被弄到高潮叫床怎么办| av在线观看视频网站免费| 在现免费观看毛片| av.在线天堂| 免费观看的影片在线观看| 女同久久另类99精品国产91| 亚洲精品久久国产高清桃花| 久久久久久久久久久免费av| 我要搜黄色片| 尾随美女入室| 黄色视频,在线免费观看| 国产成人午夜福利电影在线观看| 精品久久国产蜜桃| 免费人成在线观看视频色| 国产男人的电影天堂91| 99久久成人亚洲精品观看| 久久这里只有精品中国| 校园春色视频在线观看| 亚洲精品成人久久久久久| 欧美3d第一页| 91aial.com中文字幕在线观看| a级毛色黄片| 99国产极品粉嫩在线观看| 久久精品夜色国产| 亚洲激情五月婷婷啪啪| 能在线免费观看的黄片| 我的老师免费观看完整版| 亚洲最大成人手机在线| av.在线天堂| 毛片女人毛片| 亚洲欧美精品自产自拍| 国内精品宾馆在线| 成年女人看的毛片在线观看| 春色校园在线视频观看| 夜夜看夜夜爽夜夜摸| 国产亚洲精品久久久com| 不卡一级毛片| 麻豆国产av国片精品| 我的老师免费观看完整版| 久久久国产成人免费| 男女啪啪激烈高潮av片| 成人鲁丝片一二三区免费| av国产免费在线观看| 亚洲av电影不卡..在线观看| 男女下面进入的视频免费午夜| 日本三级黄在线观看| 免费av毛片视频| 精品人妻一区二区三区麻豆| www.色视频.com| 久久精品国产亚洲av天美| 久久婷婷人人爽人人干人人爱| 亚洲第一电影网av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久精品94久久精品| 在线国产一区二区在线| 变态另类丝袜制服|