• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Evolving Random Network and Its Asymptotic Structure

    2013-08-10 03:06:54LIZHIMINANDGENGJINHUI

    LI ZHI-MIN AND GENG JIN-HUI

    (School of Mathematics and Physics,Anhui Polytechnic University,Wuhu,Anhui,241000)

    Communicated by Wang De-hui

    An Evolving Random Network and Its Asymptotic Structure

    LI ZHI-MIN AND GENG JIN-HUI

    (School of Mathematics and Physics,Anhui Polytechnic University,Wuhu,Anhui,241000)

    Communicated by Wang De-hui

    In this paper,we propose an evolving random network.The model is a linear combination of preferential attachment model and uniform model.We show that scaling limit distribution of the number of leaves at time n is approximated by nomal distribution and the proportional degree sequence obeys power law.The branching structure and maximum degree are also discussed in this paper.

    random network,scale-free graph,degree sequence

    1 Introduction

    In the recent ten years,there has been much interest in understanding the properties of real large-scale complex networks which describe a wide range of systems in nature and society such as the internet,the world wide web,protein interaction networks,brain cell networks, science collaboration graph,web of human sexual contact,phone-call networks,power and neural networks,etc.(see[1]).In pursuit of such understanding,mathematicians,biologists and physicists usually used random graphs to model all these real-life networks.For a general introduction,we can see[2–7].

    In the model of[2],when m=1,the resulting graph is a tree.These scale-free trees have known since the 1980s as nonuniform random recursive tree.Two nearly identical classes of these trees are random recursive trees with attraction of vertices proportional to the degrees and random plane-orient recursive tree(see[8–13]).Later,the model was generalized by Bollobˊas et al.[14]and Mahmoud[15],in which the probability of choosing an old vertex is (k+β)/Sn,instead of k/2n,with a given β>-1,where k is the degree of the vertex andSn=(2+β)n+β is the sum of all weights of vertices.

    In this paper,we propose a kind of evolving random networks which shows tree structure. We start with two vertices connecting by a single edge,and at every time step,we add a vertex and connect it with one of the existing vertices according to the following rule:

    I.with probability 1-α we chose an existing vertex with equal probability;

    II.with probability α,we choose an existing vertex with the probability proportional to the degree,that is k/Sn,where k is the degree of the vertex chosen and Sn=2n is the total degree of vertices.

    The model shows many dif f erent properties from the existing model,and we show those in following sections.

    2 Normal Distribution of Sacled Number of Leaves

    In this section and herein after,Dk(n)denotes the number of vertices with degree k at time n,and

    denotes the s-th factorial moment of Dk(n).When k=1,we know that it is the number of leaves in the tree structure,and we have the following lemma:

    Lemma 2.1For k=1,we have

    and

    where n denotes the evolving time.

    Proof.Noticing the evolution of the random network,we can see that for n>1,the number of vertices of degree 1 either remains unchange if we attach vn+1to a vertex with degree 1 or increases by 1 if we attach vn+1to vertices of degree larger than 1.Hence,

    Taking expectation of both sides,we can write

    The solution of this recurrence problem with the boundary condition ED1(0)=0 is given by

    By the Stirling's formula,we obtain

    Hence

    Considering the second factorial moment of D1(n),we have a similar formula

    Noticing(2.1)and the fact that E2D1(0)=0,we have

    By the Stirling's formula,we obtain

    The proof is completed.

    By further computation,we have the following lemma:

    Lemma 2.2For arbitrary l>1 and sufficiently large n,one has

    Proof.To prove the distribution obey Poisson distribution with parameterwe need to prove that for any k∈N,the k-th factorial moment of random variable is aboutWe prove the result by mathematical induction.Let

    The cases k=1,2 are proved in Lemma 2.1.We assume that the result is true for k,that is,

    For k+1,we have

    Taking expectation of both sides,we can write

    Continuing the iteration and noticing the boundary condition

    we can write

    The second equality is obtained by the Stirling's formula.Hence for k+1 the result is also true.The proof is completed.

    Theorem 2.1LetThen when n→∞,

    in distribution,where N(0,1)denotes standard normal distribution.

    Proof.Clearly,for every k∈N,one has

    Let Y1,Y2,···be a Poisson random sequence in which Ynhas mean λn.And set

    Then Zn→N(0,1)in distribution and so

    where mkis the k-th moment of N(0,1).Therefore,the k-th moment of the sequencealso converges to mk,and the theorem is proved.

    3 Asymptotic Degree Distribution of the Network

    In this section,we prove that the degree distribution of our graph is stable almost surely as n→∞around a power law with exponentLetdenote the proportion of vertices with degree i at time n.We have the following lemma.

    Lemma 3.1For arbitrary i>2,the limit

    exists and

    Proof.We prove the lemma by mathematical induction.Considering the expectation of,we have the following relation:

    Taking expectation of both sides,we can write

    By similar calculation to Lemma 2.1,we have

    Assume that the lemma holds for i=k,i.e.,the limit

    exists and

    For i=k+1,let

    in Lemma 3.1of[3],and using the induction hypothesis for i=k,we know that

    exists and

    Then the lemma holds for i=k+1,the lemma is proved.

    Relation(3.1)can be rewritten as

    By the Stirling's formula,we obtain

    Lemma 3.2For f i xed a>0 and k,we have

    Proof.Let Y1,Y2,···,Yndenote the edge sequence added in the f i rst n time step,and=σ(Y1,···,Yn)denote the σ-algbra.For m=0,1,···,n,let

    By the tower property of conditional expectation and the fact that the σ-algbracan be deduced from,we obtain that for m<n,

    Noticing that

    and

    Therefore,we have

    Now we prove

    We only prove it for the case k=1,and the others can be proved by the same method. According to the evolution of the network,we can write

    Continuing the iteration and noticing the fact

    we see that

    Obviously,

    so

    By Asume-Hoef f ding's inequality,we have

    Theorem 3.1In the evolving random network,for f i xed k,we have

    Proof.By the Borel-Cantelli Lemma,we need to prove for arbitrary ε,

    Since

    and

    by Lemma 3.2,there exists an N such that

    4 Branch Structure of the Network

    In this section,we discuss the structure of the network.

    Let b(n)denote the number of branch trees of the root,and Y(n,k)denote the number of nodes at distance k from the root at time n.

    Theorem 4.1In the evolving random network,for f i xed α,when n→∞,

    in probability,where

    Proof.We just comput the expectation of b(n).According to the structure and formationof the network,we have

    Taking expectation of both sides,we obtain

    Continuing the iteration and noticing the fact

    we obtain

    Note that the previous second equation is obtained by the Stirling's formula.The proof is completed.

    Theorem 4.2In the evolving random network,for f i xed k and n,

    Proof.By the formation of network,we have

    Taking expectation of both sides,we have

    Now,we introduce a monopoly.Let

    Multiplying both sides of(4.1)byand summing up from 0 to∞,we have

    Noticing

    we arrive at

    Noting that L1(z)=z,we have

    So

    5 Asymptotic Convergence of Maximum Degree

    In this section,we discuss the layered structure and maximun degree of the network.

    Let X(n,j)denote the degree of node j at time n,and Δ(n,j)denote the increasing degree at node j from time n to time n+1.Obviously,we have

    Theorem 5.1In the evolving random network,the expectation of X(n,j)satisf i es

    Proof.As the network is formed by adding one node at every time step,we have

    Let

    We have

    Taking expectation of both sides,we get

    Solving the above equation with boundary condition

    we obtain

    Thus the theorem is proved.

    Let

    Denote

    We have the following theorem:

    Theorem 5.2(Z(n,j,α))is a positive martingale.

    Proof.For the random variable Z(n+1,j,α),taking the conditional expectation of Fn,we have

    Obviously,the random variable Z(n,j,α)is positive,so it is a positive martingale.The theorem is proved.

    Let (

    )

    where

    We have the following proposition:

    Proposition 5.1For positive numbers j1,···,jr,k1,···,kr,(Z(n,j1,···,jr;k1,···, kr),)is a positive martingale. Proof.Noticing the fact

    we can obtain (

    We can reach the equation because at most one of the Δ(n,ji)(i=1,···,r)is not 0.

    Taking conditional expectation about random variable Z(n,j1,···,jr;k1,···,kr),we obtain

    Thus,Z(n,j1,···,jr;k1,···,kr)is a positive martingale.The proof is completed.

    By the convergence theorem of martingale,we can assume that

    For arbitrary i and j(i<j),considering the relation of varible ζiand ζj,we obtain the following theorem.

    Theorem 5.3For the random variables ζiand ζj(i<j),we have

    (1)The two random variables are positive correlated when

    (2)The two random variables are negative correlated when

    Proof.By the property of martingale,we have

    For arbitrary i<j,let k0=k1=···=ki1=ki+1=···=kj-1=0 and r=j.Then we have

    Hence

    The proof is completed.

    As a special case in the previous proof,one can reach

    Now,we consider the maximum degree.Let Mndenote the maximum degree of the network at step n,

    Obviously,

    We have the following theorem:

    Theorem 5.4There existaand a variableμsuch that

    Proof.Notice that{M(n,n),Fn}is a submartingale sequences because{Z(n,j,1),Fn}is a martingale.We prove that the submartingale is bounded in Lk.In fact,

    The next step is to prove thatis a Cauchy sequence in Lk.For arbitrary i,j with i<j<n,we have

    Let n→∞,we get

    The last term of(5.2)can be arbitrary small when i,j grow sufficiently large.So thereexists a variable such that

    As

    the theorem is proved.

    [1]Watts D J.Small Worlds:the Dynamics of Networks between Order and Randomness.Princeton:Princeton Univ.Press,2003.

    [2]Barabˊasi B,Albert R.Emergence of scaling in random networks.Science,1999,286:509–512.

    [3]Aliello W,Chung F,Lu L Y.Random Evolution in Massive Graphs.in:James A,Panos M P,Mauricio G,Resende C.Handbook on Massive Data Sets.New York:Kluwer Academic Publishers,1998.

    [4]Barabˊasi A L.Linked:How Everything Is Connected to Everything Else and What It Means. New York:PLUME.Penguin Group Inc.,2003.

    [5]Bollobˊas B,Riordan O.Mathematical Results on Scale-free Random Graphs.in:Terveen K, Admic L.Handbook of Graphs and Networks.Berlin:Willey-VCH Publishers,2002:436–454.

    [6]Dorogovtsev S N,Mendes J F.Evolution of networks.Adv.in Phys.,2002,51:1079–1094.

    [7]Newman M E J.The structure and function of complex networks.SIAM Review,2003,45: 167–208.

    [8]Mahmoud,Smyth H R,Szymanski J.On the structure of plane-orient recursive trees and their branchs.Random Structures Algorithms,1993,4:151–176.

    [9]Mori T F.On random trees.Studia Sci.Math.Hungar,2002,39:143–155.

    [10]Lu J L,Feng Q.Strong consistency of the number of vertices of given degrees in nununiform random recursive tree.Yokohama Math,1998,45:61–69.

    [11]Szymanski J.On the nununiform random recursive tree.Ann.Discrete Math,1987,33:297–306.

    [12]Biggins J D,Grey D R.A note on the growth of random trees.Statist.Probab.Let.,1997,32: 339–342.

    [13]Katona Z,Mori T F.A new class of scale free and random graphs.Statit.Probab.Let.,2006, 76:1587–1593.

    [14]Bollobˊas B,Riodan O,Spencer J,Tusnady G.The degree sequence of a scale-free random graph process.Random Structure Algorithms,2001,18:270–290.

    [15]Mahmoud,Smyth H R.A survy of recursive tree.Theory Probab.Math.Statist.,2001,51: 1–29.

    A

    1674-5647(2013)03-0203-15

    Received date:July 12,2010.

    The NSF(71271003)of China,the Programming Fund(12YJC630111,12YJA790041)of the Humanities and Social Sciences Research of the Ministry of Education of China,the NSF(10040606Q03)of Anhui Province,and Key University Science Research Project(KJ2013A044)of Anhui Province.

    E-mail address:zmli08@ahpu.edu.cn(Li Z M).

    2000 MR subject classif i cation:05C07,05C75

    久久热在线av| 亚洲av中文av极速乱| 一级毛片 在线播放| 国精品久久久久久国模美| 久久精品夜色国产| 亚洲三级黄色毛片| 美女脱内裤让男人舔精品视频| 看非洲黑人一级黄片| 狂野欧美激情性xxxx在线观看| 在现免费观看毛片| 乱人伦中国视频| 久久久久精品人妻al黑| 丝袜人妻中文字幕| www.熟女人妻精品国产 | 日韩成人伦理影院| 国产精品 国内视频| 亚洲av男天堂| 午夜福利视频精品| 女的被弄到高潮叫床怎么办| 国产精品国产av在线观看| 午夜福利在线观看免费完整高清在| 亚洲国产av新网站| 亚洲成人手机| 韩国精品一区二区三区 | 亚洲精品乱码久久久久久按摩| 日本wwww免费看| 最近中文字幕高清免费大全6| 一边摸一边做爽爽视频免费| 18+在线观看网站| 欧美xxⅹ黑人| 欧美精品国产亚洲| 人妻少妇偷人精品九色| 日韩欧美一区视频在线观看| 一级片免费观看大全| 又粗又硬又长又爽又黄的视频| 精品国产国语对白av| 亚洲美女搞黄在线观看| 久久女婷五月综合色啪小说| 草草在线视频免费看| 亚洲欧美日韩卡通动漫| 18禁观看日本| 色94色欧美一区二区| 如日韩欧美国产精品一区二区三区| 搡老乐熟女国产| 最近2019中文字幕mv第一页| 久久亚洲国产成人精品v| 1024视频免费在线观看| 精品第一国产精品| 成人二区视频| 十八禁网站网址无遮挡| 美女主播在线视频| 男男h啪啪无遮挡| 亚洲精品国产av蜜桃| 国产在线视频一区二区| 国产欧美日韩综合在线一区二区| 热re99久久国产66热| 高清毛片免费看| 成人免费观看视频高清| 国产成人91sexporn| 99久久综合免费| 久久久久久人妻| 国产精品.久久久| 国产欧美日韩综合在线一区二区| 热re99久久国产66热| 男人舔女人的私密视频| 亚洲人成77777在线视频| 亚洲欧洲国产日韩| 亚洲成人手机| 日本91视频免费播放| 熟女电影av网| 少妇的丰满在线观看| 大香蕉97超碰在线| 男女无遮挡免费网站观看| 国产女主播在线喷水免费视频网站| 女人精品久久久久毛片| www日本在线高清视频| 老女人水多毛片| 天堂中文最新版在线下载| 日日撸夜夜添| 2021少妇久久久久久久久久久| 天天影视国产精品| 伊人亚洲综合成人网| 啦啦啦在线观看免费高清www| 国产精品久久久久成人av| 久久久国产欧美日韩av| 制服丝袜香蕉在线| 黑人猛操日本美女一级片| 免费黄色在线免费观看| 国产毛片在线视频| 69精品国产乱码久久久| 亚洲精品国产av成人精品| 国产高清三级在线| 美女大奶头黄色视频| 亚洲内射少妇av| 亚洲人与动物交配视频| 色5月婷婷丁香| 午夜av观看不卡| 久久青草综合色| 久久久久久久国产电影| 精品国产露脸久久av麻豆| 最近最新中文字幕免费大全7| 热99国产精品久久久久久7| 男人添女人高潮全过程视频| 汤姆久久久久久久影院中文字幕| 一二三四中文在线观看免费高清| 乱码一卡2卡4卡精品| 免费观看av网站的网址| 夫妻午夜视频| 国产成人欧美| 国产av精品麻豆| 国产精品国产三级国产av玫瑰| 色婷婷久久久亚洲欧美| 免费看不卡的av| 成人手机av| 亚洲国产精品一区三区| 天天躁夜夜躁狠狠躁躁| 男女免费视频国产| 成人18禁高潮啪啪吃奶动态图| 欧美成人精品欧美一级黄| 国产一区二区激情短视频 | av国产久精品久网站免费入址| 国产在线一区二区三区精| 你懂的网址亚洲精品在线观看| 国产男人的电影天堂91| 亚洲精品成人av观看孕妇| 在线精品无人区一区二区三| 国产麻豆69| 一本久久精品| 另类亚洲欧美激情| av福利片在线| 亚洲av免费高清在线观看| 80岁老熟妇乱子伦牲交| 最黄视频免费看| 99九九在线精品视频| 天天影视国产精品| 两性夫妻黄色片 | 97超碰精品成人国产| 亚洲熟女精品中文字幕| 欧美 亚洲 国产 日韩一| 秋霞伦理黄片| 欧美人与性动交α欧美精品济南到 | 亚洲国产精品专区欧美| av女优亚洲男人天堂| 国产精品人妻久久久久久| 26uuu在线亚洲综合色| 一级毛片我不卡| 美女中出高潮动态图| 日产精品乱码卡一卡2卡三| 日本爱情动作片www.在线观看| 十八禁高潮呻吟视频| 亚洲一码二码三码区别大吗| 国产综合精华液| 日韩制服丝袜自拍偷拍| 美女大奶头黄色视频| 黄色怎么调成土黄色| 国产乱人偷精品视频| 精品福利永久在线观看| 两个人看的免费小视频| av黄色大香蕉| freevideosex欧美| 91精品伊人久久大香线蕉| 国产又爽黄色视频| 亚洲色图 男人天堂 中文字幕 | 深夜精品福利| 国产麻豆69| 丝袜脚勾引网站| 99国产精品免费福利视频| 精品国产一区二区久久| 美女国产高潮福利片在线看| 黄色一级大片看看| 九色成人免费人妻av| 国产69精品久久久久777片| 99国产精品免费福利视频| 国产精品国产三级专区第一集| 亚洲国产精品一区三区| 久久久久久人人人人人| 国产欧美亚洲国产| 少妇被粗大猛烈的视频| 99久久综合免费| 精品亚洲成a人片在线观看| 亚洲av电影在线进入| 亚洲一级一片aⅴ在线观看| 亚洲精品日本国产第一区| 日韩视频在线欧美| 国产av码专区亚洲av| 亚洲精品色激情综合| 亚洲av免费高清在线观看| 精品亚洲成a人片在线观看| 国产成人精品在线电影| 日本色播在线视频| 男女边吃奶边做爰视频| 国产老妇伦熟女老妇高清| 韩国精品一区二区三区 | 国产日韩一区二区三区精品不卡| a 毛片基地| 精品国产一区二区三区四区第35| 最近中文字幕2019免费版| 亚洲欧洲国产日韩| 在线观看免费高清a一片| 女人被躁到高潮嗷嗷叫费观| 人妻一区二区av| 成人手机av| 亚洲精品久久午夜乱码| 高清不卡的av网站| 国内精品宾馆在线| 新久久久久国产一级毛片| 人人澡人人妻人| 久久久久精品性色| 亚洲人成网站在线观看播放| 精品一区二区免费观看| 一二三四在线观看免费中文在 | 日韩av不卡免费在线播放| 黄色毛片三级朝国网站| h视频一区二区三区| 五月伊人婷婷丁香| 在线免费观看不下载黄p国产| 国产成人精品福利久久| 国产激情久久老熟女| 狠狠精品人妻久久久久久综合| 交换朋友夫妻互换小说| 欧美日韩国产mv在线观看视频| 久久毛片免费看一区二区三区| 精品一区二区三区四区五区乱码 | 国产高清不卡午夜福利| 美女xxoo啪啪120秒动态图| av在线app专区| 亚洲精品久久久久久婷婷小说| 久久午夜福利片| 国产又色又爽无遮挡免| 亚洲一级一片aⅴ在线观看| 欧美丝袜亚洲另类| 久久99一区二区三区| 日本爱情动作片www.在线观看| 日韩视频在线欧美| 少妇人妻久久综合中文| 飞空精品影院首页| 男女边摸边吃奶| 王馨瑶露胸无遮挡在线观看| 免费看不卡的av| 99久久中文字幕三级久久日本| 黄网站色视频无遮挡免费观看| 国产有黄有色有爽视频| 高清不卡的av网站| 久久av网站| 国产一区亚洲一区在线观看| 亚洲国产成人一精品久久久| 日韩av不卡免费在线播放| 丰满少妇做爰视频| 免费大片黄手机在线观看| 有码 亚洲区| 亚洲美女搞黄在线观看| 日本色播在线视频| 人妻系列 视频| 成年美女黄网站色视频大全免费| 国精品久久久久久国模美| av视频免费观看在线观看| 99热网站在线观看| 在线亚洲精品国产二区图片欧美| av在线观看视频网站免费| 亚洲四区av| 岛国毛片在线播放| 久久人人爽av亚洲精品天堂| 国产爽快片一区二区三区| 久久精品人人爽人人爽视色| 亚洲成国产人片在线观看| 亚洲国产色片| 亚洲av电影在线进入| 青青草视频在线视频观看| 青春草视频在线免费观看| 搡女人真爽免费视频火全软件| 亚洲五月色婷婷综合| 插逼视频在线观看| 久久韩国三级中文字幕| 不卡视频在线观看欧美| 精品第一国产精品| 免费看不卡的av| 亚洲国产欧美在线一区| 久久久a久久爽久久v久久| 五月伊人婷婷丁香| 日韩 亚洲 欧美在线| 色网站视频免费| www.熟女人妻精品国产 | 国产精品一国产av| 嫩草影院入口| 亚洲国产日韩一区二区| 色视频在线一区二区三区| 一区二区日韩欧美中文字幕 | 欧美丝袜亚洲另类| 国产极品天堂在线| 亚洲人与动物交配视频| 伊人亚洲综合成人网| 春色校园在线视频观看| 国产男女超爽视频在线观看| 久久 成人 亚洲| 国产又色又爽无遮挡免| www.熟女人妻精品国产 | 欧美日韩视频高清一区二区三区二| 成年女人在线观看亚洲视频| 777米奇影视久久| 久久人人97超碰香蕉20202| 国产精品无大码| 熟女人妻精品中文字幕| 伊人亚洲综合成人网| 又黄又粗又硬又大视频| 欧美日韩综合久久久久久| 啦啦啦视频在线资源免费观看| 蜜桃在线观看..| 日韩大片免费观看网站| 国产亚洲一区二区精品| 国产av精品麻豆| 亚洲欧洲日产国产| 丝袜在线中文字幕| 最近最新中文字幕大全免费视频 | 午夜精品国产一区二区电影| 成人亚洲欧美一区二区av| 国产精品国产三级国产av玫瑰| 水蜜桃什么品种好| 高清视频免费观看一区二区| 亚洲欧美成人综合另类久久久| 我要看黄色一级片免费的| 午夜视频国产福利| 成人黄色视频免费在线看| 久久精品国产综合久久久 | 一级片'在线观看视频| 久久精品久久久久久久性| 久久国产精品大桥未久av| 啦啦啦在线观看免费高清www| 亚洲av综合色区一区| 久久av网站| 久久久久精品久久久久真实原创| av女优亚洲男人天堂| 久久久久久久久久人人人人人人| 毛片一级片免费看久久久久| 国产精品.久久久| 亚洲精品久久午夜乱码| 捣出白浆h1v1| 高清不卡的av网站| 看十八女毛片水多多多| 热re99久久国产66热| 九草在线视频观看| 免费观看无遮挡的男女| 国产一区二区激情短视频 | 国产精品免费大片| 欧美丝袜亚洲另类| 99国产综合亚洲精品| 中文字幕最新亚洲高清| 乱码一卡2卡4卡精品| 伊人亚洲综合成人网| 91在线精品国自产拍蜜月| 国产免费又黄又爽又色| 香蕉国产在线看| 中文字幕精品免费在线观看视频 | 青春草亚洲视频在线观看| 在线观看人妻少妇| 日韩av不卡免费在线播放| 9色porny在线观看| 精品亚洲乱码少妇综合久久| 日韩av在线免费看完整版不卡| 热re99久久国产66热| 久热这里只有精品99| 少妇人妻 视频| 欧美日韩av久久| 久久国产精品大桥未久av| 9色porny在线观看| 巨乳人妻的诱惑在线观看| 欧美日韩精品成人综合77777| 欧美日韩av久久| 亚洲成人av在线免费| 亚洲精品久久午夜乱码| 午夜福利乱码中文字幕| 国产亚洲最大av| 两个人免费观看高清视频| 国产亚洲欧美精品永久| 精品视频人人做人人爽| 国产亚洲最大av| 久久久欧美国产精品| 国产高清国产精品国产三级| 免费在线观看完整版高清| 久久人人爽av亚洲精品天堂| www.av在线官网国产| 日日爽夜夜爽网站| 黄色配什么色好看| 久久热在线av| 九草在线视频观看| 国产免费一区二区三区四区乱码| 国产av码专区亚洲av| 一本大道久久a久久精品| 精品国产露脸久久av麻豆| 亚洲欧美清纯卡通| 寂寞人妻少妇视频99o| 大香蕉97超碰在线| 22中文网久久字幕| 久久久精品区二区三区| 日韩伦理黄色片| 丝瓜视频免费看黄片| www.色视频.com| 国产亚洲av片在线观看秒播厂| 久久久久视频综合| 秋霞伦理黄片| 91久久精品国产一区二区三区| kizo精华| 亚洲 欧美一区二区三区| 黄色一级大片看看| 人妻人人澡人人爽人人| 国产免费一级a男人的天堂| 中文乱码字字幕精品一区二区三区| 成人毛片60女人毛片免费| 日韩 亚洲 欧美在线| 最新的欧美精品一区二区| 建设人人有责人人尽责人人享有的| av播播在线观看一区| 如何舔出高潮| 亚洲伊人久久精品综合| 免费黄频网站在线观看国产| 日韩av免费高清视频| 免费看不卡的av| 观看美女的网站| av有码第一页| 久久国内精品自在自线图片| 男女边摸边吃奶| 丰满饥渴人妻一区二区三| 国产精品一国产av| 亚洲精品一区蜜桃| 777米奇影视久久| 午夜视频国产福利| 色视频在线一区二区三区| 国产一区二区激情短视频 | 国产高清三级在线| 一级毛片电影观看| 日本黄色日本黄色录像| videossex国产| 精品熟女少妇av免费看| 国产黄色视频一区二区在线观看| 国产精品偷伦视频观看了| 女人被躁到高潮嗷嗷叫费观| 我的女老师完整版在线观看| 精品视频人人做人人爽| 国产综合精华液| 性高湖久久久久久久久免费观看| 欧美 亚洲 国产 日韩一| 一级片免费观看大全| 建设人人有责人人尽责人人享有的| 69精品国产乱码久久久| videos熟女内射| 国产男人的电影天堂91| 午夜免费男女啪啪视频观看| 日日爽夜夜爽网站| 久久人妻熟女aⅴ| 最近2019中文字幕mv第一页| 波多野结衣一区麻豆| 亚洲伊人色综图| 大码成人一级视频| 国产又色又爽无遮挡免| 黄色毛片三级朝国网站| 欧美xxⅹ黑人| av不卡在线播放| 欧美日韩一区二区视频在线观看视频在线| 久久午夜福利片| 黄色一级大片看看| 日本爱情动作片www.在线观看| 久久久欧美国产精品| 国产男女内射视频| videos熟女内射| 美女国产视频在线观看| h视频一区二区三区| 免费大片18禁| 国产av精品麻豆| a 毛片基地| 如日韩欧美国产精品一区二区三区| 黑人巨大精品欧美一区二区蜜桃 | 亚洲国产精品999| 一二三四中文在线观看免费高清| 国产色婷婷99| 亚洲美女黄色视频免费看| 韩国精品一区二区三区 | 深夜精品福利| 99九九在线精品视频| 精品福利永久在线观看| 成人二区视频| 最近最新中文字幕免费大全7| 精品人妻在线不人妻| 久久99热这里只频精品6学生| 久久久久久久久久人人人人人人| 亚洲欧美一区二区三区国产| 久久精品国产自在天天线| 在线观看人妻少妇| 中文字幕最新亚洲高清| 人人妻人人澡人人爽人人夜夜| 国产精品嫩草影院av在线观看| 亚洲av中文av极速乱| 男人舔女人的私密视频| 久久久国产一区二区| 人人妻人人爽人人添夜夜欢视频| 午夜91福利影院| 男的添女的下面高潮视频| 999精品在线视频| 日日撸夜夜添| 97超碰精品成人国产| 精品少妇内射三级| 一级片免费观看大全| 女人被躁到高潮嗷嗷叫费观| 亚洲国产欧美在线一区| 久热久热在线精品观看| 一本—道久久a久久精品蜜桃钙片| 国产av一区二区精品久久| 中文字幕av电影在线播放| 国产免费福利视频在线观看| 国产无遮挡羞羞视频在线观看| 久久久久久伊人网av| 午夜免费观看性视频| 精品少妇久久久久久888优播| 你懂的网址亚洲精品在线观看| 人妻系列 视频| 日韩制服骚丝袜av| 80岁老熟妇乱子伦牲交| 精品少妇内射三级| 91午夜精品亚洲一区二区三区| 中文字幕亚洲精品专区| 国产成人精品婷婷| 成年人免费黄色播放视频| 欧美国产精品va在线观看不卡| 超色免费av| 国产精品蜜桃在线观看| 爱豆传媒免费全集在线观看| 人妻一区二区av| 午夜91福利影院| 国产精品 国内视频| 纯流量卡能插随身wifi吗| 亚洲av福利一区| 欧美人与善性xxx| 国语对白做爰xxxⅹ性视频网站| 国产黄色免费在线视频| 极品少妇高潮喷水抽搐| 狂野欧美激情性xxxx在线观看| 国产男女超爽视频在线观看| 国产日韩欧美视频二区| 亚洲综合色惰| 国产毛片在线视频| 大香蕉97超碰在线| 国产熟女午夜一区二区三区| 免费少妇av软件| 最近中文字幕高清免费大全6| 满18在线观看网站| 三上悠亚av全集在线观看| 九色成人免费人妻av| 大香蕉久久网| 最近2019中文字幕mv第一页| 精品久久久久久电影网| 国产成人午夜福利电影在线观看| 一级毛片我不卡| 日本与韩国留学比较| 91成人精品电影| 中国国产av一级| 中文字幕另类日韩欧美亚洲嫩草| 激情视频va一区二区三区| 亚洲一级一片aⅴ在线观看| 高清视频免费观看一区二区| 高清欧美精品videossex| 亚洲熟女精品中文字幕| 国产色婷婷99| 国产成人免费无遮挡视频| 亚洲精品aⅴ在线观看| 在线亚洲精品国产二区图片欧美| 国国产精品蜜臀av免费| 欧美日韩综合久久久久久| 激情视频va一区二区三区| 五月玫瑰六月丁香| 精品人妻熟女毛片av久久网站| 在现免费观看毛片| 国产极品粉嫩免费观看在线| 午夜视频国产福利| 一级毛片我不卡| 亚洲色图 男人天堂 中文字幕 | 国产一区二区在线观看av| 亚洲精品一二三| 欧美 亚洲 国产 日韩一| 日韩中字成人| 久热这里只有精品99| 咕卡用的链子| 91aial.com中文字幕在线观看| 欧美97在线视频| 卡戴珊不雅视频在线播放| 亚洲精品日韩在线中文字幕| av在线老鸭窝| 久久97久久精品| 1024视频免费在线观看| 免费黄频网站在线观看国产| av国产精品久久久久影院| 男女边摸边吃奶| 在线观看人妻少妇| 亚洲 欧美一区二区三区| 一级,二级,三级黄色视频| 精品亚洲成a人片在线观看| 精品少妇久久久久久888优播| 母亲3免费完整高清在线观看 | 亚洲人成网站在线观看播放| 亚洲综合精品二区| 一区在线观看完整版| 久久精品aⅴ一区二区三区四区 | 久久精品夜色国产| 亚洲一级一片aⅴ在线观看| 黄色配什么色好看| 熟女人妻精品中文字幕| 日日撸夜夜添| 亚洲欧美成人精品一区二区| av不卡在线播放| 成人国产麻豆网| 午夜福利,免费看| 久久久久精品性色| 国产成人免费观看mmmm| 十八禁网站网址无遮挡| 51国产日韩欧美| 国产一区亚洲一区在线观看| 看十八女毛片水多多多| 啦啦啦啦在线视频资源|