馬伯軍,劉程捷,陳析豐,程祝寬
(1.浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,浙江金華 321004;2.中國(guó)科學(xué)院遺傳與發(fā)育生物學(xué)研究所,北京 100101)
花粉壁作為植物細(xì)胞的一種防御結(jié)構(gòu),在花粉發(fā)育和受精過程中起著重要的作用[1].花粉壁可維持花粉的空間結(jié)構(gòu)及抵抗外界環(huán)境對(duì)花粉的傷害[2];花粉的發(fā)育需要完整的花粉壁,否則會(huì)阻礙花粉的發(fā)育,導(dǎo)致花粉囊內(nèi)花粉的降解[3];花粉壁上的蛋白質(zhì)還能與柱頭表面蛋白發(fā)生相互作用,參與花粉與柱頭之間的識(shí)別[4].花粉壁是所有植物細(xì)胞壁和類型中最復(fù)雜的一種[5].目前,比較一致的觀點(diǎn)是將花粉壁分為外壁和內(nèi)壁:外壁主要由孢粉素構(gòu)成,結(jié)構(gòu)上又可分為外壁外層和外壁內(nèi)層,其中外壁外層包含覆蓋層、柱狀層、含油層及基層;內(nèi)壁由纖維素、果膠、構(gòu)成疏水蛋白及水解酶等組成,其組分與植物的細(xì)胞壁相類似[5-6].花粉壁的發(fā)育須經(jīng)歷初生外壁的形成、外壁的形成及內(nèi)壁的形成,并與花藥中一個(gè)至關(guān)重要的結(jié)構(gòu)——絨氈層的發(fā)育密切相關(guān)[6].絨氈層位于花粉囊壁最內(nèi)層,從花粉母細(xì)胞形成時(shí)出現(xiàn),在四分體時(shí)期細(xì)胞開始凋亡,最后在花粉成熟前完全消失[7],它可向花藥室中分泌大量的碳水化合物、多種酶及脂類等物質(zhì),為小孢子發(fā)育提供所需的營(yíng)養(yǎng)或構(gòu)成花粉壁的重要成分[8-9].
因此,花粉壁的形成和發(fā)育非常復(fù)雜,涉及大量營(yíng)養(yǎng)物質(zhì)的合成與運(yùn)輸,其過程受一系列基因及信號(hào)轉(zhuǎn)導(dǎo)的調(diào)控.目前,關(guān)于花粉壁發(fā)育的遺傳與分子方面的研究已有許多報(bào)道.本文綜述了近年來對(duì)花粉壁發(fā)育相關(guān)基因的克隆及其功能研究的最新進(jìn)展,初步探討了花粉壁發(fā)育的分子機(jī)理.
花粉壁的發(fā)育從四分體時(shí)期開始,在減數(shù)第2次分裂結(jié)束后,小孢子細(xì)胞表面會(huì)形成一層由蛋白質(zhì)、胼胝質(zhì)及酸性多糖類等物質(zhì)組成的致密纖維結(jié)構(gòu),這層特殊的結(jié)構(gòu)被稱為初生外壁,隨著初生外壁的形成,小孢子花粉細(xì)胞膜也會(huì)形成褶皺結(jié)構(gòu)[10].目前,已在擬南芥(Arabidopsis thaliana)中發(fā)現(xiàn)了多個(gè)參與初生外壁形成的基因.擬南芥AtDEX1基因編碼一種植物特有的鈣結(jié)合蛋白,AtDEX1可與花粉表面的細(xì)胞膜連接,介導(dǎo)初生外壁外小孢子花粉表面的形成.在atdex1突變體中,花粉壁初生外壁與野生型相比變得較薄,無法觀察到表面的前柱狀層結(jié)構(gòu),且形成時(shí)期也變遲,導(dǎo)致孢粉素在花粉表面的沉積變得雜亂無章[11].擬 南 芥 AtHKM 是 一 種 與 MS1(Male Sterile 1)同源的蛋白,作為轉(zhuǎn)錄調(diào)控因子,AtHKM是花粉壁發(fā)育過程中不可缺少的分子信號(hào),調(diào)控著初生外壁的發(fā)育.athkm突變體的花粉壁初生外壁變薄,且一般不能包裹整個(gè)小孢子花粉,導(dǎo)致外壁結(jié)構(gòu)的不規(guī)則[12].擬南芥AtRPG1基因編碼一種細(xì)胞膜定位的MtN3家族蛋白,該蛋白可能與小孢子花粉細(xì)胞膜的褶皺結(jié)構(gòu)的產(chǎn)生及細(xì)胞膜結(jié)構(gòu)完整性的維持有關(guān).atrpg1突變體由于初生外壁形成缺陷,孢粉素不能正常沉積,從而導(dǎo)致花粉壁形態(tài)結(jié)構(gòu)的異常[13].擬南芥AtNEF1蛋白是一種維持質(zhì)體完整結(jié)構(gòu)的相關(guān)蛋白,atnef1突變體的初生外壁也是不形成典型的外壁外層結(jié)構(gòu),但與atdex1,atrpg1及athkm1不一樣,atnef1突變體中孢粉素前體不沉積在不完整的初生外壁及花粉細(xì)胞膜上,而是以聚合物形式圍繞在小孢子周邊[14].由此可見,AtNEF1的功能喪失導(dǎo)致了孢粉素前體沉積效應(yīng)的完全消失.擬南芥AtTDE2基因編碼一種參與油菜素內(nèi)酯合成的相關(guān)蛋白,attde2突變體的孢粉素前體剛開始并不沉積在花粉表面,而是隨機(jī)分布在花粉囊中,但隨著時(shí)間的推移,孢粉素最終還是能夠聚集到初生外壁上,形成正常的花粉壁及可育的花粉,說明油菜素甾醇類物質(zhì)也直接或間接地參與了孢粉素前體在初生外壁上的沉積[15].擬南芥 AtNPU基因編碼一類多糖類物質(zhì)跨膜轉(zhuǎn)運(yùn)蛋白,研究證明,AtNPU與初生外壁及小孢子花粉細(xì)胞膜表面褶皺結(jié)構(gòu)的形成有關(guān),其很有可能是與初生外壁多糖類物質(zhì)的運(yùn)輸相關(guān).與atnef1類似,在atnpu突變體中,孢粉素前體也是以聚合物形式圍繞在小孢子周邊,而不沉積在花粉細(xì)胞表面[16].
在四分體時(shí)期,隨著初生外壁的形成,絨氈層中合成的孢粉素前體開始沉積在小孢子花粉表面,這個(gè)過程將持續(xù)到囊泡期.到囊泡期,由于孢粉素的積累,在花粉表面形成了外壁的柱狀層、覆蓋層及基層結(jié)構(gòu);同時(shí),在基層內(nèi)層邊上會(huì)形成一層被鋨酸染色較深的纖維狀物質(zhì),即外壁內(nèi)層結(jié)構(gòu)[17].
孢粉素的合成需經(jīng)過多種調(diào)控因子及修飾酶的共同作用.絨氈層線粒體三羧酸循環(huán)(tricarboxylic acid cycle,TAC)產(chǎn)生的乙酰輔酶 A(acetyl-CoA)被運(yùn)輸?shù)劫|(zhì)體,在酯酰輔酶A還原酶FAR(fatty acyl-CoA reductase,F(xiàn)AR)等酶的催化下形成十二碳月桂酸或進(jìn)一步加工成長(zhǎng)鏈脂肪酸(long-chain fatty acids,LCFA)或超長(zhǎng)鏈脂肪酸(very long-chain fatty acids,VLCFA),Vioque 等[18]曾證明其中FAR與扁豆(Pisum sativum L.)葉表面油脂類物質(zhì)的形成有關(guān),主要參與由乙酰輔酶A到脂肪酸鏈的形成過程.除FAR外,表面蠟質(zhì)缺失蛋白(eceriferum,CER)也與植物體內(nèi)超長(zhǎng)鏈脂肪酸的形成相關(guān).從Rice eFP Browser數(shù)據(jù)庫(kù)(http://www.bar.utoronto.ca/efprice/cgi-bin/efp-Web.cgi)中可以看到,OsCER1基因在水稻幼穗里的表達(dá)量極高,因此,OsCER1極有可能參與了孢粉素前體中超長(zhǎng)鏈脂肪族衍生物的合成.擬南芥中AtCER1和AtCER3以復(fù)合體的形式參與脂肪酸鏈的合成過程,同時(shí)細(xì)胞色素CYTB5s以輔酶的形式參與該復(fù)合體功能的發(fā)揮[19].擬南芥FLP1蛋白結(jié)構(gòu)與CER家族蛋白有相似之處,擬南芥flp1不育突變體與CER家族不育突變體中花粉壁的表型很相似,擬南芥FLP1也很有可能參與超長(zhǎng)鏈脂肪酸衍生物的生物合成過程[20].擬南芥AtWDA1編碼一類內(nèi)質(zhì)網(wǎng)特異表達(dá)的脂肪酸去飽和酶,可以催化脂肪酸衍生物的脫羧反應(yīng),在atwda1突變體內(nèi)可以觀察到絨氈層細(xì)胞質(zhì)中有脂質(zhì)體的積累,說明AtWDA1可能還與孢粉素前體的運(yùn)輸相關(guān)[21].
在孢粉素前體合成過程中,脂肪酸鏈的修飾需要在質(zhì)體、內(nèi)質(zhì)網(wǎng)等多種細(xì)胞器中進(jìn)行,而脂肪酸鏈在跨膜運(yùn)輸前需要先經(jīng)過加工,以脂肪酸-輔酶A的形式進(jìn)行跨膜轉(zhuǎn)運(yùn),此修飾過程需要酰基輔酶A合成酶ACOS5(acyl-CoA synthetase 5)的參與[22].細(xì)胞色素P450是一類參與許多生物合成途徑的氧化酶,在絨氈層細(xì)胞中,脂肪酸-輔酶A進(jìn)入內(nèi)質(zhì)網(wǎng)后,需要在細(xì)胞色素 P450(cytochrome P450)家族蛋白的催化下被羥基化,其中:中鏈脂肪酸(medium-chain fatty acids,MCFA)由CYP703A2催化;C16和C18等長(zhǎng)鏈脂肪酸則由CYP704B2負(fù)責(zé)羥基化;而超長(zhǎng)鏈脂肪酸由何種酶修飾目前尚不清楚[7,23].MS2 是一類脂肪酰-?;d體(fatty acyl-acyl carrier protein ACP reductase)還原酶,羥基化的脂肪酸被ACOS5?;筮\(yùn)送出內(nèi)質(zhì)網(wǎng),再在MS2作用下去?;纬傻闹敬紕t作為孢粉素前體成分[24].同時(shí),脂肪酰-?;d體復(fù)合物也可以在聚酮合酶(polyketide synthases)PKSA及PKSB作用下脫?;?,并催化形成孢粉素成分中的酚醛類物質(zhì)及烷基吡喃酮等物質(zhì)[25].
孢粉素前體是在絨氈層中合成加工的,其最終將被運(yùn)送到花粉表面成為花粉壁的主要組成成分.目前,對(duì)于孢粉素前體從絨氈層到小孢子表面的具體運(yùn)輸方式的了解還不夠確切,但是在整個(gè)運(yùn)輸過程中,需要一類跨膜運(yùn)輸?shù)鞍譇BC轉(zhuǎn)運(yùn)蛋白的參與[26].ABC轉(zhuǎn)運(yùn)蛋白廣泛存在于生物體內(nèi),它們結(jié)合并水解ATP(腺嘌呤核苷三磷酸)釋放能量,從而實(shí)現(xiàn)物質(zhì)的跨膜運(yùn)輸.已有的研究證明,ABC轉(zhuǎn)運(yùn)蛋白 G家族的AtABCG26及OsABCG15分別參與擬南芥和水稻孢粉素前體的運(yùn)輸,其功能的喪失將導(dǎo)致絨氈層內(nèi)合成的孢粉素前體無法正常運(yùn)送到小孢子花粉表面.在電鏡觀察下,atabcg26和osabcg15突變體絨氈層內(nèi)有物質(zhì)的異常積累,花粉表面呈光滑狀,花粉壁無正常的覆蓋層和柱狀層結(jié)構(gòu),由于花粉壁結(jié)構(gòu)的缺陷,導(dǎo)致花粉發(fā)育無法正常進(jìn)行,并最終影響植物的育性[27-31].另外,AtABCG11參與擬南芥表面脂質(zhì)物質(zhì)的運(yùn)輸,但在atabcg11功能缺失突變體中,植株花粉發(fā)育也出現(xiàn)異常,可能與孢粉素前體的運(yùn)輸相關(guān)[32-33].除ABC轉(zhuǎn)運(yùn)蛋白以外,一類富含甘氨酸的蛋白GRP(glycine-rich protein)也與孢粉素前體的運(yùn)輸相關(guān).土豆中LeGRP92在四分體時(shí)期和小孢子花粉發(fā)育早期出現(xiàn)在初生外壁表面.LeGRP92蛋白的親水結(jié)構(gòu)域與初生外壁表面結(jié)合,而疏水結(jié)構(gòu)則可以結(jié)合孢粉素前體,從而介導(dǎo)孢粉素前體在出生外壁上的沉積.當(dāng)LeGRP92表達(dá)水平降低時(shí),雖然孢粉素仍可以在花粉表面沉積,但外壁的精細(xì)結(jié)構(gòu)明顯發(fā)生了變化,最終導(dǎo)致植株的育性下降[34].
孢粉素前體從合成到運(yùn)輸過程中參與的蛋白及各種蛋白的功能可以大致概括如圖1所示:線粒體中經(jīng)三羧酸循環(huán)產(chǎn)生的乙酰輔酶A在質(zhì)體中經(jīng)FAR等酶的催化形成中鏈脂肪酸,進(jìn)而可以繼續(xù)進(jìn)行碳鏈的加長(zhǎng),形成長(zhǎng)鏈、超長(zhǎng)鏈脂肪酸;脂肪酸經(jīng)ACOS5酯化修飾后可能經(jīng)WDA1等的運(yùn)輸進(jìn)入內(nèi)質(zhì)網(wǎng);脂肪酸鏈在內(nèi)質(zhì)網(wǎng)中可以在WDA1,F(xiàn)LP1及CER家族蛋白的作用下再次加長(zhǎng);內(nèi)質(zhì)網(wǎng)中的脂肪酸的加工還包括由細(xì)胞色素類氧化酶進(jìn)行羥基化形成脂肪醇,其中CYP704A2等酶負(fù)責(zé)中鏈脂肪酸的氧化,長(zhǎng)鏈脂肪酸則由CYP704B2等羥基化,形成的脂肪醇復(fù)合物可以經(jīng)MS2還原酶去?;纬芍敬?,此外還可以經(jīng)聚酮合酶PKSA或PKSB加工成為酚醛類物質(zhì).孢粉素前體由絨氈層細(xì)胞內(nèi)到花粉囊內(nèi)小孢子細(xì)胞表面的運(yùn)輸過程由多種蛋白介導(dǎo),其中ABC轉(zhuǎn)運(yùn)蛋白參與了孢粉素前體從絨氈層細(xì)胞內(nèi)向花粉囊的分泌,而GRP蛋白參與結(jié)合花粉囊內(nèi)游離的孢粉素前體,并引導(dǎo)其在初生外壁上的沉積(見圖1).但由于孢粉素前體從絨氈層到花粉囊再到花粉表面的運(yùn)輸過程中涉及多種蛋白的參與,其具體機(jī)制還有待進(jìn)一步的研究來證明.
圖1 絨氈層細(xì)胞中孢粉素前體的形成機(jī)制
花粉壁內(nèi)壁的發(fā)育發(fā)生在外壁發(fā)育之后,其主要由纖維素、果膠及內(nèi)壁蛋白所組成.近些年,對(duì)擬南芥和水稻中 atusp,atrgp1,atrgp2,atfla3,osrip1及osgt1等花粉壁內(nèi)壁發(fā)育突變體的研究發(fā)現(xiàn),在該類突變體中,花粉的外壁結(jié)構(gòu)通常并無異常,且其突變表型發(fā)生在小孢子有絲分裂以后[35-39].
AtUSP蛋白與核苷核糖的生物合成相關(guān),其產(chǎn)物可以作為糖基轉(zhuǎn)移酶的底物,參與糖化物的生物合成[35].AtRGP1和AtRGP2基因編碼一類轉(zhuǎn)運(yùn)蛋白,它們可以結(jié)合細(xì)胞質(zhì)中的核苷核糖,并將其運(yùn)輸至內(nèi)質(zhì)網(wǎng)和高爾基體中以用于糖蛋白的合成.AtRGP1和 AtRGP2存在功能上的冗余,在atrgp1,atrgp2單突變體中,花粉壁內(nèi)壁發(fā)育均無異常,只有在雙突變體中才會(huì)出現(xiàn)花粉壁的異常[36].阿拉伯半乳聚糖是一類糖基化的細(xì)胞壁蛋白,它們是花粉壁內(nèi)壁的主要成分之一,擬南芥一個(gè)相關(guān)基因FLA3(fascilin-like arabinogalactan ptotein 3)被RNAi抑制表達(dá)后,由于阿拉伯半乳聚糖的合成出現(xiàn)障礙,導(dǎo)致轉(zhuǎn)基因植株的內(nèi)壁無法正常形成[37].OsRIP1編碼一種含WD40重復(fù)序列的核定位蛋白,在osrip1突變體內(nèi),花粉粒中內(nèi)壁變薄,且淀粉顆粒的合成也受到影響[38].OsGT1是一種定位于高爾基體的核糖轉(zhuǎn)移酶,可能介導(dǎo)AtUSP類似蛋白產(chǎn)物的糖基轉(zhuǎn)移,與糖蛋白的合成相關(guān),在花粉發(fā)育后期可以看到osgt1突變體中花粉外壁的結(jié)構(gòu)完全正常,但無內(nèi)壁的形成,且花粉粒中淀粉含量也下降,最終也導(dǎo)致花粉敗育[39].雖然花粉壁內(nèi)壁的具體功能目前還不清楚,但通過前人的研究結(jié)果,可以得知花粉壁內(nèi)壁同樣與花粉的形成與發(fā)育密切相關(guān).
花粉壁的發(fā)育是個(gè)復(fù)雜且意義重大的生物學(xué)過程.花粉壁發(fā)育過程中,初生外壁主要為孢粉素的沉積提供一個(gè)支撐結(jié)構(gòu),目前對(duì)初生外壁的研究還較少.擬南芥的研究表明,DEX1,NEF1,HKM,RPG1,TDE2及NPU等蛋白參與了初生外壁的形成,其中:HKM作為一種轉(zhuǎn)錄因子,調(diào)控著初生外壁的發(fā)育;而NPU則作為一種運(yùn)輸?shù)鞍?,可能與初生外壁組分的運(yùn)輸相關(guān).相對(duì)而言,目前對(duì)于花粉壁外壁的研究較多,F(xiàn)AR,CER,WDA1,ACOS5,CYP703,CYP704,F(xiàn)LP1,MS2,PKSA,PKSB等酶參與了孢粉素前體合成過程中脂肪酸及脂肪酸衍生物的加工,其中WDA1可能還與脂肪酸族物質(zhì)的運(yùn)輸相關(guān);另外,GRP蛋白及ABCG家族的AtABCG26,OsABCG15等參與了孢粉素前體從絨氈層到花粉表面的運(yùn)輸過程.花粉壁內(nèi)壁形成過程中涉及多種糖蛋白的代謝相關(guān)蛋白,包括 USP,RGP,F(xiàn)LA3,RIP1及 GT1 等,其中:USP 與核糖的形成相關(guān),其產(chǎn)物可作為GT1等糖基轉(zhuǎn)移酶的底物;RGP蛋白負(fù)責(zé)聚集細(xì)胞質(zhì)中的核糖,并將其運(yùn)送到高爾基體中,以用于糖蛋白的合成;而FLA3則與內(nèi)壁成分中阿拉伯半乳聚糖的合成相關(guān).
由于花粉壁結(jié)構(gòu)和組成成分較為復(fù)雜,且許多與花粉壁發(fā)育相關(guān)的基因還未被克隆,花粉壁形成過程中需要絨氈層細(xì)胞與花粉細(xì)胞之間大量的物質(zhì)交流,其過程是怎樣調(diào)控的?物質(zhì)運(yùn)輸是怎樣介導(dǎo)的?以及花粉壁不同結(jié)構(gòu)部分有怎樣的作用?等等.這些機(jī)制需要在細(xì)胞學(xué)、生物化學(xué)、分子生物學(xué)和遺傳學(xué)等方面進(jìn)行更深一步的研究與探討.
[1]石晶,梁婉琪,張大兵.植物花粉壁的發(fā)育[J].植物生理學(xué)通訊,2007,43(3):588-592.
[2]Meuter-Gerhards A,Riegert S,Wiermann R.Studies on sporopollenin biosynthesis in Cucurbita maxima(DUCH.).Ⅱ.The involvement of aliphatic metabolism[J].J Plant Physiol,1999,154(4):431-436.
[3]Scott R J,Spielman M,Dickinson H G.Stamen structure and function[J].Plant Cell,2004,16(suppl 1):S46-S60.
[4]Zinkl G M,Zwiebel B I,Grier D G,et al.Pollen-stigma adhesion in Arabidopsis:a species-specific interaction mediated by lipophilic molecules in the pollen exine[J].Development,1999,126(23):5431-5440.
[5]Blackmore S,Wortley A H,Skvarla J J,et al.Pollen wall development in flowering plants[J].New Phytol,2007,174(3):483-498.
[6]Ariizumi T,Toriyama K.Genetic regulation of sporopollenin synthesis and pollen exine development[J].Annu Rev Plant Biol,2011,62:437-460.
[7]Morant M,Jorgensen K,Schaller H,et al.CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen[J].Plant Cell,2007,19(5):1473-1487.
[8]Goldberg R B,Beals T P,Sanders P M.Anther development:basic principles and practical applications[J].Plant Cell,1993,5(10):1217-1229.
[9]Piffanelli P,Ross J H E,Murphy D J.Biogenesis and function of the lipidic structures of pollen grains[J].Sex Plant Reprod,1998,11(2):65-80.
[10]Heslop-Harrison J.Wall development within the microspore tetrad of Lilium longiflorum[J].Can J Bot,1968,46(10):1285-1292.
[11]Paxson-Sowders D M,Dodrill C H,Owen H A,et al.DEX1,a novel plant protein,is required for exine pattern formation during pollen development in Arabidopsis[J].Plant Physiol,2001,127(4):1739-1749.
[12]Ariizumi T,Hatakeyama K,Hinata K,et al.The HKM gene,which is identical to the MS1 gene of Arabidopsis thaliana,is essential for primexine formation and exine pattern formation[J].Sex Plant Reprod,2005,18(1):1-7.
[13]Guan Yuefeng,Huang Xueyong,Zhu Jun,et al.RUPTURED POLLEN GRAIN1,a member of the MtN3/saliva gene family,is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis[J].Plant Physiol,2008,147(2):852-863.
[14]Arilzumi T,Hatakeyama K,Hinata K,et al.Disruption of the novel plant protein NEF1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen,resulting in male sterile in Arabidopsis thaliana[J].Plant J,2004,39(2):170-181.
[15]Ariizumi T,Kawanabe T,Hatakeyama K,et al.Ultrastructural characterization of exine development of the transient defective exine 1 mutant suggests the existence of a factor involved in constructing reticulate exine architecture from sporopollenin aggregates[J].Plant and Cell Physiology,2008,49(1):58-67.
[16]Chang Haishuang,Zhang Cheng,Chang Yuhua,et al.No primexine and plasma membrane undulation is essential for primexine deposition and plasma membrane undulation during microsporogenesis in Arabidopsis[J].Plant Physiol,2012,158(1):264-272.
[17]Gabarayeva N,Grigorjeva V,Rowley J R,et al.Sporoderm development in Trevesia burckii(Araliaceae).Ⅱ.Post-tetrad period:Further evidence for the participation of self-assembly processes[J].Review of Palaeobotany and Palynology,2009,156(1/2):233-247.
[18]Vioque J,Kolattukudy P E.Resolution and purification of an aldehyde-generating and an alcohol-generating fatty acyl-CoA reductase from pea leaves(Pisum sativum L.)[J].Archives of Biochemistry and Biophysics,1997,340(1):64-72.
[19]Bernard A,Domergue F,Pascal S,et al.Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long-chain alkane synthesis complex[J].Plant Cell,2012,24(7):3106-3118.
[20]Ariizumi T,Hatakeyama K,Hinata K,et al.A novel male-sterile mutant of Arabidopsis thaliana,faceless pollen-1,produces pollen with a smooth surface and an acetolysis-sensitive exine[J].Plant Mol Biol,2003,53(1/2):107-116.
[21]Jung K H,Han M J,Lee D Y,et al.Wax-deficient anther1 is involved in cuticle and wax production in rice anther walls and is required for pollen development[J].Plant Cell,2006,18(11):3015-3032.
[22]De Azevedo S C,Kim S S,Koch S,et al.A novel fatty Acyl-CoA synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis[J].Plant Cell,2009,21(2):507-525.
[23]Li Hui,Pinot F,Sauveplane V,et al.Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice[J].Plant Cell,2010,22(1):173-190.
[24]Chen Weiwei,Yu Xiaohong,Zhang Kaisi,et al.Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis[J].Plant Physiol,2011,157(2):842-853.
[25]Kim S S,Grienenberger E,Lallemand B,et al.LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B encode hydroxyalkyl alpha-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana[J].Plant Cell,2010,22(12):4045-4066.
[26]Pighin J A,Zheng Huanquan,Balakshin L J,et al.Plant cuticular lipid export requires an ABC transporter[J].Science,2004,306(5696):702-704.
[27]Choi H,Jin J Y,Choi S,et al.An ABCG/WBC-type ABC transporter is essential for transport of sporopollenin precursors for exine formation in developing pollen[J].Plant J,2011,65(2):181-193.
[28]Qin Peng,Tu Bin,Wang Yuping,et al.ABCG15 encodes an ABC transporter protein,and is essential for post-meiotic anther and pollen exine development in rice[J].Plant and Cell Physiology,2013,54(1):138-154.
[29]Quilichini T D,F(xiàn)riedmann M C,Samuels A L,et al.ATP-binding cassette transporter G26 is required for male fertility and pollen exine formation in Arabidopsis[J].Plant Physiol,2010,154(2):678-690.
[30]Dou Xiaoying,Yang Kezhen,Zhang Yi,et al.WBC27,an adenosine tri-phosphate-binding cassette protein,controls pollen wall formation and patterning in Arabidopsis[J].J Integr Plant Biol,2011,53(1):74-88.
[31]Kuromori T,Ito T,Sugimoto E,et al.Arabidopsis mutant of AtABCG26,an ABC transporter gene,is defective in pollen maturation[J].J Plant Physiol,2011,168(16):2001-2005.
[32]Bird D,Beisson F,Brigham A,et al.Characterization of Arabidopsis ABCG11/WBC11,an ATP binding cassette(ABC)transporter that is required for cuticular lipid secretion[J].Plant J,2007,52(3):485-498.
[33]Ukitsu H,Kuromori T,Toyooka K,et al.Cytological and biochemical analysis of COF1,an Arabidopsis mutant of an ABC transporter gene[J].Plant and Cell Physiology,2007,48(11):1524-1533.
[34]McNeil K J,Smith A G.A glycine-rich protein that facilitates exine formation during tomato pollen development[J].Planta,2010,231(4):793-808.
[35]Schnurr J A,Storey K K,Jung H J,et al.UDP-sugar pyrophosphorylase is essential for pollen development in Arabidopsis[J].Planta,2006,224(3):520-532.
[36]Drakakaki G,Zabotina O,Delgado I,et al.Arabidopsis reversibly glycosylated polypeptides 1 and 2 are essential for pollen development[J].Plant Physiol,2006,142(4):1480-1492.
[37]Li Jun,Yu Miao,Geng Lingling,et al.The fasciclin-like arabinogalactan protein gene,F(xiàn)LA3,is involved in microspore development of Arabidopsis[J].Plant J,2010,64(3):482-497.
[38]Han M J,Jung K H,Yi G,et al.Rice Immature Pollen 1(RIP1)is a regulator of late pollen development[J].Plant and Cell Physiology,2006,47(11):1457-1472.
[39]Moon S,Kim S R,Zhao G,et al.Rice glycosyltransferase1 encodes a glycosyltransferase essential for pollen wall formation[J].Plant Physiol,2013,161(2):663-675.