• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-dimensional shallow water equations with porosity and their numerical scheme on unstructured grids

    2013-07-31 16:04:21ZhiliWANGYanfenGENG
    Water Science and Engineering 2013年1期

    Zhi-li WANG, Yan-fen GENG*

    1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210024, P. R. China

    2. School of Transportation, Southeast University, Nanjing 210096, P. R. China

    Two-dimensional shallow water equations with porosity and their numerical scheme on unstructured grids

    Zhi-li WANG1, Yan-fen GENG*2

    1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210024, P. R. China

    2. School of Transportation, Southeast University, Nanjing 210096, P. R. China

    In this study, porosity was introduced into two-dimensional shallow water equations to reflect the effects of obstructions, leading to the modification of the expressions for the flux and source terms. An extra porosity source term appears in the momentum equation. The numerical model of the shallow water equations with porosity is presented with the finite volume method on unstructured grids and the modified Roe-type approximate Riemann solver. The source terms of the bed slope and porosity are both decomposed in the characteristic direction so that the numerical scheme can exactly satisfy the conservative property. The present model was tested with a dam break with discontinuous porosity and a flash flood in the Toce River Valley. The results show that the model can simulate the influence of obstructions, and the numerical scheme can maintain the flux balance at the interface with high efficiency and resolution.

    shallow water equations with porosity; source term; Roe-type Riemann solver; finite volume method; unstructured grid

    1 Introduction

    Free surface flows exist in estuaries, along coasts, and in river and lake regions. In most free surface flows, the hydrostatic pressure assumption is generally valid. Situations where the hydrostatic pressure assumption may be questionable have been discussed in several previous studies (Heggelund et al. 2004; Yuan and Wu 2004; Lee et al. 2006). With the hydrostatic pressure assumption and Boussinesq approximation, the shallow water equations can be obtained from the Navier-Stokes (NS) equations. The shallow water equations have been widely applied in ocean and hydraulic engineering, including simulations of tidal flows in estuary and coastal water regions, wave propagation, stationary hydraulic jumps, and open channel flows (Wang et al. 2005b; Lu et al. 2005; Ding et al. 2004 ).

    The shallow water equations are more simple than the NS equations, and they reduce the numerical calculations for free surface flows enormously, so the shallow water equations aresuitable for the numerical simulation of water flow in large-scale oceans, estuaries, rivers, and lakes (Lu et al. 2005; Wang 2005; Zhou et al. 2001). Numerical models of shallow water equations are effective for simulation of free surface flows, but when there are islands, buildings, or other structures in the numerical region, denser grids, which increase the numerical computation, are needed. Furthermore, the time step is often determined by the smallest grid size, which further reduces the efficiency of the model. In order to overcome these problems, we introduce the porosity to reflect the effects of obstructions and derive two-dimensional porous shallow water equations based on the laws of conservation of mass and momentum.

    Recently, the Godunov-type numerical models have been widely used in computational aerodynamics (Harten et al. 1983; Li 2008) and computational hydraulics (Zoppou and Roberts 2000; Wang et al. 2005a; Geng et al. 2005), since they have several desirable properties, including being monotone and conservative, and having good shock-capturing capabilities with a correct shock speed value and an inherent upwind property. In the well-known work of Godunov, in order to reduce computational time, the exact solution of the Riemann problem was replaced by an approximate solution such as the Roe-type solver (Roe 1981), Osher-type solver (Osher and Solomon 1982), and HLL-type solver (Harten et al. 1983). In this study, the finite volume method and Roe-type approximate Riemann solver were used for the discretization of the two-dimensional porous shallow water equations, in which the source terms of the bed slope and porosity were treated by the local characteristic decomposition and upwind fashion to satisfy equilibrium and steady-state conditions.

    2 Two-dimensional shallow water equations with porosity

    The continuity and momentum equations with porosity are derived based on the laws of conservation of mass and momentum. There is an infinitesimally small control volume with a length of Δx and a width of Δy in the horizontal plane and a water depth h in the vertical direction. If there is a solid structure with a length of Δx′ and a width of Δy′ within the control volume, we can define the porosity as

    The value of φ lies between 0 and 1, φ=1 means no solid structures in the control volume, and φ=0 means no water in the control volume. In this study, we assume that the porosity on the sides of the control volume is equal to φ.

    2.1 Continuity equation

    The total mass m of water in the control volume is

    where ρ is the water density.

    The mass fluxesQwxandQsyacross the western and southern sides flowing into the control volume are, respectively,

    whereuandvare the depth-averaged velocities in thexandydirections, respectively.

    The mass fluxesQexandQnyacross the eastern and northern sides flowing out of the control volume are, respectively,

    Based on the law of conservation of mass, we have

    Substituting Eqs. (2) through (6) into Eq. (7), and assuming that water is not compressible, which means thatρis constant, the conservative form of the continuity equation can be obtained:

    2.2 Momentum equation

    To save space, the momentum equation in thexdirection is derived in detail only. The total momentum of water in thexdirection in the control volume is

    The mass forces across the western, eastern, southern, and northern sides of the control volume are, respectively,

    The hydrostatic pressures exerted on the western and eastern sides of the control volume are, respectively,

    Bottom pressure in the x direction due to the bottom slope can be written as

    The friction resistance at the bottom is accounted for by a classical Stickler law, and can be written as

    The resistance caused by the obstructions, which includes the configuration resistance and friction resistance, is assumed to be identical over the entire flow region and to be proportional to the square of the velocities (Wang et al. 2008):

    Based on the law of conservation of momentum (Newton’s second law) in the control volume, we obtain the following expression:

    Substituting Eqs. (9) through (16) into Eq. (17) and dividing by ρ, the momentum equation in the x direction can be obtained:

    The momentum equation in the y direction can be obtained in a similar way:

    The continuity equation (Eq. (8)), and the momentum equations (Eqs. (18) and (19)), constitute a closed system of a two-dimensional depth-averaged shallow water model with porosity. Generally, a vector form of the model can be expressed as

    3 Numerical solution

    Eq. (20) is discretized using the finite volume method on unstructured grids. The average variables are stored at the center of each grid cell, and the edges of each grid cell are defined as the faces of control volume.

    The domain is paved with a set of non-overlapping polygonal cells: {Ωi,i=1,2,…,I}, where i is the serial number of cells and I is the total number of cells. A polygonal cell Ωιis built with vertices labeled as mi,k, where k is the serial number of vertices, and k=1,2,…,Ei; and Ειdenotes the number of vertices of the cell Ωι. The two cells that share the jth side of the grid are identified by the indices j1and j2. If the jth side is the boundary of the computational region, we set j2=?1.

    Integrating Eq. (20) over the cell Ωιyields

    where F=(E, H), Αιis the area of the cell Ωι, and s is the integration variable. Using the Green formula, we obtain

    The second term of Eq. (23) can be rewritten as

    wherelijis the length of thejth side of the cellΩι;Fn=F·n=Enx+Hny; andFnijis the flux through thejth side of the cellΩι, which is discretized with a Roe-type approximate Riemann solver.

    3.1 Flux computation

    The fluxFndepends on the conservational variableUand porosityφ. With the variables stored at the cell center,Uandφare discontinuous at the cell boundary, which is known as the Riemann problem:

    wheren0is the coordinate along the outward normal direction of the cell boundary oriented from the center of the cell boundary,t0is the initial time, and the variables with the subscripts L and R denote the values of the variables on the left and right sides of the interface between two cell, respectively. At thejth side of the cellΩι, ifUL=Uj1andUR=Uj2(whereUj1andUj2are the values of theconservational variableUat the cellsj1andj2that share thejth side, respectively), the numerical scheme is only first order in space. If we assume thatUis linearly varied in space, the second-order total variation diminishing (TVD) numerical scheme can be obtained with monotonic upstream schemes for conservation laws (van Leer 1979; Wang et al. 2005b).

    Using the matrix theory, the matrixAcan be diagonalized as

    For the Riemann problem of Eq. (26), the flux through the left side of the interface can be written as (Tan 1998)

    where Δ(?) denotes the difference between the values of variables on the left and right sides of the interface. Substituting Eqs. (28) and (32) into (30), the flux through the left side of the interface can be obtained:

    3.2 Computation of bed slope and porosity source term

    The bed slope and porosity source termS0is a function of water depthh, the bed elevationzb, and porosityφ.h,zb, andφare discontinuous at the cell boundary and can be respectively expressed as

    where

    The upwind method is used for the discretization of the bed slope and porosity source terms (Wang et al. 2008; Bermudez et al. 1998). The bed slope and porosity source terms on the left and right sides of the cell boundary are, respectively,

    whereIis the unit matrix, andγ=(γ1,γ2,γ3).

    3.3 C-property relative to a stationary solution

    The centered discretization of bed slope source terms gives rise to spurious waves (Wang et al. 2008). Bermudez and Vazquez (1994) proposed a conservation property (C-property) which prevents the appearance of spurious waves. The C-property characterizes the accuracy of a numerical scheme used for approximating a steady state solution representing water at rest. The steady state solution is characterized by

    whereηis the water level.

    To keep water at rest, the discharge flux must be zero:

    From this we can get the average porosity at the cell face:

    Under the rest water conditions (38), Eq. (20) can be simplified as

    where the terms on the left side of Eq. (42) are the hydrostatic pressure, and the first and second terms on the right side are the bed slope source term and additional porosity source term, respectively. If the numerical scheme satisfies Eq. (42), we can say that it satisfies the C-property. Since the bed elevation is constant, from a mathematical point of view, if the numerical model satisfies the C-property, the momentum flux must equal the hydrostatic pressure flux:

    3.4 Wet/dry fronts

    3.5 Stability constraint

    Since the numerical scheme is explicit in time, the time step is limited by the following Courant-Friedrichs-Lewy (CFL) condition (Cea et al. 2006):

    4 Model test

    Two applications of the model are presented for validation purposes. First, a dam break in a channel with discontinuous porosity was simulated, and the calculated results were compared with analytical results. Second, a flash flood in the Toce River Valley was simulated, and the calculated results were compared with the experimental results.

    4.1 Dam break with discontinuous porosity

    Initially, a gate was placed atx= 100 m and water was kept at rest. The water depths upstream and downstream of the gate wereh1= 10 m andh2= 1 m, respectively (Fig. 1). The gate was suddenly removed and a large volume of water was released. The numerical model used uniform rectangle grids with 200 computational cells and a time steptΔ of 0.04 s. Fig. 2 depicts the numerical and analytical water depths and velocities att= 0.3 s. The agreement between the computed and analytical solutions is seen to be quite good. The propagation speeds of the various waves are computed correctly.

    Fig. 1Dam break with discontinuous porosity (Unit: m)

    Fig. 2Numerical and analytical results of dam break with discontinuous porosity att= 0.3 s

    4.2 Flash flood in Toce River Valley

    Testa et al. (2007) presented a physical model study of a flash flood in the Toce River Valley, in Italy, which impacted an idealized urban district composed of an array of square blocks (Fig. 3). The aim of this test was to show that the shallow water model on fine grids could be advantageously replaced with the porous shallow water model on much coarser grids, where the effects of the blocks were modeled using porosity. There were two block configurations: aligned and staggered as in the physical experiments performed by Testa et al. (2007), but only the staggered layout (Fig. 3) was used for testing here.

    Fig. 3Gauge stations with staggered arrangement

    Two numerical models were built to simulate the physical model. The first model was a classical shallow water (CSW) model (Wang et al. 2005) on fine grids (Fig. 4(a)), in which the blocks were treated as the impermeable boundaries. The second model was the proposed porous shallow water (PSW) model on coarse grids, in which the effects of the blocks were modeled by the porosity (Fig. 4(b)). The CSW model and PSW model were made of 4 567 and 1 696 triangle cells, respectively. For wet and dry fronts, the values ofht1andht2were 0.000 1 m and 0.001 m, respectively. A uniform Manning’s roughness coefficientn=0.016 2 m-1/3?s was assigned to all cells to model bottom shear. In the PSW model, the approach for vegetative resistance modeling (Nepf 1999) was used to calculate the drag force of the blocks. The drag forceRsexerted by the blocks on the fluid is

    whereRs=(Rsx,Rsy), withRsxandRsybeing thexandycomponents ofRs, respectively;u=(u,v);dis the projected length of the blocks, i.e., the length of the blocks as seen by an observer moving in the direction of flow; andCDis a bulk drag coefficient, which is a function of blocks’ density (Nepf 1999). The value ofCDfor square-shaped obstructions is tabulated in textbooks asCD=2.0 (Munson et al. 2006). Based on these considerations, the head loss coefficientCsin Eq. (21) can be calculated as follows:

    Fig. 4Numerical meshes

    The discharge hydrograph lasting 60 seconds, obtained from the experiments performed by Testa et al. (2007), was used as the upstream boundary condition (Fig. 5). A zero-order extrapolation or so-called soft boundary condition was implemented at the downstream boundary (Wang et al. 2005). Fig. 6 shows time series of water depth at gauge stations 3, 5, 7, and 10. Predictions of the CSW model (Wang et al. 2005) and PSW model are shown, along with water depth measurements reported by Testa et al. (2007). Fig. 6 shows that the results of both the CSW model and the PSW model match the experimental results. At gauge stations 3 and 7, the two models’ predictions are both close to the experimental results. At gauge station 5, compared with the experimental results, predictions of the two models are both underestimates. At gauge station 10, the CSW model overestimates the water depth while the PSW model underestimates the water depth.

    Fig. 5Discharge hydrograph at upstream boundary

    Fig. 6 Predicted and measured water depths at different gauge stations

    The PSW model predictions match the CSW model predictions, but it should be noted that the CPU time required by the 60-second simulation with the Pentium 4 processor is 18 seconds for the PSW model and 176 seconds for the CSW model. This example shows that the PSW model can simulate the influence of blocks with high efficiency.

    5 Conclusions

    Through introducing the porosity to reflect the effects of obstructions, the two-dimensional porous shallow water equations including the continuity and momentum equations were derived based on the laws of conservation of mass and momentum. The unstructured finite volume method and modified Roe-type approximate Riemann solver were used for the solution of the two-dimensional porous shallow water equations. The bed slope source term and the additional porosity source term were both decomposed in the characteristic direction. It has been shown that the numerical scheme exactly satisfies the conservative property. Numerical results of a dam break in a channel with discontinuous porosity and a flash flood in the Toce River Valley with an urban district show that the porous shallow water equations and numerical scheme can simulate the influence of blocks with high efficiency and resolution.

    Alcrudo, F., and Benkhaldoun, F. 2001. Exact solutions to the Riemann problem of the shallow water equations with a bottom step. Computers and Fluids, 30(6), 643-671. [doi:10.1016/S0045-7930 (01)00013-5]

    Bermudez, A., Dervieux, A., Desideri, J. A., and Vazquez, M. E. 1998. Upwind schemes for the twodimensional shallow water equations with variable depth using unstructured meshes. Computer Methodsin Applied Mechanics and Engineering, 155(1-2), 49-72. [doi:10.1016/S0045-7825(97)85625-3]

    Bermudez, A., and Vazquez, M. E. 1994. Upwind methods for hyperbolic conservation laws with source terms. Computers and Fluids, 23(8), 1049-1071. [doi:10.1016/0045-7930(94)90004-3]

    Cea, L., French, J. R., and Vazquez-Cendon, M. E. 2006. Numerical modelling of tidal flows in complex estuaries including turbulence: An unstructured finite volume solver and experimental validation. International Journal for Numerical Methods in Engineering, 67(13), 1909-1932. [doi:10.1002/ nme.1702]

    Ding, L., Pang, Y., Zhao, D. H., Wu, J. Q., and Lu, J. 2004. Analysis of applicability of flux difference splitting scheme on 2D flow-pollutant calculation. Advanced in Water Science, 15(5), 561-565. (in Chinese)

    Geng, Y. F., Wang, Z. L., and Jin, S. 2005. A high resolution Godunov-type scheme for one dimensional shallow water flow. Journal of Hydrodynamics, Ser. A, 20(4), 507-512 (in Chinese)

    Harten, A., Lax, P. D., and van Leer, B. 1983. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25(1), 35-61. [doi:10.1137/1025002]

    Heggelund, Y., Vikebo, F., Berntsen, J., and Furnes, G. 2004. Hydrostatic and non-hydrostatic studies of gravitational adjustment over a slope. Continental Shelf Research, 24(18), 2133-2148. [doi: 10.1016/j.csr.2004.07.005]

    Lee, J. W., Teubner, M. D., Nixon, J. B., and Gill, P. M. 2006. A 3-D non-hydrostatic pressure model for small amplitude free surface flows. International Journal for Numerical Methods in Fluids, 50(6), 649-672. [doi:10.1002/fld.1054]

    Li, Z. W. 2008. Study on the dissipative effect of approximate Riemann solver on hypersonic heatflux simulation. Chinese Journal of Theoretical and Applied Mechanics, 40(1), 19-25. (in Chinese)

    Lu, Y. J., Zhuo, L. Q., Shao, X. J., Wang, H. C., and Li, H. L. 2005. A 2D mathematical model for sediment transport by waves and tidal currents. China Ocean Engineering, 19(4), 571-586.

    Munson, B. R., Young, D. F., and Okiishi, T. H. 2006. Fundamentals of Fluid Mechanics. 2nd ed. New York: John Wiley & Sons.

    Nepf, H. M. 1999. Drag, turbulence and diffusion in flow through emergent vegetation. Water Resources Research, 35(2), 479-489. [doi:10.1029/1998WR900069]

    Osher, S., and Solomon, F. 1982. Upwind difference schemes for hyperbolic system of conservation laws. Mathematics of Computation, 38(158), 339-374.

    Roe, P. L. 1981. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43(2), 357-372. [doi:10.1016/0021-9991(81)90128-5]

    Shi, H. D., and Liu, Z. 2005. A finite volume method with unstructured triangular grids for numerical modeling of tidal current. China Ocean Engineering, 19(4), 693-700.

    Sleigh, P. A., and Gaskell, P. H., Berzins, M., and Wright, N. G. 1998. An unstructured finite-volume algorithm for predicting flow in rivers and estuaries. Computers and Fluids, 27(4), 479-508.

    Stoker, J. J. 1957. Water Waves: The Mathematical Theory with Applications. New York: Wiley-Interscience.

    Tan, W. Y. 1998. Computational Hydraulics-Finite Volume Method. Beijing: Tsinghua University Press. (in Chinese)

    Testa, G., Zuccala, D., Alcrudo, F., Mulet, J., and Soares-Frazao, S. 2007. Flash flood flow experiment in a simplified urban district. Journal of Hydraulic Research, 45(s1), 37-44. [doi:10.1080/00221686. 2007.9521831]

    van Leer, B. 1979. Towards the ultimate conservative difference scheme, V: A second-order sequel to Godunov’s method. Journal of Computational Physics, 32(1), 101-136. [doi:10.1016/0021-9991 (79)90145-1]

    Wang, J. S., Ni, H. G., and He, Y. S. 2000. Finite-difference TVD scheme for computation of dam-break problems. Journal of Hydraulic Engineering, 126(4), 253-262. [doi:10.1061/(ASCE)0733-9429 (2000)126:4(253)]

    Wang, Z. L. 2005. The Unstructured 2D and 3D Shallow Water Model Study Based on Godunov and Semi-Lagrangian Method. Ph. D. dissertation. Dalian: Dalian University of Technology. (in Chinese)

    Wang, Z. L., Geng, Y. F., and Jin, S. 2005a. An unstructured finite volume algorithm for nonlinear two-dimensional shallow water equation. Journal of Hydrodynamics, Ser. B, 17(3), 306-312.

    Wang, Z. L., Geng, Y. F., and Jin, S. 2005b. Flux balance method for shallow water equation with source terms. Advanced in Water Science, 16(3), 373-379. (in Chinese).

    Wang, Z. L., Lu, Y. J., and Geng, Y. F. 2008. One dimensional shallow water equations with porosity and their numerical discretization schemes. Chinese Journal of Theoretical and Applied Mechanics, 40(5), 585-592. (in Chinese).

    Yuan, H. L., and Wu, C. H. 2004. A two-dimensional vertical non-hydrostatic σ model with an implicit method for free-surface flows. International Journal for Numerical Methods in Fluids, 44(8), 811-835. [doi: 10.1002/fld.670]

    Zhao, D. H., Shen, H. W., Tabios, III, G. Q., Lai, J. S., and Tan, W. Y. 1994. Finite-volume two-dimensional unsteady-flow model for river basins. Journal of Hydraulic Engineering, 120(7), 863-883. [doi: 10.1061/(ASCE)0733-9429(1994)120:7(863)]

    Zhou, J. G., Causon, D. M., Mingham, C. G., and Ingram, D. M. 2001. The surface gradient method for the treatment of source terms in the shallow water equation. Journal of Computational Physics, 168(1), 1-25. [doi:10.1006/jcph.2000.6670]

    Zoppou, C., and Roberts, S. 2000. Numerical solution of the two-dimensional unsteady dam break. Applied Mathematical Modelling, 24(7), 457-475. [doi:10.1016/S0307-904X(99)00056-6]

    (Edited by Yan LEI)

    This work was supported by the National Natural Science Foundation of China (Grants No. 50909065 and 51109039) and the National Basic Research Program of China (973 Program, Grant No. 2012CB417002).

    *Corresponding author (e-mail: yfgeng@seu.edu.cn)

    Received Dec. 5, 2011; accepted May 9, 2012

    久久国产亚洲av麻豆专区| 18在线观看网站| 国产精品自产拍在线观看55亚洲 | 狠狠婷婷综合久久久久久88av| 午夜福利免费观看在线| 变态另类丝袜制服| 亚洲熟妇熟女久久| 亚洲中文av在线| 露出奶头的视频| 老汉色av国产亚洲站长工具| 亚洲激情在线av| 岛国视频午夜一区免费看| 岛国视频午夜一区免费看| 天堂动漫精品| 国产精品,欧美在线| 日本精品一区二区三区蜜桃| 免费电影在线观看免费观看| 国产免费av片在线观看野外av| av欧美777| 免费av毛片视频| 国产又色又爽无遮挡免费看| 成人永久免费在线观看视频| 可以在线观看毛片的网站| 脱女人内裤的视频| 中文字幕高清在线视频| 国产成人精品久久二区二区免费| 国产99久久九九免费精品| 欧美最黄视频在线播放免费| 可以在线观看毛片的网站| 欧美最黄视频在线播放免费| 黄片大片在线免费观看| 国产精品久久久人人做人人爽| 亚洲精品一区av在线观看| 嫩草影视91久久| av天堂在线播放| 2021天堂中文幕一二区在线观| 久久久国产欧美日韩av| 欧美av亚洲av综合av国产av| 国产一区在线观看成人免费| 一区二区三区高清视频在线| 色哟哟哟哟哟哟| 成人av一区二区三区在线看| 国产精品久久久久久亚洲av鲁大| 欧美日本亚洲视频在线播放| 亚洲中文字幕一区二区三区有码在线看 | 午夜视频精品福利| 全区人妻精品视频| 老汉色∧v一级毛片| 久久欧美精品欧美久久欧美| 亚洲成人中文字幕在线播放| av欧美777| 在线永久观看黄色视频| 亚洲国产欧洲综合997久久,| 国产午夜精品久久久久久| 琪琪午夜伦伦电影理论片6080| 琪琪午夜伦伦电影理论片6080| 免费观看人在逋| 国产成人精品无人区| 夜夜爽天天搞| 俺也久久电影网| 两性夫妻黄色片| 最近在线观看免费完整版| 99久久国产精品久久久| 精品一区二区三区四区五区乱码| bbb黄色大片| 成年免费大片在线观看| 午夜福利成人在线免费观看| 色av中文字幕| 91老司机精品| 日日爽夜夜爽网站| 亚洲av片天天在线观看| 日韩大尺度精品在线看网址| 精品日产1卡2卡| 高清在线国产一区| 国产激情欧美一区二区| 久久这里只有精品19| 青草久久国产| 一个人免费在线观看电影 | 精品免费久久久久久久清纯| 久久精品成人免费网站| 国产av又大| 日本撒尿小便嘘嘘汇集6| 国产精品久久电影中文字幕| 国产在线精品亚洲第一网站| 91大片在线观看| 久久人妻av系列| 久久热在线av| 人妻丰满熟妇av一区二区三区| 可以在线观看毛片的网站| www日本在线高清视频| 三级男女做爰猛烈吃奶摸视频| ponron亚洲| av中文乱码字幕在线| 久久99热这里只有精品18| 亚洲av美国av| 久久香蕉国产精品| 狠狠狠狠99中文字幕| 99在线视频只有这里精品首页| 欧美色欧美亚洲另类二区| 日本在线视频免费播放| 精品高清国产在线一区| 亚洲色图av天堂| 伊人久久大香线蕉亚洲五| 人人妻,人人澡人人爽秒播| www日本黄色视频网| 国产成年人精品一区二区| 亚洲国产欧美人成| 51午夜福利影视在线观看| 午夜精品在线福利| 久久这里只有精品19| 伦理电影免费视频| 在线国产一区二区在线| 国产精品免费视频内射| www.自偷自拍.com| 国产主播在线观看一区二区| 亚洲国产欧美人成| 欧美日韩中文字幕国产精品一区二区三区| 99国产综合亚洲精品| 欧美成狂野欧美在线观看| 又爽又黄无遮挡网站| 精品第一国产精品| 悠悠久久av| 欧美日本亚洲视频在线播放| 亚洲精品色激情综合| 俄罗斯特黄特色一大片| 俺也久久电影网| 成人国语在线视频| 国产又黄又爽又无遮挡在线| 国产1区2区3区精品| 久久久久国产精品人妻aⅴ院| 身体一侧抽搐| www日本黄色视频网| 国产午夜精品久久久久久| а√天堂www在线а√下载| 久久香蕉激情| 国产v大片淫在线免费观看| 亚洲欧美日韩高清在线视频| 精品福利观看| 久久精品人妻少妇| av欧美777| 国产一区二区三区在线臀色熟女| av超薄肉色丝袜交足视频| 久久久久性生活片| 中文在线观看免费www的网站 | 视频区欧美日本亚洲| 一边摸一边抽搐一进一小说| 久久精品国产99精品国产亚洲性色| 成人欧美大片| 亚洲人成网站高清观看| 国产成+人综合+亚洲专区| 人妻夜夜爽99麻豆av| 欧美在线黄色| 亚洲国产欧美人成| 亚洲国产精品成人综合色| 欧美人与性动交α欧美精品济南到| 亚洲国产中文字幕在线视频| 看片在线看免费视频| 欧美成人午夜精品| 巨乳人妻的诱惑在线观看| 女生性感内裤真人,穿戴方法视频| 久久亚洲真实| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久久久久久久| 搡老熟女国产l中国老女人| 黑人巨大精品欧美一区二区mp4| 巨乳人妻的诱惑在线观看| 国产一区二区三区在线臀色熟女| 给我免费播放毛片高清在线观看| 国产久久久一区二区三区| 色综合婷婷激情| 色哟哟哟哟哟哟| 少妇被粗大的猛进出69影院| 欧美成人午夜精品| 亚洲欧美日韩无卡精品| 亚洲av成人av| 欧美在线一区亚洲| 黄色片一级片一级黄色片| 黑人欧美特级aaaaaa片| 国语自产精品视频在线第100页| 久久香蕉精品热| 国产精品av视频在线免费观看| 最近视频中文字幕2019在线8| 欧美乱妇无乱码| 成熟少妇高潮喷水视频| 中文资源天堂在线| 两个人的视频大全免费| 亚洲,欧美精品.| 日韩av在线大香蕉| 中出人妻视频一区二区| 麻豆一二三区av精品| 熟女电影av网| 男女下面进入的视频免费午夜| 久久中文字幕人妻熟女| 国产av又大| 午夜久久久久精精品| 曰老女人黄片| 成人三级黄色视频| a级毛片a级免费在线| 国产熟女午夜一区二区三区| www.熟女人妻精品国产| 国产免费男女视频| 久久久久久九九精品二区国产 | 国产亚洲欧美98| 人妻丰满熟妇av一区二区三区| 麻豆成人av在线观看| 国产成人系列免费观看| av有码第一页| 精品欧美国产一区二区三| 成人18禁在线播放| av免费在线观看网站| 亚洲成人中文字幕在线播放| 久久久久久大精品| 可以在线观看的亚洲视频| 亚洲欧美日韩高清在线视频| 精品少妇一区二区三区视频日本电影| 99国产极品粉嫩在线观看| 天堂动漫精品| 在线观看免费日韩欧美大片| 久久久久久久久免费视频了| 国产精品久久久久久久电影 | 看免费av毛片| 国产精品久久久久久久电影 | 精品高清国产在线一区| 日本免费一区二区三区高清不卡| 亚洲熟妇熟女久久| 这个男人来自地球电影免费观看| 国产片内射在线| 日本熟妇午夜| 午夜a级毛片| 51午夜福利影视在线观看| 国产69精品久久久久777片 | 成年版毛片免费区| 一卡2卡三卡四卡精品乱码亚洲| 色综合欧美亚洲国产小说| 韩国av一区二区三区四区| 免费在线观看影片大全网站| 国产精品,欧美在线| 亚洲精华国产精华精| 久久久国产成人精品二区| 亚洲午夜理论影院| 嫩草影视91久久| a级毛片a级免费在线| 日本一区二区免费在线视频| 国产精品野战在线观看| 欧美一区二区精品小视频在线| 十八禁网站免费在线| 成年人黄色毛片网站| 精品久久久久久久久久久久久| 曰老女人黄片| 男女做爰动态图高潮gif福利片| 99国产精品一区二区蜜桃av| 亚洲av电影不卡..在线观看| 超碰成人久久| www日本黄色视频网| 欧美性猛交╳xxx乱大交人| av片东京热男人的天堂| 国产亚洲精品av在线| 国产男靠女视频免费网站| 九九热线精品视视频播放| 欧美日韩一级在线毛片| 啦啦啦观看免费观看视频高清| 久久精品91蜜桃| 99热只有精品国产| cao死你这个sao货| 欧美极品一区二区三区四区| 国产午夜精品论理片| 精品久久久久久,| 一夜夜www| 欧美色欧美亚洲另类二区| 99久久99久久久精品蜜桃| 亚洲专区中文字幕在线| 欧美日韩中文字幕国产精品一区二区三区| 禁无遮挡网站| 国产在线精品亚洲第一网站| 全区人妻精品视频| 天堂动漫精品| 后天国语完整版免费观看| 精品久久久久久久人妻蜜臀av| 91字幕亚洲| 俄罗斯特黄特色一大片| 成人国语在线视频| 欧美激情久久久久久爽电影| 国产主播在线观看一区二区| 日韩av在线大香蕉| www.精华液| 亚洲电影在线观看av| 国产成年人精品一区二区| 真人一进一出gif抽搐免费| 国产又黄又爽又无遮挡在线| 国产视频一区二区在线看| 亚洲男人天堂网一区| 国产熟女午夜一区二区三区| 亚洲 欧美一区二区三区| 久久久久久人人人人人| 中文字幕熟女人妻在线| 国产97色在线日韩免费| 欧美精品啪啪一区二区三区| 国产一区在线观看成人免费| 中国美女看黄片| 成人18禁高潮啪啪吃奶动态图| 又紧又爽又黄一区二区| 88av欧美| 在线观看日韩欧美| 超碰成人久久| 91麻豆精品激情在线观看国产| 男人的好看免费观看在线视频 | 色综合亚洲欧美另类图片| 桃红色精品国产亚洲av| 欧美一级a爱片免费观看看 | 免费在线观看黄色视频的| 成人一区二区视频在线观看| 久久欧美精品欧美久久欧美| 最近视频中文字幕2019在线8| www国产在线视频色| 亚洲av五月六月丁香网| 欧美午夜高清在线| 成年人黄色毛片网站| 免费一级毛片在线播放高清视频| 亚洲av成人不卡在线观看播放网| 亚洲性夜色夜夜综合| 色综合欧美亚洲国产小说| 国产精品98久久久久久宅男小说| 1024香蕉在线观看| 国产成人aa在线观看| 欧美日本视频| 中文字幕人成人乱码亚洲影| 国模一区二区三区四区视频 | 成人欧美大片| 男女午夜视频在线观看| 亚洲一码二码三码区别大吗| 亚洲男人的天堂狠狠| 亚洲精品一卡2卡三卡4卡5卡| 欧美黄色片欧美黄色片| 久久久精品国产亚洲av高清涩受| 超碰成人久久| 国产精品久久久久久精品电影| 国产av又大| 亚洲av中文字字幕乱码综合| 欧美av亚洲av综合av国产av| 男女视频在线观看网站免费 | 一二三四社区在线视频社区8| 97超级碰碰碰精品色视频在线观看| 午夜激情av网站| 一二三四社区在线视频社区8| 狂野欧美激情性xxxx| 亚洲成人免费电影在线观看| 亚洲18禁久久av| x7x7x7水蜜桃| av福利片在线观看| 深夜精品福利| 国产成人欧美在线观看| 三级男女做爰猛烈吃奶摸视频| 国产高清视频在线观看网站| 精品无人区乱码1区二区| 不卡av一区二区三区| 亚洲男人天堂网一区| 性欧美人与动物交配| 女同久久另类99精品国产91| 国产亚洲欧美在线一区二区| 色综合欧美亚洲国产小说| 国产精品久久久久久久电影 | 亚洲精品中文字幕在线视频| 久久久精品欧美日韩精品| 老司机福利观看| 三级国产精品欧美在线观看 | 特级一级黄色大片| 国产私拍福利视频在线观看| 亚洲成人久久爱视频| 老熟妇乱子伦视频在线观看| 老汉色av国产亚洲站长工具| 狂野欧美激情性xxxx| 国产99白浆流出| 嫩草影院精品99| 级片在线观看| www.自偷自拍.com| 一边摸一边抽搐一进一小说| 国产精品电影一区二区三区| 日韩 欧美 亚洲 中文字幕| 国产亚洲av嫩草精品影院| 国产伦在线观看视频一区| 99re在线观看精品视频| 麻豆成人午夜福利视频| 岛国在线观看网站| 国产欧美日韩精品亚洲av| 少妇的丰满在线观看| 不卡一级毛片| 午夜亚洲福利在线播放| 亚洲欧美日韩高清在线视频| 成人三级黄色视频| 一级作爱视频免费观看| 曰老女人黄片| 亚洲精品美女久久av网站| 又爽又黄无遮挡网站| 日韩高清综合在线| 亚洲欧美日韩高清专用| 国产午夜精品论理片| 中文字幕人妻丝袜一区二区| 桃色一区二区三区在线观看| 午夜视频精品福利| 露出奶头的视频| 日韩欧美在线二视频| 国产精品综合久久久久久久免费| cao死你这个sao货| 精品久久久久久久人妻蜜臀av| 久久这里只有精品中国| av片东京热男人的天堂| 精品一区二区三区视频在线观看免费| 日本a在线网址| 欧美最黄视频在线播放免费| 中文字幕人成人乱码亚洲影| 国产精品美女特级片免费视频播放器 | 国产黄a三级三级三级人| 特大巨黑吊av在线直播| 国产爱豆传媒在线观看 | 老司机在亚洲福利影院| 淫秽高清视频在线观看| 中文字幕最新亚洲高清| 色在线成人网| 麻豆成人午夜福利视频| 亚洲av五月六月丁香网| 亚洲无线在线观看| 国产精品永久免费网站| 2021天堂中文幕一二区在线观| 久久九九热精品免费| 日韩精品中文字幕看吧| 午夜福利免费观看在线| 中文字幕最新亚洲高清| 啦啦啦免费观看视频1| 免费在线观看亚洲国产| 在线观看www视频免费| 日日干狠狠操夜夜爽| 脱女人内裤的视频| 黄色女人牲交| 在线看三级毛片| 人妻夜夜爽99麻豆av| 国模一区二区三区四区视频 | 777久久人妻少妇嫩草av网站| 国产精品av久久久久免费| 久久精品国产99精品国产亚洲性色| 久久精品亚洲精品国产色婷小说| 成熟少妇高潮喷水视频| 国产精品一区二区免费欧美| 中文字幕人成人乱码亚洲影| 久久久国产成人免费| 亚洲专区国产一区二区| 精品国产乱码久久久久久男人| 精品国产乱子伦一区二区三区| 亚洲美女视频黄频| 国产成人av教育| 国产99白浆流出| 最近最新免费中文字幕在线| 香蕉久久夜色| АⅤ资源中文在线天堂| 欧美中文综合在线视频| 村上凉子中文字幕在线| 热99re8久久精品国产| 日韩欧美 国产精品| 国产成人影院久久av| 成人高潮视频无遮挡免费网站| 欧美日韩中文字幕国产精品一区二区三区| 久久久精品大字幕| 精品国产美女av久久久久小说| 亚洲av电影不卡..在线观看| 日韩成人在线观看一区二区三区| 欧美日韩一级在线毛片| 女同久久另类99精品国产91| 免费搜索国产男女视频| 国产伦在线观看视频一区| videosex国产| 亚洲 欧美一区二区三区| 中文字幕人妻丝袜一区二区| 国产片内射在线| 精华霜和精华液先用哪个| xxxwww97欧美| 此物有八面人人有两片| 真人一进一出gif抽搐免费| 又紧又爽又黄一区二区| 免费人成视频x8x8入口观看| www日本在线高清视频| 香蕉丝袜av| 国产熟女xx| 国产精品自产拍在线观看55亚洲| 久久 成人 亚洲| 久久香蕉国产精品| 国产精品一区二区免费欧美| 国产av一区二区精品久久| 亚洲第一欧美日韩一区二区三区| 精品人妻1区二区| 麻豆成人午夜福利视频| 黑人巨大精品欧美一区二区mp4| 一个人观看的视频www高清免费观看 | 少妇裸体淫交视频免费看高清 | 欧美av亚洲av综合av国产av| 非洲黑人性xxxx精品又粗又长| 亚洲中文字幕一区二区三区有码在线看 | 国产av一区二区精品久久| 午夜福利成人在线免费观看| 一级a爱片免费观看的视频| 女人被狂操c到高潮| 99国产极品粉嫩在线观看| 国产成人一区二区三区免费视频网站| 悠悠久久av| 后天国语完整版免费观看| 黑人巨大精品欧美一区二区mp4| 中亚洲国语对白在线视频| 亚洲专区国产一区二区| 69av精品久久久久久| 成人高潮视频无遮挡免费网站| 免费看美女性在线毛片视频| 91九色精品人成在线观看| 久久久国产精品麻豆| 一级毛片精品| 变态另类丝袜制服| 亚洲在线自拍视频| 欧美黄色片欧美黄色片| 日本一本二区三区精品| 午夜免费观看网址| 中文在线观看免费www的网站 | 欧美中文综合在线视频| 亚洲精品久久成人aⅴ小说| 欧美极品一区二区三区四区| 一区二区三区高清视频在线| 亚洲国产欧美一区二区综合| 757午夜福利合集在线观看| 国产成人精品无人区| 日韩国内少妇激情av| 国产伦人伦偷精品视频| 人人妻人人看人人澡| 色综合站精品国产| 波多野结衣巨乳人妻| 久久香蕉国产精品| 国产激情偷乱视频一区二区| 床上黄色一级片| 亚洲在线自拍视频| 国产av不卡久久| 国产精品野战在线观看| videosex国产| 色综合婷婷激情| 亚洲性夜色夜夜综合| 国产伦一二天堂av在线观看| or卡值多少钱| 91在线观看av| 在线观看美女被高潮喷水网站 | 亚洲一区二区三区不卡视频| 一个人免费在线观看的高清视频| 欧美高清成人免费视频www| 欧美日韩亚洲综合一区二区三区_| 国产亚洲精品av在线| 俄罗斯特黄特色一大片| 欧美绝顶高潮抽搐喷水| 精品免费久久久久久久清纯| 亚洲专区字幕在线| а√天堂www在线а√下载| 手机成人av网站| 精品久久久久久久末码| 熟女电影av网| tocl精华| 嫩草影视91久久| e午夜精品久久久久久久| 国产成人系列免费观看| 欧美另类亚洲清纯唯美| 国产精品久久久久久精品电影| 国产aⅴ精品一区二区三区波| 久久中文看片网| 国产成人av激情在线播放| 国产亚洲欧美在线一区二区| 亚洲午夜理论影院| 亚洲精品中文字幕一二三四区| 曰老女人黄片| 18禁裸乳无遮挡免费网站照片| 欧美三级亚洲精品| 久久香蕉激情| 午夜免费成人在线视频| 亚洲一区高清亚洲精品| 在线观看一区二区三区| 中文在线观看免费www的网站 | 精品久久久久久久久久免费视频| 国产高清视频在线观看网站| 成人欧美大片| av在线天堂中文字幕| 亚洲一区中文字幕在线| 国模一区二区三区四区视频 | 日本免费一区二区三区高清不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品综合久久久久久久免费| 久久这里只有精品19| 美女大奶头视频| 欧美国产日韩亚洲一区| 亚洲av美国av| 成人一区二区视频在线观看| 听说在线观看完整版免费高清| 在线国产一区二区在线| 日本a在线网址| 在线观看66精品国产| 欧美色视频一区免费| 国产亚洲精品第一综合不卡| 亚洲avbb在线观看| 亚洲av美国av| 在线国产一区二区在线| 最近最新中文字幕大全免费视频| 精品少妇一区二区三区视频日本电影| 午夜精品在线福利| 亚洲真实伦在线观看| 欧美另类亚洲清纯唯美| 欧美午夜高清在线| 国产av麻豆久久久久久久| 欧美日韩亚洲综合一区二区三区_| 婷婷亚洲欧美| 后天国语完整版免费观看| 欧美一区二区精品小视频在线| 性欧美人与动物交配| 99久久精品热视频| 日韩大尺度精品在线看网址| 听说在线观看完整版免费高清| 亚洲午夜精品一区,二区,三区|