• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Goodness-of-fit tests for multi-dimensional copulas: Expanding application to historical drought data

    2013-07-31 16:04:27MingweiMALiliangRENSongbaiSONGJialiSONGShanhuJIANG
    Water Science and Engineering 2013年1期

    Ming-wei MA, Li-liang REN*, Song-bai SONG, Jia-li SONG, Shan-hu JIANG

    1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, P. R. China

    2. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, P. R. China

    3. Business School, Hohai University, Nanjing 211100, P. R. China

    Goodness-of-fit tests for multi-dimensional copulas: Expanding application to historical drought data

    Ming-wei MA1, Li-liang REN*1, Song-bai SONG2, Jia-li SONG3, Shan-hu JIANG1

    1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, P. R. China

    2. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, P. R. China

    3. Business School, Hohai University, Nanjing 211100, P. R. China

    The question of how to choose a copula model that best fits a given dataset is a predominant limitation of the copula approach, and the present study aims to investigate the techniques of goodness-of-fit tests for multi-dimensional copulas. A goodness-of-fit test based on Rosenblatt’s transformation was mathematically expanded from two dimensions to three dimensions and procedures of a bootstrap version of the test were provided. Through stochastic copula simulation, an empirical application of historical drought data at the Lintong Gauge Station shows that the goodness-of-fit tests perform well, revealing that both trivariate Gaussian and Student t copulas are acceptable for modeling the dependence structures of the observed drought duration, severity, and peak. The goodness-of-fit tests for multi-dimensional copulas can provide further support and help a lot in the potential applications of a wider range of copulas to describe the associations of correlated hydrological variables. However, for the application of copulas with the number of dimensions larger than three, more complicated computational efforts as well as exploration and parameterization of corresponding copulas are required.

    goodness-of-fit test; multi-dimensional copulas; stochastic simulation; Rosenblatt’s transformation; bootstrap approach; drought data

    1 Introduction

    Copulas, initially introduced by Sklar (1959), are functions that join univariate distributions to form their multivariate distribution. They offer the flexibility of modeling multivariate distribution through the choice of margins from different families of univariate distributions and the selection of a suitable dependence structure. Due to their favorable properties, copulas have proved useful in financial applications (Frees et al. 1996; Mendes and Souza 2004). In recent years, copulas have been introduced into analyses of multivariate hydrological extreme events and have become a popular tool for modeling the dependencestructures of correlated/non-independent hydrological random variables, e.g., rainfall (Evin and Favre 2008; Wang et al. 2010; Zhang et al. 2012), floods (Grimaldi and Serinaldi 2006; Zhang and Singh 2007; Chowdhary et al. 2011), and droughts (Shiau 2006; Song and Singh 2010; Zhang et al. 2011; Ma et al. 2012).

    Considering the availability of excessive copula functions, some criteria (e.g., the Akaike information criterion (AIC), Bayesian information criterion (BIC), and root mean square error (RMSE)) are widely used to select appropriate copulas as well as other multi-dimensional models by estimating their fitting biases. However, relatively small fitting biases do not invariably guarantee a satisfactory representation of the observations. Whether or not a certain copula or a parametric family of copulas is competent for the description of the dependence structures in the historical data can be investigated by applying specialized goodness-of-fit tests for copulas. Although several goodness-of-fit tests have been proposed, there are no general guidelines for selecting the optimal parametric copula. Genest and Rivest (1993) developed an empirical method to identify the best copula in the Archimedean case. Since copulas are invariant under strictly increasing transformations (Nelsen 1999), Diebold et al. (1998, 1999), Berkowitz (2001), and Berg and Bakken (2005) used the probability integral transform (PIT) of the data in the evaluation of copula models. Panchenko (2005) focused on positive definite bilinear forms, while Genest et al. (2006) utilized the Kendall’s process. For a thorough review of contributions to this field, see also Malevergne and Sornette (2003), Breymann et al. (2003), Dobri? and Schmid (2005), Junker and May (2005), and Fermanian (2005).

    Dobri? and Schmid (2007) addressed a test for parametric families of bivariate copulas based on Rosenblatt’s transformation, which was also suggested and applied in Breymann et al. (2003). In these applications, bivariate copulas were mainly investigated while the methodology was tested and verified with either financial data or artificial samples. Though Dobri? and Schmid (2007) declared that the computation of the test statistics could be applied to the cases of higher-dimensional copulas, relevant studies exploring multi-dimensional copulas and coping with hydrological data have not been reported so far. In fact, difficulties and special issues are expected to arise in the process of transformations from two dimensions to three dimensions (or even to higher numbers of dimensions). Therefore, the present study aims (1) to propose a goodness-of-fit test for multi-dimensional copulas with parametric expressions based on Rosenblatt’s transformation, and (2) to verify the capability of the test through stochastic simulation of trivariate Gaussian and Student t copulas using historical drought observations.

    2 Methodology

    2.1 Rosenblatt’s transformation

    Rosenblatt (1952) proposed a transformation mapping a k-variate random vector with a continuous distribution to one with a uniform distribution on the k-dimensional hypercube. The transformation can be used to obtain the residuals for various multivariate probability models,which allows for formal goodness-of-fit testing of these models. A simple description of Rosenblatt’s transformation is as follows:

    Following the notation of Rosenblatt (1952), letX=(X1,X2,…,Xk)be a random vector with distribution functionF(x1,x2,…,xk). The conditional cumulative distribution functions are defined as

    Then, Rosenblatt’s transformationTis given byz=(z1,z2,…,zk)=Tx=T(x1,x2,…,xk), where

    If the distribution ofXis continuous, the random vectorZ, given byZ=TX, is uniformly distributed on thek-dimensional hypercube.

    2.2 Mathematical derivation of goodness-of-fit test

    LetX,Y, andZdenote three random variables with a joint probability distribution functionFX,Y,Z(x,y,z)=P(X≤x,Y≤y,Z≤z) for {x,y,z}∈R3and the marginal distribution functionsFX(x)=P(X≤x),FY(y)=P(Y≤y), andFZ(z)=P(Z≤z)forx,y,z∈R. SupposeFX,FY, andFZare all continuous functions; then, there exists a unique copulaC:[0,1]3→[0,1] with

    whereC(?), the trivariate copula, denotes the joint distribution function of the variables. LetU=FX(x),V=FY(y), andW=FZ(z), i.e.,C(u,v,w)=P(U≤u,V≤v,W≤w) for {u,v,w}∈[0,1]3, and the conditional distribution function ofWat givenU=uandV=vcan be expressed as

    Here, we assume that the second-order partial derivative exists. According to Rosenblatt (1952), the random variables

    and

    are independent and uniformly distributed in [] 0,1. Thus, the random variable

    2.3 Procedures of bootstrap version for trivariate copulas

    According to Dobri? and Schmid (2007), Genest et al. (2009), Song and Singh (2010), and Ma and Song (2010), the procedures of goodness-of-fit tests for trivariate copulas using a bootstrap approach are as follows:

    (2) The joint probability distribution of (Xi,Yi) is estimated using a chosen bivariate copula:

    fori=1,2,…,n.

    3 Copulas simulation

    The modeled samples necessary for goodness-of-fit tests resort to copula simulation (step (6) in the above-proposed procedures). Therefore, procedures for Gaussian and Student t copulas as well as a case study are provided below to illustrate goodness-of-fit tests for trivariate copulas.

    3.1 Trivariate Gaussian and Student t copulas

    According to Fang et al. (2002) and Demarta and McNeil (2005), the trivariate Student t copula can be parametrically expressed as

    3.2 Gaussian copula simulation

    (1) Simulate the independent and uniformly distributed random variablesv1,v2, andv3.

    (2) Setu1=v1.

    3.3 Student t copula simulation

    (2) Set u1=v1.

    4 Case study

    4.1 Data

    The historical drought data from the Lintong Gauge Station in the Weihe Basin, China, were used to illustrate this proposed approach for goodness-of-fit tests of trivariate copulas. Monthly precipitations covering a period from 1959 to 2008 were used to define droughts based on the theory of runs. All the data were obtained from the National Climate Center of the China Meteorological Administration and are complete data. Using the Mann-Kendall method, the data do not show obvious trends and can be accepted as temporally homogeneous. As illustrated in Fig. 1 (wheretis time,Xtis the observed precipitation time series, andX0is a given threshold), a drought event is defined as a period when precipitation is equal to or less than the predetermined threshold. Drought characteristics, i.e., duration (D), severity (S), and peak (P) were extracted for each drought event using the averages of monthly precipitation as truncation levels, and some basic statistics of these three components are shown in Table 1. The correlation coefficients of Pearson’srn, Spearman’sρn, and Kendall’sτngiven in Table 2 show that the observed drought duration, severity, and peak are highly correlated with one another, with a maximum correlation coefficient exceeding 0.9. The results were confirmed by the Chi-plots described in Fig. 2 (for a thorough review and more details about Chi-plots, see Fisher and Switzer (1985, 2001), Ma et al. (2012), and references therein). Most of the empirical points fall outside the confidence band (α=0.05) in the Chi-plots, which indicates that apparent dependent relationships exist among drought duration, severity, and peak. While significantly positive dependent relationships between bivariate drought variables are revealed both by the results of the correlation coefficients and Chi-plots, the degree of dependence between the drought duration and severity is larger than that between the drought duration and peak, and is less than that between the drought severityand peak. However, distributions of the points in the Chi-plots also indicate different dependence structures of drought components: for duration-severity and duration-peak they are similar (almost symmetric), but they are strictly distinct (extremely asymmetric) for severity-peak.

    Fig. 1Definition of drought using theory of runs

    Assuming that the drought duration, severity, and peak are continuous variables, a variety of univariate cumulative distribution functions (CDFs) were used to fit the observed drought data first. Two criteria (AIC and RMSE) and various goodness-of-fit techniques (the Chi-square, Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling, and modified weighted Durbin-Watson tests) were adopted to select margins. The exponential distribution, Weibull distribution, and generalized Pareto distribution, respectively, were eventually chosen as the optimal marginal distributions for drought duration, severity, and peak. The maximum likelihood (ML) method was applied to estimate parameters of the exponential distribution forthe drought duration, while parameters of the Weibull distribution for the drought severity and the generalized Pareto distributions for the drought peak were estimated using the probability weight-moment method (PWM). Dependence structures of drought duration, severity, and peak were then modeled with the trivariate Gaussian and Student t copulas to obtain their multivariate joint distribution. Parameters of the Gaussian and Student t copulas were computed using the maximum pseudo-likelihood estimation method (Nadarajah 2006; Song and Singh 2010) and are shown in Table 3.

    Table 1Basic statistics of drought variables

    Table 2Correlation coefficients of drought variables

    Fig. 2Chi-plots for drought duration, severity, and peak

    Table 3Parameters of Gaussian and Student t copulas

    4.2 Results and discussion

    According to the procedures described in Section 2.3, the Kolmogorov-Smirnov and Anderson-Darling statistics of the Gaussian and Student t copulas were numerically computed and are shown in Tables 4 and 5, respectively. Given the significance levelα=0.05, it was found that all test statistics based on the observed drought duration, severity, and peak were less than the corresponding critical values, which indicates that neither Gaussian copula nor Student t copula can be rejected at the significance levelα=0.05. In other words, the null hypothesisH0*as well asH0is accepted, i.e., both of the Gaussian and Student t copulas are acceptable for describing the dependence structures of the drought duration, severity, and peak as well as for modeling their trivariate joint probability distribution.

    Table 4Critical values ofDnfor Gaussian and Student t copulas

    Table 5Critical values offor Gaussian and Student t copulas

    Table 5Critical values offor Gaussian and Student t copulas

    Copula2Critical values at various significance levelsα An0.20 0.15 0.10 0.05 0.01 Gaussian 2.000 4 2.781 1 3.311 8 4.032 8 5.203 1 7.762 0 Student t 1.007 8 3.880 9 4.492 8 5.325 2 6.781 6 10.334 8

    Throughout the limited current applications of copula-based methods to multivariate drought issues, Archimedean copulas (many of which are, generally, valid for roughly identical and symmetric dependence structures among the considered multi-variables) seem to have been most commonly used (Ma et al. 2012). Nevertheless, in reality, chances are that most of the multi-contributing variables in hydrological or meteorological processes (e.g., rainfall, floods,and especially droughts) possess various dependence structures and degrees of associations, which are asymmetric and unbalanced. For instance, the markedly heterogeneous dependences of drought duration, severity, and peak reflected in the Chi-plots (Fig. 2) are better modeled by a selected meta-elliptical family of copulas. The fitting efficiencies of trivariate Gaussian and Student t copulas are shown in Fig. 3, which can be naturally confirmed by the results of goodness-of-fit tests, and this indicates that the Gaussian and Student t copulas both produce a satisfactory representation of the historical drought observations. Thus, the dependence structures of drought duration, severity, and peak can be readily modeled using the Gaussian and Student t copulas in order to obtain corresponding multivariate characteristics (such as joint probabilities and return periods) of drought events. These potential messages are useful and essential for drought risk management as well as for practical design and planning; since the drought duration, severity, and peak can be considered in total, it is possible to obtain various combinations of different drought components for several purposes in hydrological practices.

    Fig. 3Comparison of multivariate empirical and theoretical distributions

    5 Conclusions

    Rosenblatt’s transformation can be applied to copulas in order to propose a test of fit for them and this technique of goodness-of-fit testing can in principle be used for every parametric family of copulas. Mathematical foundations of the goodness-of-fit test for trivariate copulas and corresponding procedures of a bootstrap approach were provided. Using the Gaussian and Student t copulas as an example, we demonstrate through copula simulation that the observed historical drought data at the Lintong Gauge Station with a trivariate meta-elliptical copula are acceptable at certain significance levels. As copulas are increasingly used to describe dependences of correlated random variables, the methodologies of goodness-of-fit testing for multi-dimensional copulas can provide strong support and help a lot in the further applications of a wide variety of copulas as useful tools for exploring the dependency relationships and subsequent multivariate joint probability distributions of non-independent hydrological variables with different dependence structures and degrees of associations.

    Although, in theory, the methods of goodness-of-fit tests for trivariate copulas described in this paper could be extended to have higher numbers of dimensions, more complicated computational efforts are surely required. Besides, as we pointed out in the beginning, the existing framework and methods remain ineffective for non-parametric families of copulas (whereas there are many of them in potential applications); and exploration of analytical formulas and estimation of parameters for multi-dimensional copulas can also be better addressed with more efforts in the future.

    Berg, D., and Bakken, H. 2005. A Goodness-of-fit Test for Copulae based on the Probability Integral Transform. Oslo: Department of Mathematics, University of Oslo.

    Berkowitz, J. 2001. Testing density forecasts, with applications to risk management. Journal of Business and Economic Statistics, 19(4), 465-474. [doi:10.1198/07350010152596718]

    Breymann, W., Dias, A., and Embrechts, P. 2003. Dependence structures for multivariate high-frequency data in finance. Quantitative Finance, 3(1), 1-14. [doi:10.1080/713666155]

    Chowdhary, H., Escobar, L. A., and Singh, V. P. 2011. Identification of suitable copulas for bivariate frequency analysis of flood peak and flood volume data. Hydrology Research, 42(2-3), 193-216. [doi:10.2166/nh.2011.065]

    Demarta, S., and McNeil, A. J. 2005. The t copula and related copulas. International Statistical Review, 73(1), 111-129. [doi:10.1111/j.1751-5823.2005.tb00254.x]

    Diebold, F. X., Gunther, T. A., and Tay, A. S. 1998. Evaluating density forecasts with applications to financial risk management. International Economic Review, 39(4), 863-883. [doi:10.2307/2527342]

    Diebold, F. X., Hahn, J., and Tay, A. S. 1999. Multivariate density forecast and calibration in financial risk management: High-frequency returns on foreign exchange. The Review of Economics and Statistics, 81(4), 661-673. [doi:10.1162/003465399558526]

    Dobri?, J., and Schmid, F. 2005. Testing goodness of fit for parametric families of copulas: Application to financial data. Communications in Statistics — Simulation and Computation, 34(4), 1053-1068. [doi: 10.1080/03610910500308685]

    Dobri?, J., and Schmid, F. 2007. A goodness of fit test for copulas based on Rosenblatt’s transformation. Computational Statistics and Data Analysis, 51(9), 4633-4642. [doi:10.1016/j.csda.2006.08.012]

    Evin, G., and Favre, A. C. 2008. A new rainfall model based on the Neyman-Scott process using cubic copulas. Water Resources Research, 44, W03433. [doi:10.1029/2007WR006054]

    Fang, H. B., Fang, K. T., and Kotz, S. 2002. The meta-elliptical distributions with given marginals. Journal of Multivariate Analysis, 82(1), 1-16. [doi:10.1006/jmva.2001.2017]

    Fermanian, J. D. 2005. Goodness of fit tests for copulas. Journal of Multivariate Analysis, 95(1), 119-152. [doi:10.1016/j.jmva.2004.07.004]

    Fisher, N. I., and Switzer, P. 1985. Chi-plots for assessing dependence. Biometrika, 72(2), 253-265.

    Fisher, N. I., and Switzer, P. 2001. Graphical assessment of dependence: Is a picture worth 100 tests? American Statistician, 55(3), 233-239.

    Frees, E. W., Carriere, J., and Valdez, E. 1996. Annuity valuation with dependent mortality. The Journal of Risk and Insurance, 63(2), 229-261.

    Genest, C., and Rivest, L. P. 1993. Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88(423), 1034-1043. [doi:10.1080/01621459.1993. 10476372]

    Genest, C., Quessy, J. F., and Rémillard, B. 2006. Goodness-of-fit procedures for copula models based on the probability integral transformation. Scandinavian Journal of Statistics, 33(2), 337-366. [doi:10.1111/ j.1467-9469.2006.00470.x]

    Genest, C., Rémillard, B., and Beaudoin, D. 2009. Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics, 44(2), 199-213. [doi:10.1016/j.insmatheco.2007.10.005]

    Grimaldi, S., and Serinaldi, F. 2006. Asymmetric copula in multivariate flood frequency analysis. Advances in Water Resources, 29(8), 1155-1167. [doi:10.1016/j.advwatres.2005.09.005]

    Junker, M., and May, A. 2005. Measurement of aggregate risk with copulas. Econometrics Journal, 8(3), 428-454. [doi:10.1111/j.1368-423X.2005.00173.x]

    Ma, M. W., and Song, S. B. 2010. Elliptical copulas for drought characteristics analysis of Xi’an gauging station. Journal of China Hydrology, 30(4), 36-42. (in Chinese)

    Ma, M. W., Song, S. B., Ren, L. L., Jiang, S. H., and Song, J. L. 2012. Multivariate drought characteristics using trivariate Gaussian and Student t copulas. Hydrological Processes, published online at http://onlinelibrary.wiley.com/doi/10.1002/hyp.8432/abstract on April 17, 2012 [doi:10.1002/hyp.8432]

    Malevergne, Y., and Sornette, D. 2003. Testing the Gaussian copula hypothesis for financial asset dependences. Quantitative Finance, 3(4), 231-250. [doi:10.1088/1469-7688/3/4/301]

    Mendes, B. V. M., and Souza, R. M. 2004. Measuring financial risks with copulas. International Review of Financial Analysis, 13(1), 27-45. [doi:10.1016/j.irfa.2004.01.007]

    Nadarajah, S. 2006. Fisher information for the elliptically symmetric Pearson distributions. Applied Mathematics and Computation, 178(2), 195-206. [doi:10.1016/j.amc.2005.11.037]

    Nelsen, R. B. 1999. An Introduction to Copulas. New York: Springer.

    Panchenko, V. 2005. Goodness-of-fit test for copulas. Physica A, 355, 176-182. [doi:10.1016/j.physa. 2005.02.081]

    Rosenblatt, M. 1952. Remarks on a multivariate transformation. The Annals of Mathematical Statistics, 23(3), 470-472.

    Shiau, J. T. 2006. Fitting drought duration and severity with two-dimensional copulas. Water Resources Management, 20(5), 795-815. [doi:10.1007/s11269-005-9008-9]

    Sklar, A. 1959. Distribution functions of n dimensions and margins. Publications of the Institute of Statistics of the University of Paris, 8, 229-231. (in French)

    Song, S. B., and Singh, V. P. 2010. Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data. Stochastic Environmental Research and Risk Assessment, 24(3), 425-444. [doi:10.1007/ s00477-009-0331-1]

    Wang, X. J., Gebremichael, M., and Yan, J. 2010. Weighted likelihood copula modeling of extreme rainfall events in Connecticut. Journal of Hydrology, 390(1-2), 108-115. [doi:10.1016/j.jhydrol.2010.06.039]

    ?e?ula, I. 2009. On multivariate Gaussian copulas. Journal of Statistical Planning and Inference, 139(11), 3942-3946. [doi:10.1016/j.jspi.2009.05.039]

    Zhang, L., and Singh, V. P. 2007. Trivariate flood frequency analysis using the Gumbel-Hougaard copula. Journal of Hydrologic Engineering, 12(4), 431-439. [doi:10.1061/(ASCE)1084-0699(2007)12:4(431)]

    Zhang, Q., Chen, Y. Q., Chen, X. H., and Li, J. F. 2011. Copula-based analysis of hydrological extremes and implications of hydrological behaviors in the Pearl River basin, China. Journal of Hydrologic Engineering, 16(7), 598-607. [doi:10.1061/(ASCE)HE.1943-5584.0000350]

    Zhang, Q., Li, J. F., and Singh, V. P. 2012. Application of Archimedean copulas in the analysis of the precipitation extremes: Effects of precipitation changes. Theoretical and Applied Climatology, 107(1-2), 255-264. [doi:10.1007/s00704-011-0476-y]

    (Edited by Yun-li Y U)

    This work was supported by the Program of Introducing Talents of Disciplines to Universities of the Ministry of Education and State Administration of the Foreign Experts Affairs of China (the 111 Project, Grant No. B08048) and the Special Basic Research Fund for Methodology in Hydrology of the Ministry of Sciences and Technology of China (Grant No. 2011IM011000).

    *Corresponding author (e-mail: RLL@hhu.edu.cn)

    Received Nov. 22, 2011; accepted Apr. 12, 2012

    九九爱精品视频在线观看| 人体艺术视频欧美日本| 日韩精品有码人妻一区| 亚洲精品久久午夜乱码| 少妇熟女欧美另类| 国产伦一二天堂av在线观看| 国产黄色免费在线视频| 亚洲最大成人av| 午夜爱爱视频在线播放| 成人午夜精彩视频在线观看| 麻豆久久精品国产亚洲av| 美女黄网站色视频| 国产亚洲精品久久久com| 亚洲av在线观看美女高潮| 欧美激情国产日韩精品一区| 91aial.com中文字幕在线观看| 精品一区在线观看国产| 成人性生交大片免费视频hd| 联通29元200g的流量卡| 亚洲av日韩在线播放| 97人妻精品一区二区三区麻豆| 99热网站在线观看| 亚洲国产精品专区欧美| 我的女老师完整版在线观看| 国模一区二区三区四区视频| 亚洲人成网站高清观看| 亚洲精品aⅴ在线观看| 国产一区亚洲一区在线观看| 午夜免费激情av| 亚洲精品一区蜜桃| 最近中文字幕2019免费版| 婷婷六月久久综合丁香| 亚洲精品影视一区二区三区av| 国产精品蜜桃在线观看| 国产黄片美女视频| 色吧在线观看| 成人性生交大片免费视频hd| 久久亚洲国产成人精品v| 最近中文字幕2019免费版| 国产伦精品一区二区三区四那| 最近手机中文字幕大全| 一级毛片久久久久久久久女| av在线天堂中文字幕| 国产精品爽爽va在线观看网站| 偷拍熟女少妇极品色| 日本爱情动作片www.在线观看| 大片免费播放器 马上看| 97热精品久久久久久| 日本欧美国产在线视频| 亚洲欧美一区二区三区国产| 又爽又黄无遮挡网站| 精品久久久久久久久久久久久| 亚洲av成人精品一区久久| 99久久精品一区二区三区| 97超碰精品成人国产| 伊人久久精品亚洲午夜| 亚洲欧洲国产日韩| 免费观看的影片在线观看| 久久久a久久爽久久v久久| 夜夜看夜夜爽夜夜摸| 免费电影在线观看免费观看| 亚洲欧美清纯卡通| 国产伦精品一区二区三区四那| 国产爱豆传媒在线观看| 超碰av人人做人人爽久久| 成人二区视频| 人妻制服诱惑在线中文字幕| 99久久精品热视频| 精品一区二区三区视频在线| 日韩一区二区视频免费看| 日韩人妻高清精品专区| 久久久精品94久久精品| 欧美3d第一页| 精品酒店卫生间| 日韩精品有码人妻一区| 大香蕉97超碰在线| 国产午夜精品一二区理论片| 亚洲成人中文字幕在线播放| 亚洲高清免费不卡视频| 又爽又黄a免费视频| 国产有黄有色有爽视频| 亚洲熟妇中文字幕五十中出| 韩国av在线不卡| 国产伦理片在线播放av一区| 亚洲国产日韩欧美精品在线观看| 亚洲精品亚洲一区二区| 一区二区三区四区激情视频| 日本一本二区三区精品| 国产精品一区二区性色av| 九色成人免费人妻av| 国产精品美女特级片免费视频播放器| 免费看光身美女| 国内揄拍国产精品人妻在线| 中文乱码字字幕精品一区二区三区 | 亚洲最大成人手机在线| 国产成人午夜福利电影在线观看| 精品国产三级普通话版| 日韩欧美精品免费久久| 亚洲av中文字字幕乱码综合| 中文欧美无线码| 丝袜美腿在线中文| 精品人妻一区二区三区麻豆| 日韩人妻高清精品专区| 午夜亚洲福利在线播放| 又爽又黄a免费视频| 亚洲第一区二区三区不卡| 床上黄色一级片| 久久精品夜色国产| 精品少妇黑人巨大在线播放| 我的女老师完整版在线观看| 99热全是精品| 中国美白少妇内射xxxbb| 久久精品国产自在天天线| 亚洲高清免费不卡视频| 小蜜桃在线观看免费完整版高清| 久久99蜜桃精品久久| 国精品久久久久久国模美| 别揉我奶头 嗯啊视频| 美女脱内裤让男人舔精品视频| 亚洲av成人av| 韩国av在线不卡| 少妇熟女aⅴ在线视频| 日韩精品有码人妻一区| 成人性生交大片免费视频hd| 久久鲁丝午夜福利片| 久久精品久久久久久噜噜老黄| 97热精品久久久久久| 亚洲三级黄色毛片| 黄片无遮挡物在线观看| 午夜福利视频精品| 赤兔流量卡办理| 在线观看av片永久免费下载| 亚洲av.av天堂| 少妇的逼水好多| 熟妇人妻久久中文字幕3abv| 1000部很黄的大片| 国产乱人视频| 国产亚洲91精品色在线| 午夜免费激情av| 免费黄网站久久成人精品| 国产激情偷乱视频一区二区| 大陆偷拍与自拍| 亚洲av男天堂| 一区二区三区四区激情视频| 亚洲成人一二三区av| 国产亚洲av片在线观看秒播厂 | 亚洲人成网站在线观看播放| 少妇熟女aⅴ在线视频| 欧美精品一区二区大全| 日本午夜av视频| 欧美性感艳星| 麻豆成人午夜福利视频| av黄色大香蕉| 亚洲欧美日韩东京热| 91在线精品国自产拍蜜月| 免费观看的影片在线观看| 嘟嘟电影网在线观看| 国产激情偷乱视频一区二区| kizo精华| 能在线免费观看的黄片| 蜜桃久久精品国产亚洲av| 日韩成人伦理影院| 欧美日韩综合久久久久久| 精品人妻视频免费看| 国产精品三级大全| or卡值多少钱| 成年人午夜在线观看视频 | 80岁老熟妇乱子伦牲交| 国产精品久久久久久久电影| 欧美bdsm另类| 亚洲国产欧美人成| 成年人午夜在线观看视频 | 亚洲成人av在线免费| 亚洲熟女精品中文字幕| 狂野欧美激情性xxxx在线观看| 成人av在线播放网站| 精品久久久噜噜| 内射极品少妇av片p| 丝瓜视频免费看黄片| 99久久精品一区二区三区| 熟女电影av网| 在线观看av片永久免费下载| 国产 亚洲一区二区三区 | 国产亚洲91精品色在线| 国产精品一二三区在线看| 免费av不卡在线播放| 国产亚洲午夜精品一区二区久久 | 麻豆成人av视频| 免费播放大片免费观看视频在线观看| 少妇熟女欧美另类| 亚洲天堂国产精品一区在线| 国产亚洲5aaaaa淫片| 国模一区二区三区四区视频| 欧美变态另类bdsm刘玥| 成人国产麻豆网| 久久久久久国产a免费观看| 哪个播放器可以免费观看大片| 午夜福利高清视频| 亚洲av成人av| 人妻少妇偷人精品九色| 亚洲18禁久久av| 精品一区在线观看国产| 成年免费大片在线观看| 夜夜爽夜夜爽视频| 国产女主播在线喷水免费视频网站 | 亚洲综合色惰| 韩国av在线不卡| 国产精品.久久久| 国产一区亚洲一区在线观看| 亚洲美女搞黄在线观看| 久久久亚洲精品成人影院| 欧美性猛交╳xxx乱大交人| 欧美日韩亚洲高清精品| 三级国产精品欧美在线观看| 一二三四中文在线观看免费高清| 欧美高清成人免费视频www| 草草在线视频免费看| 人妻少妇偷人精品九色| 免费观看在线日韩| 六月丁香七月| 日韩,欧美,国产一区二区三区| 黑人高潮一二区| 亚洲精品456在线播放app| 国产成人精品久久久久久| 日本av手机在线免费观看| 成人美女网站在线观看视频| 国产真实伦视频高清在线观看| 最近手机中文字幕大全| 国产黄片美女视频| 国产精品精品国产色婷婷| 久久精品国产鲁丝片午夜精品| 亚洲精品乱码久久久久久按摩| 日日摸夜夜添夜夜爱| 日韩欧美一区视频在线观看 | 黄色欧美视频在线观看| 国内揄拍国产精品人妻在线| 男人狂女人下面高潮的视频| freevideosex欧美| 禁无遮挡网站| 老司机影院毛片| 中国国产av一级| 老师上课跳d突然被开到最大视频| 亚洲精品,欧美精品| 亚洲精品国产av成人精品| 国产精品99久久久久久久久| 综合色av麻豆| av在线老鸭窝| 久久久久久久久大av| 久久99热6这里只有精品| 人人妻人人澡人人爽人人夜夜 | 麻豆成人av视频| 99视频精品全部免费 在线| 精品人妻视频免费看| 日本av手机在线免费观看| 久热久热在线精品观看| 亚洲,欧美,日韩| 精品久久久久久久久亚洲| 日本爱情动作片www.在线观看| 中文字幕亚洲精品专区| 岛国毛片在线播放| 2021天堂中文幕一二区在线观| 深爱激情五月婷婷| 国产亚洲一区二区精品| 日韩一区二区视频免费看| 男人舔奶头视频| 淫秽高清视频在线观看| 少妇人妻精品综合一区二区| 午夜免费男女啪啪视频观看| 国产高潮美女av| 国产视频首页在线观看| 成人二区视频| 蜜臀久久99精品久久宅男| 2021少妇久久久久久久久久久| 免费无遮挡裸体视频| or卡值多少钱| 国产午夜精品一二区理论片| 色哟哟·www| 国产亚洲av片在线观看秒播厂 | 成人性生交大片免费视频hd| 国产一级毛片七仙女欲春2| 久久韩国三级中文字幕| 欧美激情久久久久久爽电影| 最近中文字幕高清免费大全6| 欧美变态另类bdsm刘玥| 国产亚洲午夜精品一区二区久久 | 亚洲欧美精品自产自拍| 国产在视频线精品| 精品国产一区二区三区久久久樱花 | 精品酒店卫生间| 亚洲av电影在线观看一区二区三区 | 国产在线男女| 亚洲国产欧美人成| 久久这里有精品视频免费| 爱豆传媒免费全集在线观看| 亚洲天堂国产精品一区在线| 日日撸夜夜添| 精品99又大又爽又粗少妇毛片| 街头女战士在线观看网站| 亚洲国产色片| 中文天堂在线官网| 成人性生交大片免费视频hd| 欧美精品一区二区大全| 亚洲国产精品成人久久小说| 国产高潮美女av| 美女cb高潮喷水在线观看| 亚洲成色77777| 91在线精品国自产拍蜜月| 国产亚洲精品av在线| 亚洲国产欧美人成| 午夜视频国产福利| 亚洲精品国产成人久久av| 国产淫语在线视频| 一级片'在线观看视频| 尤物成人国产欧美一区二区三区| 亚洲综合色惰| 亚洲不卡免费看| 哪个播放器可以免费观看大片| 日韩一区二区三区影片| freevideosex欧美| a级毛色黄片| 国产爱豆传媒在线观看| 国产精品美女特级片免费视频播放器| 在线观看av片永久免费下载| 国产精品美女特级片免费视频播放器| 在线观看av片永久免费下载| 51国产日韩欧美| 日韩欧美三级三区| 十八禁国产超污无遮挡网站| 国产成年人精品一区二区| 国产在视频线在精品| 亚洲欧美成人综合另类久久久| 如何舔出高潮| 免费观看a级毛片全部| 久久精品久久久久久久性| 男人舔奶头视频| 熟女人妻精品中文字幕| 国产乱人视频| 免费在线观看成人毛片| 免费高清在线观看视频在线观看| 国产精品国产三级国产专区5o| 男女边摸边吃奶| 亚洲欧美中文字幕日韩二区| 国产精品综合久久久久久久免费| 久99久视频精品免费| 麻豆久久精品国产亚洲av| 国产亚洲精品久久久com| 精品国产露脸久久av麻豆 | 成人高潮视频无遮挡免费网站| 国产综合精华液| av在线亚洲专区| 舔av片在线| 免费无遮挡裸体视频| 日日干狠狠操夜夜爽| 99re6热这里在线精品视频| 免费看美女性在线毛片视频| 国产一区二区三区综合在线观看 | av又黄又爽大尺度在线免费看| 又爽又黄a免费视频| 精品久久久久久久久亚洲| 人妻系列 视频| 亚洲精品久久久久久婷婷小说| 97精品久久久久久久久久精品| 久久久久久九九精品二区国产| 亚洲国产色片| 亚洲精品日韩在线中文字幕| 青春草国产在线视频| 亚洲精品日韩在线中文字幕| 美女高潮的动态| 亚洲自拍偷在线| 韩国高清视频一区二区三区| 少妇人妻一区二区三区视频| 特大巨黑吊av在线直播| 久久久久精品久久久久真实原创| av线在线观看网站| 在线免费观看的www视频| 国产 一区 欧美 日韩| 免费不卡的大黄色大毛片视频在线观看 | 亚洲自拍偷在线| 亚洲一区高清亚洲精品| av免费观看日本| 18禁动态无遮挡网站| 最新中文字幕久久久久| 国产乱人偷精品视频| 99热网站在线观看| 久久久a久久爽久久v久久| 久久久久久久久久黄片| 久久久久久久久久久丰满| freevideosex欧美| 精品欧美国产一区二区三| 我的老师免费观看完整版| 亚洲精品久久午夜乱码| 国产成人午夜福利电影在线观看| 99九九线精品视频在线观看视频| 伊人久久精品亚洲午夜| 好男人视频免费观看在线| 久久鲁丝午夜福利片| 综合色av麻豆| 可以在线观看毛片的网站| 九九久久精品国产亚洲av麻豆| 国产精品伦人一区二区| 国产女主播在线喷水免费视频网站 | 亚洲无线观看免费| 最近中文字幕高清免费大全6| 大香蕉久久网| 亚洲va在线va天堂va国产| 亚洲国产高清在线一区二区三| 午夜精品在线福利| 亚洲激情五月婷婷啪啪| 男人狂女人下面高潮的视频| 亚洲怡红院男人天堂| 中文字幕免费在线视频6| 欧美激情久久久久久爽电影| 麻豆成人av视频| 汤姆久久久久久久影院中文字幕 | 国产黄色小视频在线观看| 国产免费又黄又爽又色| 自拍偷自拍亚洲精品老妇| 精品久久久精品久久久| 99久久精品一区二区三区| 精品人妻视频免费看| 婷婷色综合www| 伦精品一区二区三区| 国产 亚洲一区二区三区 | 亚洲精品成人av观看孕妇| 色综合色国产| 又粗又硬又长又爽又黄的视频| 久久草成人影院| 亚洲精品乱码久久久久久按摩| 男插女下体视频免费在线播放| 人人妻人人看人人澡| 中文精品一卡2卡3卡4更新| 大又大粗又爽又黄少妇毛片口| 色综合站精品国产| 人妻一区二区av| 欧美zozozo另类| 最近中文字幕2019免费版| 在现免费观看毛片| 神马国产精品三级电影在线观看| 国产一级毛片在线| 亚洲av.av天堂| 成人综合一区亚洲| 欧美性感艳星| .国产精品久久| 男人和女人高潮做爰伦理| 久久精品人妻少妇| 99久国产av精品| 99久久精品热视频| 成年女人在线观看亚洲视频 | 国产69精品久久久久777片| 少妇丰满av| 真实男女啪啪啪动态图| 欧美另类一区| 亚州av有码| 亚洲怡红院男人天堂| 三级毛片av免费| 午夜福利网站1000一区二区三区| 国语对白做爰xxxⅹ性视频网站| 九草在线视频观看| 一级二级三级毛片免费看| 精品国内亚洲2022精品成人| 26uuu在线亚洲综合色| 水蜜桃什么品种好| 大陆偷拍与自拍| 在线观看免费高清a一片| 成年版毛片免费区| 毛片女人毛片| freevideosex欧美| 丝瓜视频免费看黄片| 精品午夜福利在线看| 欧美高清成人免费视频www| 一区二区三区四区激情视频| 亚洲第一区二区三区不卡| 亚洲精品成人av观看孕妇| 看非洲黑人一级黄片| 亚洲国产精品国产精品| 精品久久国产蜜桃| 免费看光身美女| 最近手机中文字幕大全| 汤姆久久久久久久影院中文字幕 | 人体艺术视频欧美日本| 久久精品夜色国产| 免费播放大片免费观看视频在线观看| 夜夜爽夜夜爽视频| 国产黄色小视频在线观看| 人体艺术视频欧美日本| 国产中年淑女户外野战色| 少妇丰满av| 天堂网av新在线| 中国国产av一级| 亚洲成色77777| 午夜爱爱视频在线播放| 黄片wwwwww| 精品久久久噜噜| 免费看美女性在线毛片视频| 插逼视频在线观看| a级毛色黄片| 色综合亚洲欧美另类图片| 日韩电影二区| 久久6这里有精品| 身体一侧抽搐| 一级av片app| 99久久中文字幕三级久久日本| 看黄色毛片网站| 在线观看免费高清a一片| 午夜福利网站1000一区二区三区| 久热久热在线精品观看| 精品午夜福利在线看| 麻豆成人av视频| 久久久久九九精品影院| 国产三级在线视频| 国产 一区 欧美 日韩| 中国国产av一级| 色网站视频免费| 日韩 亚洲 欧美在线| 久久精品久久久久久噜噜老黄| 中文字幕久久专区| 搡老妇女老女人老熟妇| 大话2 男鬼变身卡| 亚洲精品456在线播放app| 在线免费观看的www视频| 中国美白少妇内射xxxbb| 能在线免费看毛片的网站| 日韩人妻高清精品专区| 丝瓜视频免费看黄片| 97在线视频观看| 国产白丝娇喘喷水9色精品| av女优亚洲男人天堂| 精华霜和精华液先用哪个| 国产色婷婷99| 亚洲欧美日韩卡通动漫| 国产女主播在线喷水免费视频网站 | 亚洲电影在线观看av| 韩国高清视频一区二区三区| 国产精品国产三级国产av玫瑰| 看黄色毛片网站| 国产精品女同一区二区软件| 成年女人看的毛片在线观看| 国产精品伦人一区二区| 久久久国产一区二区| 久久久久国产网址| 好男人在线观看高清免费视频| 日韩欧美精品v在线| 免费少妇av软件| 69人妻影院| 一区二区三区高清视频在线| 内地一区二区视频在线| 久久久精品94久久精品| 老司机影院毛片| 国产乱来视频区| 亚洲综合色惰| 亚洲无线观看免费| 男女视频在线观看网站免费| 亚洲精品日韩在线中文字幕| 国产综合懂色| 搡老妇女老女人老熟妇| 91久久精品电影网| av线在线观看网站| 亚洲av电影在线观看一区二区三区 | ponron亚洲| 99热这里只有精品一区| 国产精品日韩av在线免费观看| 国产精品一区二区在线观看99 | 永久免费av网站大全| 亚洲人成网站在线播| 久久久久久久午夜电影| 精品不卡国产一区二区三区| 啦啦啦啦在线视频资源| 一级片'在线观看视频| 欧美不卡视频在线免费观看| 免费黄色在线免费观看| 亚洲综合色惰| 搞女人的毛片| 成人性生交大片免费视频hd| 久久99热这里只有精品18| 在线播放无遮挡| 2021少妇久久久久久久久久久| 婷婷色综合大香蕉| 精品久久久久久久人妻蜜臀av| 欧美日韩国产mv在线观看视频 | 亚洲精品自拍成人| 精品人妻一区二区三区麻豆| 日本免费a在线| 男的添女的下面高潮视频| 亚洲精品一区蜜桃| 欧美日韩视频高清一区二区三区二| 人妻夜夜爽99麻豆av| 国产久久久一区二区三区| 欧美性猛交╳xxx乱大交人| 大话2 男鬼变身卡| 欧美高清性xxxxhd video| 狂野欧美激情性xxxx在线观看| 夜夜看夜夜爽夜夜摸| 99久国产av精品| 成人特级av手机在线观看| 欧美日韩一区二区视频在线观看视频在线 | 亚洲国产精品成人久久小说| 亚洲美女视频黄频| 麻豆成人av视频| 人妻少妇偷人精品九色| 久久久久久久久大av| 免费看光身美女| 午夜激情欧美在线| 国产精品国产三级国产av玫瑰| 看免费成人av毛片| 久久精品国产亚洲网站| 国产男人的电影天堂91| 看十八女毛片水多多多| 久久精品久久久久久久性| 九色成人免费人妻av| 欧美最新免费一区二区三区| 又爽又黄无遮挡网站| 久久久久久久午夜电影| 制服丝袜香蕉在线| 亚洲av在线观看美女高潮| 久久久久久久精品精品|