• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Estimation of hydraulic jump on corrugated bed using artificial neural networks and genetic programming

    2013-07-31 16:08:57AkramABBASPOURDavoodFARSADIZADEHMohammadAliGHORBANI
    Water Science and Engineering 2013年2期

    Akram ABBASPOUR*, Davood FARSADIZADEH, Mohammad Ali GHORBANI

    Department of Water Engineering, University of Tabriz, Tabriz 51666-14766, Iran

    Estimation of hydraulic jump on corrugated bed using artificial neural networks and genetic programming

    Akram ABBASPOUR*, Davood FARSADIZADEH, Mohammad Ali GHORBANI

    Department of Water Engineering, University of Tabriz, Tabriz 51666-14766, Iran

    Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for the estimation of hydraulic data. In this study, they were used as alternative tools to estimate the characteristics of hydraulic jumps, such as the free surface location and energy dissipation. The dimensionless hydraulic parameters, including jump depth, jump length, and energy dissipation, were determined as functions of the Froude number and the height and length of corrugations. The estimations of the ANN and GP models were found to be in good agreement with the measured data. The results of the ANN model were compared with those of the GP model, showing that the proposed ANN models are much more accurate than the GP models.

    artificial neural networks; genetic programming; corrugated bed; Froude number; hydraulic jump

    1 Introduction

    The transition of a supercritical open channel flow into a subcritical flow is associated with the formation of a hydraulic jump. Hydraulic jumps have been extensively studied because of their frequent occurrence in nature and their use as energy dissipators in outlet works of hydraulic structures (Hager 1992).

    A complete description of a hydraulic jump also involves its length Lj, which is the distance between the two cross-sections with the sequent depth y2and upstream supercritical depth y1. From the practical point of view, the jump length is an important variable to define the downstream limit beyond which no bed protection is necessary. The jump length is hard todefine in actual experiments, mainly because the end cross-section of the hydraulic jump is difficult to locate due to surface waves and residual turbulence (Hager 1992).

    Because of the complexity of hydraulic jumps, more practical tools are required to model hydraulic jump processes. Regressions have been most commonly used to estimate jump characteristics. However, regression analysis may have large uncertainties, and the computed jump depth and length can be far from the actual ones. Also, the regression analysis has some limitations caused by predefined equations for modeling.

    Recently, artificial neural networks (ANNs) and genetic programming (GP) have been used to model hydraulic jump processes. They have been used to estimate the scouring around piles by Kambekar and Deo (2003) and the scouring below spillways by Azmathullah et al. (2008). Also, a combination of the fuzzy inference system (FIS) with ANNs, ANFIS, has been employed to estimate the wave characteristics by Mahjoobi et al. (2008). GP and ANNs have been successfully applied in maritime engineering (Kalra and Deo 2007; Singh et al. 2007; Gaur and Deo 2008).

    The purpose of this study was to investigate the characteristics of hydraulic jumps in a horizontal flume with a corrugated bed using the ANN and GP methods. These soft computing tools can evaluate the relative importance of input parameters, such as the relative roughness, the corrugation wavelength, and the Froude number, on the jump process.

    2 Materials and methods

    2.1 Experimental setup

    The experimental setup consisted of a main flume in a discharge collection channel. The main flume was 0.25 m wide and 0.50 m deep, and had a bed slope of 0.002. A triangular weir was placed at the end of the channel to measure the discharge. A supercritical approach flowwas produced using a sluice gate. A corrugated polyethylene sheet with sinusoidal corrugations of wavelengthsand heighttwas installed perpendicular to the flow direction in the flume so that the corrugation crests were at the level of the upstream bed carrying the supercritical flow. The flow channel section of the experiment is illustrated in Fig. 1 (Abbaspour et al. 2009). A total of 123 experimental groups were conducted. Ranges of the variables in the experiment are shown in Table 1. Hydraulic jumps on the corrugated bed were produced for different Froude numbers, and the hydraulic parameters were measured. The water surface profiles of the jumps on the corrugated bed were measured at the centerline of the flume with a point gauge with an accuracy of 0.1 mm. The supercritical depthy1and sequent depthy2of the jumps were continuously measured using ultra sonic sensors, and the data was saved on a computer and processed with the VisiDAQ software. The length of the jump,Lj, in the experiment was recorded. The values of the Reynolds number in this experiment were in the range of 61 200 to 175 600.

    Fig. 1Sketch of free jump on corrugated bed in experiment (Abbaspour et al. 2009)

    Table 1Ranges of field data in experiment

    whereELis the difference between the specific energy before and after the jump, andEL=E2?E1.

    2.2 Artificial neural network (ANN)

    An artificial neural network (ANN) is an information processing paradigm that is inspiredby the way biological nervous systems, such as the brain, process information. It is composed of a large number of highly interconnected processing elements (neurons) working in unison to solve specific problems. Neurons are arranged in layers, including an input layer, hidden layers, and an output layer. There is no specific rule that dictates the number of hidden layers. The function is established largely based on the connections between the elements of the network. In the input layer, each neuron is designated for one of the input parameters. The network learns by applying the back-propagation algorithm, which compares the neural network simulated values with the actual values and calculates the estimation errors. The data set in the network is divided into a learning data set, which is used to train the network, and a validation data set, which is used to test the network performance. In the present study, the neural network fitting tool (nftool) of MATLAB 7.5 was used.

    After training the network, verification is conducted until the success of the training can be established. In the simulation of hydraulic jumps, characteristic data were investigated with the neural network using the Levenberg-Marquardt algorithm, which is an approximation of Newton’s method. In order to check the sensitivity of the neural networks, a simulation study was carried out with hidden nodes of different numbers, 5, 10, 15, and 20.

    The correlation coefficient (R), the root mean square error (RMSE), the mean absolute error (MAE), and the Nash-Sutcliffe efficiency coefficient (NSE) statistics were used to evaluate the model accuracy. R shows the degree to which two variables were linearly related. Different types of information about the predictive capabilities of the model are measured through RMSE and MAE. An efficiency of 1 (NSE = 1) corresponds to a perfect match of the modeled values to the observed data.

    whereXiis the observed values,Xis the mean ofXi,Yiis the estimated values,Yis the mean ofYi, andnis the number of data sets.

    2.3 Genetic programming (GP)

    In artificial intelligence, genetic programming (GP) is an evolutionary algorithm-based methodology inspired by biological evolution to find computer programs that perform a user-defined task. GP initializes a population consisting of random members known as chromosomes, and the fi tness of each chromosome is evaluated with respect to a target value. The principle of Darwinian natural selection is used to select and reproduce fi tter programs. GP creates computer programs that consist of variables and several mathematical function sets as the solution. The function set of a system can be composed of arithmetic operations (+, ?, ×, ÷), function calls (such as ex,x, sqrt, and power), even relational operators (>, <, =) or conditional operators, and a terminal set with variables and constants (x1,x2,…,xn). An initial population is randomly created with a number of individuals formed by nodes (operators, variables, and constants) and previously defined according to the problem domain. An objective function must be defined to evaluate the fitness of each individual. Selection, crossover, and mutation operators are then applied to the best individuals and a new population is created. The whole process is repeated until the given generation number is reached (Koza 1992).

    The fitness of a GP individual may be computed using Eq. (9):

    whereXjis the value returned by a chromosome for the fitness casej, andYjis the expected value for the fitness casej.

    In the GP model many operators, like sin, cos, and log, and mathematical functions were used, and it was found that the functions of the proposed GP model were complex. Also, the GP model using more operators has larger estimated difference. In this study, for simplicity, only four arithmetic operators (+, ?, ×, ÷) were used. The functional and operational parameter settings used in the GP model are shown in Table 2. The performance of the GP model in training and testing sets was validated in terms of the common statistical measuresR,RMSE,MAE, andNSE.

    Table 2Parameters of GP Model

    3 Results and discussion

    3.1 Hydraulic jump estimation using ANN model

    Different ANN structures were tried in terms of hidden layer node numbers. In this study, the number of neurons in the hidden layer was obtained using the trial and error method. From the simulation study, which was carried out using the ANN model, it was found that with 15 neurons in the hidden layer, the estimation accuracy increased to some extent.

    Fig. 2Comparison of measured and estimatedvalues using ANN model for training, validation, and testing data

    Fig. 3Comparison of measured and estimatedvalues using ANN model for training, validation, and testing data

    Fig. 4Comparison of measured and estimatedvalues using ANN model for training, validation, and testing data

    3.2 Hydraulic jump estimation using GP model

    The superior performance of the GP model, compared with other methods, is attributed to the powerful artificial intelligence techniques for computer learning inspired by natural evolution to find an appropriate mathematical model to fit a set of points. GP employs a population of functional expressions and also numerical constants, based on how closely they fit to the corresponding data (Koza 1992).

    Fig. 5Comparison of measured and estimatedvalues using GP model for training and testing data

    Fig. 6Comparison of measured and estimatedvalues using GP model for training and testing data

    Fig. 7Comparison of measured and estimatedvalues using GP model for training and testing data

    where1C,2C,3C,4C,5C, and6Care constant coefficients that are determined by the GP model (Table 3).

    Table 3Constant coefficients in GP model

    3.3 Comparison of ANN model with GP model

    The ANN and GP models are compared in Figs. 2 through 7. It can be seen from the fit line equations (the equations are assumed to bey=ax+b) in the scatter plots of the GP model that the coefficientsaandbfor the ANN model, with a higherRvalue, are, respectively, closer to 1 and 0 than the GP model. This can be clearly observed from its fit line equation coefficients.

    Table 4 compares the ANN and GP models, with all statistical measures,R,RMSE,NSE, andMAE, of the training and testing data. According to Table 4, the ANN model has lower absolute error as compared with the GP model, showing that the proposed ANN models are much more accurate than the GP models for water engineering.

    Table 4RMSE,MAE,R, andNSEstatistics of training and testing data of ANN and GP models

    4 Conclusions

    Abbaspour, A., Hosseinzadeh Dalir, A., Farsadizadeh, D., and Sadraddini, A. A. 2009. Effect of sinusoidal corrugated bed on hydraulic jump characteristics.Journal of Hydro-Environment Research, 3(2), 109-117. [doi:10.1016/j.jher.2009.05.003]

    Azmathullah, H. M., Deo, M. C., and Deolalikar, P. B. 2008. Alternative neural networks to estimate the scour below spillways.Advances in Engineering Software, 39(8), 689-698. [doi:10.1016/j.advengsoft.2007. 07.004]

    Carollo, F. G., Ferro, V., and Pampalone, V. 2007. Hydraulic jumps on rough beds.Journal of Hydraulic Engineering, 133(9), 989-999. [doi:10.1061/(ASCE)0733-9429(2007)133:9(989)]

    Ead, S. A., and Rajaratnam, N. 2002. Hydraulic jumps on corrugated beds.Journal of Hydraulic Engineering128(7), 656-663. [doi:10.1061/(ASCE)0733-9429(2002)128:7(656)]

    Gaur, S., and Deo, M. C. 2008. Real-time wave forecasting using genetic programming.Ocean Engineering, 35(11-12), 1166-1172. [doi:10.1016/j.oceaneng.2008.04.007]

    Hager, W. H. 1992.Energy Dissipators and Hydraulic Jump. Dordrecht: Kluwer Academic Publishers.

    Hughes, W. C., and Flack, J. E. 1984. Hydraulic jump properties over a rough bed.Journal of Hydraulic Engineering, 110(12), 1751-1771. [doi:10.1061/(ASCE)0733-9429(1984)110:12(1755)]

    Kalra, R., and Deo, M. C. 2007. Genetic programming for retrieving missing information in wave records along the west coast of India.Applied Ocean Research, 29(3), 99-111. [doi:10.1016/j.apor.2007.11.002]

    Kambekar, A. R., and Deo, M. C. 2003. Estimation of pile group using neural networks.Applied Ocean Research, 25(4), 225-234. [doi:10.1016/j.apor.2003.06.001]

    Koza, J. R. 1992.Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge: A Bradford Book.

    Mahjoobi, J., Etemad-Shahidi, A., and Kazeminezhad, M. H. 2008. Hindcasting of wave parameters using different soft computing methods.Applied Ocean Research, 30(1), 28-36. [doi:10.1016/j.apor. 2008.03.002]

    Mohamed Ali, H. S. 1991. Effect of roughened-bed stilling basin on length of rectangular hydraulic jump.Journal of Hydraulic Engineering, 117(1), 83-93. [doi:10.1061/(ASCE)0733-9429(1991)117:1(83)]

    Negm, A. M. 2002. Optimal roughened length of prismatic stilling basins.Proceeding of the 5th International Conference on Hydroscience and Engineering Conference. Warsaw.

    Singh, A. K., Deo, M. C., and SanilKumar, V. 2007. Neural network-genetic programming for sediment transport.Proceedings of the ICE, Maritime Engineering, 160(3), 113-119. [doi:10.1680/maen. 2007.160.3.113]

    Tokyay, N. D. 2005. Effect of channel bed corrugations on hydraulic jumps.Conference Proceedings of Impacts of Global Climate Change, 408-416. Anchorage: Environmental and Water Resources Institute (EWRI) of ASCE. [doi:10.1061/40792(173)408]]

    Vischer, D. L., and Hager, W. H. 1995.Energy Dissipators:Iahr Hydraulic Structures Design Manual 9. Rotterdam: Taylor & Francis Group.

    (Edited by Yun-li YU)

    *Corresponding author (e-mail: akabbaspour@yahoo.com)

    Received Jul. 19, 2012; accepted Feb. 27, 2013

    又黄又粗又硬又大视频| 国产亚洲欧美精品永久| 久久人妻福利社区极品人妻图片| 99精品欧美一区二区三区四区| 免费在线观看完整版高清| 亚洲av美国av| 久久99一区二区三区| 亚洲国产av影院在线观看| 免费在线观看日本一区| 久久久久久久国产电影| 捣出白浆h1v1| 国产av又大| 亚洲精品国产色婷婷电影| 免费日韩欧美在线观看| 精品一区二区三卡| 亚洲第一青青草原| 俄罗斯特黄特色一大片| 久久九九热精品免费| 日本撒尿小便嘘嘘汇集6| 老司机福利观看| 亚洲 欧美一区二区三区| 欧美性长视频在线观看| 丝袜在线中文字幕| 国产高清视频在线播放一区 | 这个男人来自地球电影免费观看| tocl精华| 女人精品久久久久毛片| 国产精品 欧美亚洲| 精品久久蜜臀av无| 天堂8中文在线网| 丰满少妇做爰视频| netflix在线观看网站| 久久久久久久久免费视频了| 国产av国产精品国产| 色视频在线一区二区三区| 亚洲国产欧美在线一区| 亚洲精品乱久久久久久| 中文精品一卡2卡3卡4更新| www.熟女人妻精品国产| 色视频在线一区二区三区| av一本久久久久| 搡老乐熟女国产| 久久青草综合色| 日本av手机在线免费观看| 黄片播放在线免费| 777久久人妻少妇嫩草av网站| 精品人妻1区二区| 国产在线视频一区二区| 日韩人妻精品一区2区三区| 精品欧美一区二区三区在线| 91精品伊人久久大香线蕉| 亚洲精品成人av观看孕妇| 十八禁高潮呻吟视频| 两个人免费观看高清视频| 俄罗斯特黄特色一大片| 成年人黄色毛片网站| 国产精品一区二区在线不卡| 久久精品亚洲熟妇少妇任你| 99久久人妻综合| www.999成人在线观看| 在线看a的网站| 女警被强在线播放| 亚洲av电影在线观看一区二区三区| 国产在视频线精品| av线在线观看网站| 精品少妇黑人巨大在线播放| 国产成人精品久久二区二区91| 一进一出抽搐动态| 制服人妻中文乱码| 久久精品亚洲熟妇少妇任你| 免费在线观看影片大全网站| 美女午夜性视频免费| 国产精品九九99| 69av精品久久久久久 | 日韩大片免费观看网站| 国精品久久久久久国模美| 超碰97精品在线观看| 精品一区二区三区四区五区乱码| 精品国产乱码久久久久久男人| 欧美人与性动交α欧美精品济南到| www.精华液| 啦啦啦视频在线资源免费观看| 国产无遮挡羞羞视频在线观看| 另类亚洲欧美激情| 国产成人精品无人区| 久久99一区二区三区| 老司机午夜福利在线观看视频 | 免费av中文字幕在线| 岛国在线观看网站| 午夜精品国产一区二区电影| 国产欧美日韩一区二区三 | 免费久久久久久久精品成人欧美视频| 一区二区三区乱码不卡18| 国产精品一区二区精品视频观看| 国产高清视频在线播放一区 | a在线观看视频网站| av在线app专区| 成年动漫av网址| 欧美黄色片欧美黄色片| 免费在线观看完整版高清| 一二三四社区在线视频社区8| 纵有疾风起免费观看全集完整版| 国产成人影院久久av| 亚洲一码二码三码区别大吗| 麻豆av在线久日| 又大又爽又粗| 麻豆国产av国片精品| 国产熟女午夜一区二区三区| 建设人人有责人人尽责人人享有的| 久久久久网色| 久久久久国产精品人妻一区二区| 黄网站色视频无遮挡免费观看| 激情视频va一区二区三区| av片东京热男人的天堂| 亚洲成人手机| 黄色 视频免费看| 国产一卡二卡三卡精品| 中文欧美无线码| 天堂8中文在线网| 欧美成人午夜精品| 18禁国产床啪视频网站| 免费看十八禁软件| 国产高清国产精品国产三级| 精品福利观看| 欧美av亚洲av综合av国产av| 亚洲av欧美aⅴ国产| 黑人猛操日本美女一级片| 国产亚洲av高清不卡| 亚洲少妇的诱惑av| 少妇裸体淫交视频免费看高清 | 99香蕉大伊视频| 午夜福利视频精品| 日本五十路高清| 国产有黄有色有爽视频| av片东京热男人的天堂| 美女福利国产在线| 每晚都被弄得嗷嗷叫到高潮| 男女午夜视频在线观看| 久久女婷五月综合色啪小说| 欧美日韩福利视频一区二区| 9色porny在线观看| 两个人看的免费小视频| 亚洲免费av在线视频| 亚洲国产欧美在线一区| 亚洲精品av麻豆狂野| 黑人巨大精品欧美一区二区mp4| 不卡一级毛片| 亚洲国产毛片av蜜桃av| 热99久久久久精品小说推荐| 老汉色av国产亚洲站长工具| 在线观看人妻少妇| 亚洲国产精品999| 日韩大码丰满熟妇| 国产成人啪精品午夜网站| 亚洲va日本ⅴa欧美va伊人久久 | 精品久久久精品久久久| 天天躁日日躁夜夜躁夜夜| 欧美成人午夜精品| 激情视频va一区二区三区| 国产精品久久久人人做人人爽| 国产福利在线免费观看视频| 亚洲综合色网址| 女性被躁到高潮视频| 天天影视国产精品| 亚洲av日韩在线播放| 精品久久久久久电影网| 女人爽到高潮嗷嗷叫在线视频| 十八禁高潮呻吟视频| 久久中文字幕一级| 亚洲成国产人片在线观看| a 毛片基地| 蜜桃在线观看..| 一区二区三区精品91| 丰满人妻熟妇乱又伦精品不卡| 一级黄色大片毛片| 久久亚洲国产成人精品v| 久久香蕉激情| 欧美日韩国产mv在线观看视频| 日本五十路高清| 国产三级黄色录像| 国产欧美日韩综合在线一区二区| 淫妇啪啪啪对白视频 | av视频免费观看在线观看| 精品福利永久在线观看| 可以免费在线观看a视频的电影网站| 最黄视频免费看| 久久久精品国产亚洲av高清涩受| 午夜福利视频精品| 极品少妇高潮喷水抽搐| 久久人妻福利社区极品人妻图片| 熟女少妇亚洲综合色aaa.| 国产精品1区2区在线观看. | 亚洲欧美日韩高清在线视频 | 国产亚洲精品第一综合不卡| 黑丝袜美女国产一区| 国产一区二区三区av在线| 黄色a级毛片大全视频| 国产一级毛片在线| 成人亚洲精品一区在线观看| 爱豆传媒免费全集在线观看| 一边摸一边抽搐一进一出视频| 国产免费av片在线观看野外av| av超薄肉色丝袜交足视频| 国产精品一区二区在线不卡| 日韩中文字幕欧美一区二区| 老汉色av国产亚洲站长工具| 99精品久久久久人妻精品| 亚洲成国产人片在线观看| 女人爽到高潮嗷嗷叫在线视频| 天天影视国产精品| 91成年电影在线观看| 精品免费久久久久久久清纯 | 五月天丁香电影| 国产精品影院久久| 国产免费现黄频在线看| 一进一出抽搐动态| 亚洲精品av麻豆狂野| 欧美日韩亚洲高清精品| 一本一本久久a久久精品综合妖精| av超薄肉色丝袜交足视频| 美女扒开内裤让男人捅视频| 久久精品亚洲熟妇少妇任你| 无遮挡黄片免费观看| 午夜福利在线免费观看网站| 18禁黄网站禁片午夜丰满| 日日摸夜夜添夜夜添小说| 午夜视频精品福利| 午夜福利免费观看在线| 色婷婷av一区二区三区视频| 亚洲精品中文字幕在线视频| 免费女性裸体啪啪无遮挡网站| 操出白浆在线播放| 狠狠婷婷综合久久久久久88av| 麻豆国产av国片精品| 国产精品欧美亚洲77777| 一二三四在线观看免费中文在| 日韩欧美一区二区三区在线观看 | 99香蕉大伊视频| 久久这里只有精品19| 久久ye,这里只有精品| 老司机影院成人| 亚洲欧美色中文字幕在线| 免费女性裸体啪啪无遮挡网站| 国产男人的电影天堂91| av不卡在线播放| 亚洲国产看品久久| 久久免费观看电影| 99久久综合免费| 国产又色又爽无遮挡免| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人欧美| 这个男人来自地球电影免费观看| 搡老熟女国产l中国老女人| 他把我摸到了高潮在线观看 | 91九色精品人成在线观看| 18禁国产床啪视频网站| 欧美国产精品一级二级三级| av在线老鸭窝| 精品久久久久久电影网| 国产欧美日韩一区二区三区在线| 青草久久国产| 侵犯人妻中文字幕一二三四区| 国产男女超爽视频在线观看| 国精品久久久久久国模美| 久久毛片免费看一区二区三区| 日本撒尿小便嘘嘘汇集6| 亚洲精品在线美女| 天天操日日干夜夜撸| 精品高清国产在线一区| 亚洲精品粉嫩美女一区| 精品少妇久久久久久888优播| 国产主播在线观看一区二区| 亚洲精品乱久久久久久| 精品亚洲成a人片在线观看| 久久九九热精品免费| a 毛片基地| 亚洲九九香蕉| 真人做人爱边吃奶动态| 美女高潮喷水抽搐中文字幕| 精品国产乱码久久久久久小说| 国精品久久久久久国模美| 自线自在国产av| 中文字幕人妻丝袜制服| 91麻豆av在线| 亚洲欧美精品综合一区二区三区| 久久亚洲国产成人精品v| 在线观看免费日韩欧美大片| av国产精品久久久久影院| 啦啦啦啦在线视频资源| 捣出白浆h1v1| 日韩有码中文字幕| 精品国产乱子伦一区二区三区 | 免费观看a级毛片全部| 精品卡一卡二卡四卡免费| videos熟女内射| 亚洲av电影在线进入| 在线av久久热| 热99国产精品久久久久久7| 国产av一区二区精品久久| 亚洲精品久久久久久婷婷小说| 熟女少妇亚洲综合色aaa.| 一本—道久久a久久精品蜜桃钙片| 97人妻天天添夜夜摸| 亚洲成人国产一区在线观看| 十八禁人妻一区二区| 50天的宝宝边吃奶边哭怎么回事| 嫩草影视91久久| 久久久久久久久久久久大奶| 久久人人爽av亚洲精品天堂| 成年av动漫网址| 亚洲成av片中文字幕在线观看| 少妇精品久久久久久久| 叶爱在线成人免费视频播放| 久久久精品国产亚洲av高清涩受| 免费日韩欧美在线观看| www.熟女人妻精品国产| 九色亚洲精品在线播放| 巨乳人妻的诱惑在线观看| 性色av乱码一区二区三区2| 狠狠狠狠99中文字幕| a级毛片在线看网站| 国产成人欧美在线观看 | 国产在线视频一区二区| 最新在线观看一区二区三区| 精品国产超薄肉色丝袜足j| 免费观看av网站的网址| 青青草视频在线视频观看| 成人国产一区最新在线观看| 国产精品香港三级国产av潘金莲| 欧美激情高清一区二区三区| 日韩中文字幕视频在线看片| 亚洲午夜精品一区,二区,三区| 国产无遮挡羞羞视频在线观看| 亚洲欧美精品自产自拍| 熟女少妇亚洲综合色aaa.| 国产视频一区二区在线看| 欧美 日韩 精品 国产| 久久久精品免费免费高清| 成年人黄色毛片网站| 午夜福利视频精品| 国产精品麻豆人妻色哟哟久久| 精品亚洲成国产av| 一级,二级,三级黄色视频| 9191精品国产免费久久| 少妇精品久久久久久久| 叶爱在线成人免费视频播放| 免费在线观看黄色视频的| 91九色精品人成在线观看| 欧美 日韩 精品 国产| 久久av网站| 最黄视频免费看| 2018国产大陆天天弄谢| 另类精品久久| 国产伦人伦偷精品视频| 婷婷丁香在线五月| 亚洲成人免费电影在线观看| 亚洲视频免费观看视频| 久久天堂一区二区三区四区| 91国产中文字幕| 啦啦啦视频在线资源免费观看| 国产日韩欧美亚洲二区| 亚洲性夜色夜夜综合| 中文字幕色久视频| 中文字幕精品免费在线观看视频| 久久久久久人人人人人| 女人久久www免费人成看片| 免费观看人在逋| 日韩中文字幕视频在线看片| 热re99久久精品国产66热6| 精品久久久久久久毛片微露脸 | 久久人人爽av亚洲精品天堂| 飞空精品影院首页| 久久久水蜜桃国产精品网| 亚洲免费av在线视频| 日日夜夜操网爽| 国产av一区二区精品久久| 免费高清在线观看视频在线观看| 搡老熟女国产l中国老女人| 老熟妇仑乱视频hdxx| 岛国毛片在线播放| av福利片在线| 精品少妇内射三级| 国产在线一区二区三区精| 国内毛片毛片毛片毛片毛片| 国产极品粉嫩免费观看在线| 国产成人a∨麻豆精品| 999久久久国产精品视频| 国产精品一区二区在线观看99| 18禁黄网站禁片午夜丰满| 国产免费一区二区三区四区乱码| 黑人巨大精品欧美一区二区蜜桃| 亚洲av电影在线进入| 99久久精品国产亚洲精品| 一区二区三区乱码不卡18| 女人高潮潮喷娇喘18禁视频| 叶爱在线成人免费视频播放| 日韩一卡2卡3卡4卡2021年| 一本综合久久免费| 在线观看一区二区三区激情| 国产免费福利视频在线观看| 人妻久久中文字幕网| 下体分泌物呈黄色| 久久久精品免费免费高清| 又大又爽又粗| 亚洲情色 制服丝袜| 少妇粗大呻吟视频| 午夜福利免费观看在线| 免费不卡黄色视频| 我要看黄色一级片免费的| 巨乳人妻的诱惑在线观看| 伊人亚洲综合成人网| www.熟女人妻精品国产| 一区二区三区激情视频| 老汉色av国产亚洲站长工具| 一进一出抽搐动态| 丰满少妇做爰视频| 巨乳人妻的诱惑在线观看| 一级片免费观看大全| 两个人看的免费小视频| 亚洲精品中文字幕在线视频| 香蕉丝袜av| 国产激情久久老熟女| 国产亚洲av高清不卡| 国产精品二区激情视频| av福利片在线| 天天躁日日躁夜夜躁夜夜| 巨乳人妻的诱惑在线观看| 日韩人妻精品一区2区三区| 欧美少妇被猛烈插入视频| 亚洲成人免费电影在线观看| 在线精品无人区一区二区三| 一本—道久久a久久精品蜜桃钙片| 不卡av一区二区三区| 黄色视频,在线免费观看| 9色porny在线观看| 他把我摸到了高潮在线观看 | 黄色a级毛片大全视频| 一进一出抽搐动态| 性色av一级| 午夜福利在线观看吧| 中文精品一卡2卡3卡4更新| 99国产精品99久久久久| 欧美老熟妇乱子伦牲交| 亚洲综合色网址| 新久久久久国产一级毛片| bbb黄色大片| 丝袜在线中文字幕| 这个男人来自地球电影免费观看| 超碰成人久久| 亚洲人成77777在线视频| 大片免费播放器 马上看| 国产欧美亚洲国产| 久久久精品94久久精品| 青春草视频在线免费观看| av片东京热男人的天堂| 超碰97精品在线观看| a级毛片在线看网站| 国产成人精品久久二区二区免费| 91精品三级在线观看| 中文字幕最新亚洲高清| 久久精品熟女亚洲av麻豆精品| 亚洲伊人久久精品综合| 999久久久国产精品视频| 中文欧美无线码| 97精品久久久久久久久久精品| 欧美激情高清一区二区三区| 亚洲国产欧美网| av有码第一页| 午夜免费鲁丝| 欧美老熟妇乱子伦牲交| 男女高潮啪啪啪动态图| 欧美97在线视频| 国产成人欧美在线观看 | 亚洲国产av新网站| 91字幕亚洲| 制服诱惑二区| 一边摸一边做爽爽视频免费| 天天操日日干夜夜撸| 亚洲国产精品成人久久小说| 久久中文字幕一级| 日韩免费高清中文字幕av| 俄罗斯特黄特色一大片| 精品久久久精品久久久| 99精国产麻豆久久婷婷| 亚洲欧美一区二区三区久久| 国产精品自产拍在线观看55亚洲 | 亚洲第一青青草原| 亚洲人成电影免费在线| 夜夜骑夜夜射夜夜干| 人妻 亚洲 视频| 青草久久国产| 高清欧美精品videossex| 美女中出高潮动态图| 中文欧美无线码| 久久精品国产综合久久久| 日本欧美视频一区| 在线观看免费日韩欧美大片| 黄色a级毛片大全视频| 丁香六月天网| 久久天躁狠狠躁夜夜2o2o| 亚洲色图综合在线观看| 欧美精品高潮呻吟av久久| 亚洲美女黄色视频免费看| 王馨瑶露胸无遮挡在线观看| 美女高潮到喷水免费观看| 久久 成人 亚洲| 黄色视频不卡| 99国产精品99久久久久| 免费高清在线观看日韩| 9191精品国产免费久久| 国内毛片毛片毛片毛片毛片| 91精品国产国语对白视频| 国产精品.久久久| 精品高清国产在线一区| 免费高清在线观看日韩| 无限看片的www在线观看| 黄频高清免费视频| 男人爽女人下面视频在线观看| 国产成人精品无人区| 老司机影院成人| 欧美精品一区二区大全| 咕卡用的链子| 亚洲国产精品999| 成人手机av| 精品福利永久在线观看| 亚洲国产精品一区三区| 精品人妻1区二区| 久久精品成人免费网站| 亚洲精品av麻豆狂野| 在线天堂中文资源库| 脱女人内裤的视频| 高清视频免费观看一区二区| 久久ye,这里只有精品| 欧美黑人精品巨大| 国产精品秋霞免费鲁丝片| svipshipincom国产片| 亚洲第一av免费看| 一本色道久久久久久精品综合| 无遮挡黄片免费观看| 精品久久蜜臀av无| 欧美在线黄色| 日本猛色少妇xxxxx猛交久久| 日韩 欧美 亚洲 中文字幕| 国产男人的电影天堂91| 巨乳人妻的诱惑在线观看| 久久久久国产一级毛片高清牌| 亚洲少妇的诱惑av| 国产成人免费观看mmmm| 男女午夜视频在线观看| 国产成人免费观看mmmm| 女人高潮潮喷娇喘18禁视频| 一本色道久久久久久精品综合| 啦啦啦免费观看视频1| 高清av免费在线| 欧美变态另类bdsm刘玥| 9色porny在线观看| 大香蕉久久网| 咕卡用的链子| 在线看a的网站| 日韩 亚洲 欧美在线| 91国产中文字幕| 三上悠亚av全集在线观看| 免费不卡黄色视频| 日韩视频在线欧美| 高清在线国产一区| 亚洲久久久国产精品| 99国产精品99久久久久| 最近中文字幕2019免费版| 99国产精品一区二区三区| 精品福利永久在线观看| 少妇 在线观看| 日韩大码丰满熟妇| 丝袜在线中文字幕| 亚洲国产av影院在线观看| 伊人久久大香线蕉亚洲五| 十分钟在线观看高清视频www| 巨乳人妻的诱惑在线观看| 婷婷丁香在线五月| 精品人妻在线不人妻| 成人18禁高潮啪啪吃奶动态图| 精品人妻熟女毛片av久久网站| 精品一区二区三区av网在线观看 | 我要看黄色一级片免费的| 国产成人精品久久二区二区91| 一级a爱视频在线免费观看| 国产成人影院久久av| 99热全是精品| 国产欧美日韩综合在线一区二区| 国产精品影院久久| 91麻豆av在线| 人妻一区二区av| 丝袜美足系列| 国产成人精品无人区| 国产亚洲一区二区精品| 久久精品久久久久久噜噜老黄| 一个人免费看片子| 亚洲精品国产色婷婷电影| 在线天堂中文资源库| 日韩免费高清中文字幕av| 一级,二级,三级黄色视频| 老汉色∧v一级毛片| 女人精品久久久久毛片| 精品人妻在线不人妻| 日日爽夜夜爽网站| 51午夜福利影视在线观看| 欧美成人午夜精品| 亚洲国产av新网站| 美女中出高潮动态图| 国产成人av激情在线播放| 亚洲性夜色夜夜综合| 亚洲欧美精品综合一区二区三区| 一区在线观看完整版| 国产亚洲精品第一综合不卡| 久久人人爽av亚洲精品天堂| 欧美精品人与动牲交sv欧美|