• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anisotropic diffusion of volatile pollutants at air-water interface

    2013-07-31 16:08:56LipingCHENJingtaoCHENGGuangfaDENG
    Water Science and Engineering 2013年2期

    Li-ping CHEN*, Jing-tao CHENG, Guang-fa DENG

    1. College of Urban Construction and Safety Engineering, Nanjing University of Technology, Nanjing 210009, P. R. China

    2. Jiangsu Frontier Electric Technology Co., Ltd., Nanjing 211102, P. R. China

    Anisotropic diffusion of volatile pollutants at air-water interface

    Li-ping CHEN*1, Jing-tao CHENG1, Guang-fa DENG2

    1. College of Urban Construction and Safety Engineering, Nanjing University of Technology, Nanjing 210009, P. R. China

    2. Jiangsu Frontier Electric Technology Co., Ltd., Nanjing 211102, P. R. China

    The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between water and air. In order to explore the characteristics of anisotropic diffusion of the volatile pollutants at the air-water interface, the relationship between velocity gradient and mass transfer rate was established to calculate the turbulent mass diffusivity. A second-order accurate smooth transition differencing scheme (STDS) was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HCl3) release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants at the air-water interface were determined. The results show that the anisotropic coupling diffusion model is more accurate than the isotropic coupling diffusion model and non-coupling diffusion model. Mass transfer significantly increases with the increase of the air-water relative velocity at a low relative velocity. However, at a higher relative velocity, an increase in the relative velocity has no effect on mass transfer.

    volatile pollutant; interfacial mass transfer; anisotropic diffusion; STDS; anisotropic coupling diffusion model

    1 Introduction

    It is significant to accurately predict the temporal and spatial distribution of volatile pollutants after leakage. It can provide an important theory for health diagnosis and management of the hydrosphere ecosystem. Mass transfer of volatile pollutants at the air-water interface is a complex process, in which the liquid phase transforms into the gas phase. Whitman (1962) and Liss and Slater (1974) proposed film models to study the mass transfer mechanism of volatile pollutants at the air-water interface. The film models are suitable for the calculation of the exchange capacity of volatile pollutants at the air-water interface of lakes.But they are not suitable for highly turbulent conditions, in which new surfaces are continuously formed by breaking waves, air bubbles entrapped in the water, and water droplets ejected into the air. Danckwerts (1955) proposed a surface renewal model, in which it is assumed that turbulent flow of water transports pollutants to the air-water interface and the mass transfer processes continue until another turbulent flow rolls the pollutants away. The surface renewal model suggests an exponential relationship between the ratio of the exchange velocity in air to that in water and the ratio of the molecular diffusivity in air to that in water. The exponent is 0.5 in Danckwerts’ model, and 0.57 in Schwarzenbach et al. (2002). In order to calculate the exposure time, Lamourelle and Sandall (1972) proposed a large eddy simulation (LES) model, Lamont and Scott (1970) developed a small eddy simulation model, and Komori et al. (1989) and Rashidi et al. (1991) described a turbulent impulse model. However, these models have not been widely used, because the turbulent characteristic parameters required cannot be obtained, especially for those far from the air-water interface. A boundary layer model developed by Deacon (1977) suggests that the exponent is 2/3 for the relationship between the exchange coefficient and Schmidt number. The exponent changes to–0.5 at a wind speed of 5 m/s (J?hne and Haubecker 1998).

    Mass transfer of volatile pollutants at the air-water interface is affected by the concentration distribution of pollutants in water and air or vice versa. Therefore, the concentrations of pollutants in water and air are coupled with each other. However, none of the models previously mentioned take into account the coupling characteristic of mass transfer at the air-water interface. These uncoupled models suggest that the mass transfer processes at the air-water interface are mainly controlled by the liquid phase, and the effect of the gas phase can be negligible (Bade 2009; Hardt and Wondra 2008). Chen et al. (2009) found that low-volatility pollutants have larger gas phase resistance at low wind velocities and the impact of the gas phase should not be ignored. Hasegawa and Kasagi (2009) considered the coupling characteristic of momentum, but did not take the coupling characteristic of concentration into account in simulating mass transfer at the air-water interface.

    The smoothed particle hydrodynamics (SPH), level-set function, and volume of fluid (VOF) methods can be used to capture the free surface (Marrone et al. 2010). But the SPH method requires a higher computational cost. The level-set function method smears out the sharp interface so that it can distort the large gradient. The VOF method is widely used to track the air-water interface because simultaneous calculations for water and gas can be completed (Afkhami et al. 2009). An air-water coupling diffusion model based on the VOF method for volatile pollutants has been developed. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than that in other directions due to the large density difference between air and water. Thus, turbulent diffusion of the volatile pollutants at the air-water interface shows anisotropic diffusion characteristics. However, the diffusion of volatile pollutants in the air is isotropic. The conventionaldiscretization scheme cannot be applied to anisotropic diffusion. In this study, a second-order accurate smooth transition differencing scheme (STDS) was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HCl3) release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants varying with the air-water relative velocity were determined.

    2 Model development

    2.1 VOF model

    The continuity equation, the momentum equation, and the equation of fraction of volume occupied by water are written as follows:

    where the subscriptsiandjare equal to 1, 2, or 3, representing the three directions in the Cartesian coordinate system;uis the velocity of the computational cell;ρis the density of the computational cell, andρ=αρL+(1?α)ρG, whereρLandρGare the densities of water and air, respectively, andαis the fraction of volume occupied by water in the computational cell;uLanduGare the velocities of water and air, respectively;pis the pressure of the computational cell;ηtis the turbulent dynamic viscosity;fis the body force (the gravity is the only body force in this study); andtis time.

    2.2 Realizablek-εmodel

    For a large strain rate, the realizablek-εmodel is more effective than the standardk-εmodel. The governing equations for the turbulent kinetic energykand the dissipation rateεin the realizablek-εmodel are

    2.3 Air-water coupling diffusion model for volatile pollutants

    whereCis the total pollutant concentration, andC=αCL+(1?α)CG;EiandDare the turbulent mass diffusivities of pollutants in water and air, respectively; and the third item on the left side of Eq. (7) indicates the effect of the air-water relative velocity onC.

    where Khis the mass transfer rate, m1= –0.22, and G denotes the velocity gradient at the air-water interface. Lee and Saylor (2010) proposed a method for the calculation of the mass transfer rate Kh.

    3 Solutions to equations

    The finite volume method (FVM) was used to discretize equations. The pressure implicit with splitting of operators (PISO) algorithm was used for pressure-velocity coupling. The implicit scheme was used for the temporal discretization.

    The conventional discretization scheme can not be used to deal with anisotropic diffusion. Based on the normalized variable diagram (NVD), Jasak et al. (1999) developed the Gamma discretization scheme for unstructured grids to guarantee the boundedness of physical variables. In Fig. 1(a), point P is the center of the computational cell, point E is the center of the downstream computational cell, and e denotes the interface between the two computational cells . At point P, the normalized variable is defined as follows:

    Fig. 1Computational cell and differencing schemes in NVD

    4 Model verification

    4.1 Conditions for simulations and experiments

    Several groups of numerical simulations and experiments were performed on C2HCl3leakage. The flume was 14.0 m long, 0.4 m wide, and 0.4 m deep, and had a bed slope of 3/700. The water depth was 0.1 m. The average velocities of water and air were 0.2 m/s and 1.2 m/s, respectively. The flow was in thexdirection, and the flume width was in theydirection. Thezdirection was upward and the bottom of the flume was atz= 0. The coordinate system is shown in Fig. 2(a). The experimental facility is shown in Fig. 2.

    Fig. 2Experimental facility

    50 mL of C2HCl3at an initial concentration ofC0= 2 g/L was instantaneously released into the flume at the pointx= 1.25 m,y= 0.2 m, andz= 0.1 m. The sampling cross-sections were atx= 2.25, 2.65, 2.85, 3.45, and 3.75 m. The multi-point synchronous sampling shown in Fig. 2(b) was adopted. The C2HCl3concentration in water was measured by the gas chromatography method and the C2HCl3concentration in the air was measured by the pyridine-alkali colorimetric method.

    4.2 Results and analysis of simulations and experiments

    4.2.1 Grid independence

    Grid independence is associated with the accuracy or even rationality of numerical results. The computational zone was 14 m × 0.4 m × 0.4 m in the flume. Fig. 3 shows theC/C0variations at the pointx= 2.25 m,y= 0.225 m,z= 0.065 m for four different computational zones in the air in sizes of 14 m × 3.6 m × 1.5 m, 14 m × 4.8 m × 1.95 m, 14 m × 6.4 m × 2.6 m, and 14 m × 8.5 m × 3.5 m, whereC/C0denotes the ratio of the C2HCl3concentration to the initial concentration. Hexahedron cells were used in the simulations. The number of grid cells for the four computational zones was 59 738, 106 200, 188 800, and 335 644, respectively. The simulation results for computational zones of 14 m × 3.6 m × 1.5 m and 14 m × 4.8 m × 1.95 m are higher than the experimental results. The simulation results for computational zones of 14 m × 6.4 m × 2.6 m and 14 m × 8.5 m × 3.5 m are close to the experimental results. The size of 14 m × 6.4 m × 2.6 m in the air was used in the following study.

    Fig. 4 shows theC/C0variations at the pointx= 2.25 m,y= 0.225 m,z= 0.065 m for four sets of grids. The simulation results of 188 800 and 251 730 grid cells tend towards identical: they are in good agreement with experimental results. The grid system of 188 800 cells is considered grid-independent.

    Fig. 3Variations ofC/C0at (2.25 m, 0.225 m, 0.065 m) for four computational zones in air

    Fig. 4Variations ofC/C0at (2.25 m, 0.225 m, 0.065 m) for four sets of grids

    4.2.2 Comparison of anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model

    Fig. 5Variations ofin water simulated with three models

    Fig. 6Variations ofat pointsy= 0.225 m,z= 0.248 m at differentxvalues

    4.2.3 Effect of air-water relative velocity on anisotropic coupling diffusion

    Fig. 7Variations ofat different relative velocities

    Fig. 8Concentration distributions of C2HCl3aty= 0.2 m at different relative velocities

    Fig. 8 shows the calculated concentration distribution of C2HCl3at the longitudinal cross-sectiony= 0.2 m at different relative velocitiesuG?uL=?0.2 m/s (case 1), 0.2 m/s(case 2), 0.6 m/s (case 3), and 1.0 m/s (case 4), at 8 seconds. It can be seen that the C2HCl3concentrations in the gas and liquid phases are solved simultaneously. The concentration distribution at the air-water interface shows no abrupt change, indicating that the transition function in STDS is valid. The concentration distribution in case 1 is similar to that in case 2. The space occupied by gas phase C2HCl3is much larger in case 3 and case 4 than in other cases. The concentration of gas-phase C2HCl3is much higher in case 4 than in other cases, which explains why the relative velocity has a significant effect on the concentration of gas-phase C2HCl3in the air.

    5 Conclusions

    (1) Momentum and mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between air and water. Therefore, mass transfer of pollutants at the air-water interface shows anisotropic diffusion properties. The relationship between the velocity gradient and the mass transfer rate was used to calculate the turbulent mass diffusivity in the direction normal to the air-water interface in this study.

    (2) The air-water coupling diffusion model for volatile pollutants was used to simulate the temporal and spatial distribution of C2HCl3concentration after C2HCl3was released. STDS was proposed to connect the first-order upwind differencing and central differencing smoothly, which not only ensures the boundedness of the air-water interface but also maintains the sharpness of the interface. The simulation results of the anisotropic coupling diffusion model are closer to the experimental results, compared with those of the isotropic coupling diffusion model and non-coupling diffusion model.

    (3) Mass transfer of volatile pollutants at the air-water interface is affected by the relative velocity of water and air. At a low relative velocity, the gas phase resistance is close to the liquid phase resistance. Therefore, the gas phase resistance decreases and mass transfer increases obviously with the increase of the relative velocity. However, at a higher relative velocity, the increase of the relative velocity has no effect on mass transfer because the gas phase resistance is much smaller than the liquid phase resistance.

    Afkhami, S., Zaleski, S., and Bussmann, M. 2009. A mesh-dependent model for applying dynamic contact angles to VOF simulations. Journal of Computational Physics, 228(15), 5370-5389. [doi:10.1016/ j.jcp.2009.04.027]

    Bade, D. L. 2009. Gas exchange at the air-water interface. Encyclopedia of Inland Waters, 3, 70-78. [doi:10.1016/B978-012370626-3.00213-1]

    Chen, L. P., Jiang, J. C., and Han, D. M. 2009. Model for coupling diffusion of volatile poisons in water and air. Advances in Water Science, 20(4), 549-553. (in Chinese)

    Danckwerts, P. V. 1955. Gas absorption accompanied by chemical reaction. AIChE Journal, 1(4), 456-463. [doi:10.1002/aic.690010412]

    Deacon, E. L. 1977. Gas transfer to and across an air-water interface. Tellus, 29(4), 363-374. [doi:10.1111/j.2153-3490.1977.tb00746.x]

    Hardt, S., and Wondra, F. 2008. Evaporation model for interfacial flows based on a continuum-field representation of the source terms. Journal of Computational Physics, 227(11), 5871-5895. [doi: 10.1016/j.jcp.2008.02.020]

    Hasegawa, Y., and Kasagi, N. 2009. Hybrid DNS/LES of high Schmidt number mass transfer across turbulent air-water interface. International Journal of Heat and Mass Transfer, 52(3-4), 1012-1022. [doi:10.1016/ j.ijheatmasstransfer.2008.07.015]

    J?hne, B., and Haubecker, H. 1998. Air-water gas exchange. Annual Review of Fluid Mechanic, 30, 443-468. [doi:10.1146/annurev.fluid.30.1.443]

    Jasak, H., Weller, H. G., and Gosman, A. D. 1999. High resolution NVD differencing scheme for arbitrarily unstructured meshes. International Journal of Numerical Methods in Fluids, 31(2), 431-449. [doi:10.1002/(sici)1097-0363(19990930)31:2<431::aid-fld884>3.3.co;2-k]

    Komori, S., Murakami, Y., and Ueda, H. 1989. The relationship between surface-renewal and bursting motions in an open-channel flow. Journal of Fluid Mechanics, 203, 103-123. [doi:10.1017/ S0022112089001394]

    Lamont, J. C., and Scott, D. S. 1970. An eddy cell model of mass transfer into the surface of a turbulent liquid. AIChE Journal, 16(4), 513-519. [doi:10.1002/aic.690160403]

    Lamourelle, A. P., and Sandall, O. C. 1972. Gas absorption into a turbulent liquid. Chemical Engineering Science, 27(5), 1035-1043. [doi:10.1016/0009-2509(72)80018-6]

    Law, C. N. S., and Khoo, B. C. 2002. Transport across a turbulent air-water interface. AIChE Journal, 48(9), 1856-1868. [doi:10.1002/aic.690480904 ]

    Lee, R. J., and Saylor, J. R. 2010. The effect of a surfactant monolayer on oxygen transfer across an air/water interface during mixed convection. International Journal of Heat and Mass Transfer, 53(3), 3405-3413. [doi:10.1016/j.ijheatmasstransfer.2010.03.037]

    Liss, P. S., and Slater, P. G. 1974. Flux of gases across the air-sea interface. Nature, 247(5438), 181-184. [doi:10.1038/247181a0]

    Magnaudet, J., and Calmet, I. 2006. Turbulent mass transfer through a flat shear-free surface. Journal of Fluid Mechanics, 553,155-185. [doi:10.1017/S0022112006008913]

    Marrone, S., Colagrossi, A., Touzé, D. L, and Graziani, G. 2010. Fast free-surface detection and level-set function definition in SPH solvers. Journal of Computational Physics, 229(10), 3652-3663. [doi:10.1016/ j.jcp.2010.01.019]

    Rashidi, M., Hetsroni, G., and Banerjee, S. 1991. Mechanism of heat and mass transport at gas-liquid interfaces. International Journal of Heat and Mass Transfer, 34(7), 1799-1810. [doi:10.1016/0017-9310(91)90155-8]

    Schwarzenbach, R. P., Gschwend, P. M., and Imboden, D. M. 2002. Environmental Organic Chemistry. 2nd ed. Wiley-Interscience.

    Whitman, W. G. 1962. The two-film theory of gas absorption. International Journal of Heat and Mass Transfer, 5(5), 429-433. [doi:10.1016/0017-9310(62)90032-7]

    (Edited by Yan LEI)

    This work was supported by the National Natural Science Foundation of China (Grant No. 51109106) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 11KJB570001).

    *Corresponding author (e-mail: clpjoy@njut.edu.cn)

    Received Feb. 14, 2012; accepted Dec. 21, 2012

    cao死你这个sao货| 亚洲国产精品合色在线| 人成视频在线观看免费观看| 叶爱在线成人免费视频播放| 91九色精品人成在线观看| 看免费av毛片| 久久久久精品国产欧美久久久| 亚洲五月婷婷丁香| 国产精品 国内视频| 中文字幕人妻丝袜制服| 中文字幕制服av| 日韩中文字幕欧美一区二区| 色老头精品视频在线观看| 又黄又粗又硬又大视频| 91在线观看av| 亚洲综合色网址| 男女高潮啪啪啪动态图| 国产单亲对白刺激| 国产精品国产av在线观看| 伊人久久大香线蕉亚洲五| 成人18禁高潮啪啪吃奶动态图| 国产精品秋霞免费鲁丝片| videosex国产| 亚洲av日韩在线播放| 两个人免费观看高清视频| 精品一区二区三区视频在线观看免费 | 日韩欧美免费精品| 亚洲三区欧美一区| 老熟妇乱子伦视频在线观看| 亚洲欧美激情综合另类| 热re99久久国产66热| 久久热在线av| 亚洲成人手机| 日日摸夜夜添夜夜添小说| 亚洲在线自拍视频| e午夜精品久久久久久久| 国产成人精品久久二区二区91| 黄色 视频免费看| 免费黄频网站在线观看国产| 欧美不卡视频在线免费观看 | av电影中文网址| 人人妻人人澡人人看| 国产97色在线日韩免费| 老司机福利观看| 国产亚洲欧美98| 日本精品一区二区三区蜜桃| 黄色女人牲交| 日韩 欧美 亚洲 中文字幕| 中文字幕高清在线视频| 精品一区二区三区四区五区乱码| 欧美日韩视频精品一区| tocl精华| 99久久国产精品久久久| 人人妻人人澡人人看| 精品无人区乱码1区二区| av欧美777| 女同久久另类99精品国产91| 黄网站色视频无遮挡免费观看| 色老头精品视频在线观看| 女性被躁到高潮视频| 熟女少妇亚洲综合色aaa.| 日本撒尿小便嘘嘘汇集6| 精品久久久久久电影网| 热99re8久久精品国产| 国产精品美女特级片免费视频播放器 | 国产淫语在线视频| 久久中文看片网| 深夜精品福利| 国产精品.久久久| 在线天堂中文资源库| 精品国产一区二区三区久久久樱花| 成年人黄色毛片网站| 夜夜夜夜夜久久久久| 老司机福利观看| 久久国产亚洲av麻豆专区| 老司机在亚洲福利影院| 久久久精品免费免费高清| 中亚洲国语对白在线视频| 欧美中文综合在线视频| 丝袜在线中文字幕| 亚洲精品国产精品久久久不卡| 黄色片一级片一级黄色片| 男男h啪啪无遮挡| 亚洲精品在线观看二区| а√天堂www在线а√下载 | 久久中文看片网| 欧美精品一区二区免费开放| 在线国产一区二区在线| 在线视频色国产色| 这个男人来自地球电影免费观看| 免费一级毛片在线播放高清视频 | 天堂俺去俺来也www色官网| www.999成人在线观看| 欧美日韩一级在线毛片| 好看av亚洲va欧美ⅴa在| 久久人人97超碰香蕉20202| 国产成人精品在线电影| 成人三级做爰电影| 欧美日韩黄片免| 十八禁网站免费在线| 精品熟女少妇八av免费久了| 成人精品一区二区免费| 亚洲美女黄片视频| 亚洲精品中文字幕一二三四区| 狂野欧美激情性xxxx| 久久久久国产精品人妻aⅴ院 | 最新美女视频免费是黄的| 国产精品98久久久久久宅男小说| 欧美日本中文国产一区发布| 狂野欧美激情性xxxx| 水蜜桃什么品种好| 老汉色av国产亚洲站长工具| 欧美日韩视频精品一区| 好看av亚洲va欧美ⅴa在| 日韩 欧美 亚洲 中文字幕| 久久天躁狠狠躁夜夜2o2o| 最新美女视频免费是黄的| 每晚都被弄得嗷嗷叫到高潮| 一个人免费在线观看的高清视频| 美女扒开内裤让男人捅视频| 在线观看66精品国产| 99国产精品免费福利视频| 免费在线观看黄色视频的| 亚洲av成人一区二区三| 热99久久久久精品小说推荐| 视频区图区小说| 日韩免费高清中文字幕av| 久久狼人影院| 欧美人与性动交α欧美精品济南到| 中文字幕av电影在线播放| 99国产极品粉嫩在线观看| 男女之事视频高清在线观看| 国产精品欧美亚洲77777| 久久久精品区二区三区| 久久中文字幕一级| 91大片在线观看| 一进一出抽搐gif免费好疼 | 色综合欧美亚洲国产小说| 下体分泌物呈黄色| 亚洲精品美女久久久久99蜜臀| 日本一区二区免费在线视频| 老司机在亚洲福利影院| 国产欧美日韩精品亚洲av| 午夜老司机福利片| 高清欧美精品videossex| av在线播放免费不卡| 丝袜人妻中文字幕| netflix在线观看网站| 在线视频色国产色| 一区在线观看完整版| 亚洲国产欧美网| 国产在线观看jvid| 免费人成视频x8x8入口观看| 久久 成人 亚洲| 男女午夜视频在线观看| 十八禁人妻一区二区| 怎么达到女性高潮| 国产野战对白在线观看| 亚洲五月婷婷丁香| 美国免费a级毛片| 久久久精品免费免费高清| 久久久国产成人免费| 国产成+人综合+亚洲专区| 久久精品aⅴ一区二区三区四区| tocl精华| 国产精品99久久99久久久不卡| 亚洲精品美女久久久久99蜜臀| 夜夜夜夜夜久久久久| 亚洲欧美精品综合一区二区三区| 国产一区二区三区在线臀色熟女 | 变态另类成人亚洲欧美熟女 | 1024香蕉在线观看| 少妇的丰满在线观看| 亚洲欧美精品综合一区二区三区| 黄色视频,在线免费观看| 多毛熟女@视频| 欧美 日韩 精品 国产| 国产伦人伦偷精品视频| 国精品久久久久久国模美| 日韩成人在线观看一区二区三区| 大香蕉久久成人网| 久久精品亚洲精品国产色婷小说| 国产av一区二区精品久久| 一区在线观看完整版| 欧美 亚洲 国产 日韩一| 人妻一区二区av| 亚洲成a人片在线一区二区| 精品福利观看| 久久久久久久午夜电影 | 午夜激情av网站| 亚洲精品美女久久久久99蜜臀| 亚洲精品乱久久久久久| 亚洲国产欧美日韩在线播放| 国产成人精品无人区| 午夜免费鲁丝| 久久国产乱子伦精品免费另类| 视频在线观看一区二区三区| 亚洲专区字幕在线| 久久午夜亚洲精品久久| 国产区一区二久久| 免费在线观看日本一区| 99国产精品一区二区三区| 精品少妇一区二区三区视频日本电影| 无遮挡黄片免费观看| 在线永久观看黄色视频| 久久人妻熟女aⅴ| 青草久久国产| 国产成人欧美在线观看 | 久久久水蜜桃国产精品网| 久久久久久久久久久久大奶| 亚洲avbb在线观看| 国产在视频线精品| 精品亚洲成国产av| 亚洲九九香蕉| 亚洲国产中文字幕在线视频| av中文乱码字幕在线| 中国美女看黄片| 国产成人精品久久二区二区免费| 91麻豆精品激情在线观看国产 | 亚洲欧美一区二区三区久久| 国产欧美日韩精品亚洲av| 自拍欧美九色日韩亚洲蝌蚪91| 国产一区二区三区视频了| 亚洲欧美一区二区三区黑人| 一级毛片高清免费大全| 久久中文看片网| 亚洲成国产人片在线观看| 一区二区三区激情视频| 亚洲av欧美aⅴ国产| 欧美大码av| 久久国产乱子伦精品免费另类| 成人手机av| 欧美 亚洲 国产 日韩一| 捣出白浆h1v1| 国产人伦9x9x在线观看| 色在线成人网| 国产成人av教育| 国产精品1区2区在线观看. | 在线观看免费高清a一片| 国产蜜桃级精品一区二区三区 | 丰满的人妻完整版| 亚洲免费av在线视频| 亚洲精品在线美女| 视频在线观看一区二区三区| 欧美不卡视频在线免费观看 | 久久久国产成人精品二区 | 黄色视频不卡| 亚洲国产中文字幕在线视频| 搡老岳熟女国产| 久久久国产成人免费| 国产乱人伦免费视频| videosex国产| 窝窝影院91人妻| 国产免费av片在线观看野外av| 免费在线观看亚洲国产| 悠悠久久av| 免费人成视频x8x8入口观看| 黑人操中国人逼视频| 99热只有精品国产| 国产男女内射视频| 日韩成人在线观看一区二区三区| 亚洲欧美激情综合另类| 亚洲全国av大片| 精品免费久久久久久久清纯 | 亚洲av熟女| 午夜日韩欧美国产| 精品乱码久久久久久99久播| 91麻豆av在线| 涩涩av久久男人的天堂| 精品无人区乱码1区二区| 精品一区二区三区视频在线观看免费 | 五月开心婷婷网| 久久午夜综合久久蜜桃| 国产高清激情床上av| 性少妇av在线| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩福利视频一区二区| 国产无遮挡羞羞视频在线观看| 久久久久久久精品吃奶| 精品国产国语对白av| 十八禁网站免费在线| 丰满人妻熟妇乱又伦精品不卡| 新久久久久国产一级毛片| 一区在线观看完整版| 亚洲五月色婷婷综合| 亚洲av熟女| 欧美日韩国产mv在线观看视频| 亚洲av成人av| 怎么达到女性高潮| 十八禁网站免费在线| 久久久久精品国产欧美久久久| 天天影视国产精品| 成年女人毛片免费观看观看9 | 亚洲色图 男人天堂 中文字幕| 国产精品99久久99久久久不卡| 精品国产乱码久久久久久男人| 人人妻人人添人人爽欧美一区卜| 久久天堂一区二区三区四区| 黑人猛操日本美女一级片| 亚洲国产毛片av蜜桃av| 三级毛片av免费| 久久婷婷成人综合色麻豆| 久久久久国内视频| 侵犯人妻中文字幕一二三四区| а√天堂www在线а√下载 | 国产av又大| 亚洲专区国产一区二区| 人成视频在线观看免费观看| 9热在线视频观看99| 久久人妻福利社区极品人妻图片| 精品卡一卡二卡四卡免费| 91精品三级在线观看| 老司机午夜十八禁免费视频| 亚洲一区中文字幕在线| 99精品欧美一区二区三区四区| 中文字幕人妻熟女乱码| 后天国语完整版免费观看| 麻豆av在线久日| 高清在线国产一区| 三上悠亚av全集在线观看| 大型av网站在线播放| 亚洲欧美日韩高清在线视频| 嫩草影视91久久| 亚洲五月天丁香| 成年女人毛片免费观看观看9 | 美女视频免费永久观看网站| 久久精品国产亚洲av香蕉五月 | 亚洲精品久久午夜乱码| 女性被躁到高潮视频| 亚洲国产毛片av蜜桃av| 中国美女看黄片| 精品国内亚洲2022精品成人 | 国产午夜精品久久久久久| 成人手机av| 50天的宝宝边吃奶边哭怎么回事| av线在线观看网站| 男女之事视频高清在线观看| 国产aⅴ精品一区二区三区波| av线在线观看网站| 中亚洲国语对白在线视频| 黄色毛片三级朝国网站| 国产不卡一卡二| 午夜精品在线福利| 国产成人av教育| 麻豆成人av在线观看| 俄罗斯特黄特色一大片| 国产精品一区二区免费欧美| 国产日韩欧美亚洲二区| 又大又爽又粗| 亚洲欧美一区二区三区久久| 欧美老熟妇乱子伦牲交| 女人精品久久久久毛片| 下体分泌物呈黄色| 露出奶头的视频| 99国产精品99久久久久| 黑丝袜美女国产一区| 国产成人免费无遮挡视频| 亚洲精品粉嫩美女一区| 亚洲成人手机| 国内毛片毛片毛片毛片毛片| 99国产精品一区二区三区| 久久人妻熟女aⅴ| 国产免费男女视频| 亚洲一码二码三码区别大吗| 热99国产精品久久久久久7| 一夜夜www| 国产精品久久久久成人av| 狠狠婷婷综合久久久久久88av| 色综合婷婷激情| 国产精品.久久久| 美女福利国产在线| 免费高清在线观看日韩| 香蕉久久夜色| 久久人妻熟女aⅴ| 欧美性长视频在线观看| 久久亚洲真实| 亚洲三区欧美一区| 久久香蕉激情| 国产深夜福利视频在线观看| 久久久久久亚洲精品国产蜜桃av| 欧美在线黄色| av一本久久久久| 久久精品国产亚洲av香蕉五月 | 岛国毛片在线播放| 看黄色毛片网站| 黄色视频,在线免费观看| av电影中文网址| 国产亚洲精品久久久久5区| 老司机深夜福利视频在线观看| 18禁美女被吸乳视频| 国产精品久久久久成人av| 亚洲国产精品一区二区三区在线| 午夜激情av网站| 一级,二级,三级黄色视频| 亚洲精品成人av观看孕妇| 欧美亚洲 丝袜 人妻 在线| 丰满饥渴人妻一区二区三| tocl精华| 乱人伦中国视频| 国产97色在线日韩免费| 日韩 欧美 亚洲 中文字幕| 国产成人啪精品午夜网站| 欧美黑人精品巨大| 国产在线精品亚洲第一网站| 女性生殖器流出的白浆| 高清欧美精品videossex| 高清黄色对白视频在线免费看| 欧美日韩精品网址| 高清毛片免费观看视频网站 | 男女午夜视频在线观看| 国产亚洲欧美精品永久| 国产精品久久久人人做人人爽| 国产日韩一区二区三区精品不卡| 亚洲精品粉嫩美女一区| 香蕉久久夜色| 久久久久久久久久久久大奶| 在线观看www视频免费| 别揉我奶头~嗯~啊~动态视频| 嫩草影视91久久| 亚洲免费av在线视频| 巨乳人妻的诱惑在线观看| 多毛熟女@视频| 免费在线观看完整版高清| 国产99久久九九免费精品| videosex国产| 国产精品乱码一区二三区的特点 | 一夜夜www| 97人妻天天添夜夜摸| 夜夜爽天天搞| 国产一区二区三区视频了| 国产国语露脸激情在线看| 国产野战对白在线观看| 夫妻午夜视频| 99国产精品免费福利视频| 一区二区三区国产精品乱码| 欧美激情极品国产一区二区三区| 中文字幕最新亚洲高清| 新久久久久国产一级毛片| 亚洲熟女精品中文字幕| 国产精品一区二区在线不卡| ponron亚洲| 日韩欧美免费精品| 咕卡用的链子| 国产午夜精品久久久久久| 国产aⅴ精品一区二区三区波| 一级a爱片免费观看的视频| 18禁黄网站禁片午夜丰满| 国产99白浆流出| 一边摸一边抽搐一进一小说 | 亚洲国产精品一区二区三区在线| av电影中文网址| 国产免费现黄频在线看| videos熟女内射| 1024视频免费在线观看| 国产成人欧美| 国产精品亚洲av一区麻豆| 波多野结衣av一区二区av| 黑人猛操日本美女一级片| 99国产精品免费福利视频| 午夜日韩欧美国产| 国产精品久久久久久人妻精品电影| 亚洲熟女毛片儿| 女警被强在线播放| 在线观看一区二区三区激情| 久久国产精品人妻蜜桃| 亚洲av电影在线进入| 无限看片的www在线观看| 一级,二级,三级黄色视频| 美女视频免费永久观看网站| 十分钟在线观看高清视频www| 久久亚洲精品不卡| 日日夜夜操网爽| 香蕉丝袜av| 欧美日韩瑟瑟在线播放| 成年人黄色毛片网站| 亚洲伊人色综图| 首页视频小说图片口味搜索| 欧美午夜高清在线| 欧美久久黑人一区二区| 老司机影院毛片| 老司机在亚洲福利影院| 99香蕉大伊视频| 久久久国产欧美日韩av| 欧美精品av麻豆av| videosex国产| 97人妻天天添夜夜摸| 国产熟女午夜一区二区三区| 欧美精品高潮呻吟av久久| 男女高潮啪啪啪动态图| 视频区欧美日本亚洲| 女性被躁到高潮视频| 久久性视频一级片| 国产在线一区二区三区精| 91麻豆av在线| 十八禁网站免费在线| 午夜福利影视在线免费观看| 最新的欧美精品一区二区| 国产成人欧美| 婷婷丁香在线五月| 亚洲av美国av| 国产亚洲精品一区二区www | 国产深夜福利视频在线观看| 夫妻午夜视频| 亚洲av日韩精品久久久久久密| 757午夜福利合集在线观看| 中文欧美无线码| 国产野战对白在线观看| 欧美大码av| 国产男女超爽视频在线观看| 侵犯人妻中文字幕一二三四区| 日本一区二区免费在线视频| 亚洲片人在线观看| 丁香六月欧美| 亚洲一码二码三码区别大吗| 在线播放国产精品三级| 国产三级黄色录像| 手机成人av网站| 麻豆国产av国片精品| 亚洲成人免费av在线播放| 最新美女视频免费是黄的| 天天添夜夜摸| 亚洲熟女毛片儿| 色婷婷av一区二区三区视频| 18禁国产床啪视频网站| 女人爽到高潮嗷嗷叫在线视频| 久久久久国内视频| 新久久久久国产一级毛片| av天堂久久9| 黄色视频,在线免费观看| 国产视频一区二区在线看| 久9热在线精品视频| 国产xxxxx性猛交| 高潮久久久久久久久久久不卡| 黄频高清免费视频| 美女视频免费永久观看网站| 人妻久久中文字幕网| 天堂动漫精品| 色老头精品视频在线观看| 在线观看日韩欧美| 国产不卡一卡二| 丁香六月欧美| 一级,二级,三级黄色视频| 国产深夜福利视频在线观看| 久久ye,这里只有精品| 99精国产麻豆久久婷婷| 动漫黄色视频在线观看| 欧美一级毛片孕妇| 久久久久精品人妻al黑| 手机成人av网站| 99热国产这里只有精品6| 一区二区日韩欧美中文字幕| 精品卡一卡二卡四卡免费| 最新的欧美精品一区二区| 国产亚洲精品第一综合不卡| 亚洲在线自拍视频| 亚洲av熟女| 日韩免费av在线播放| 国产精品永久免费网站| 露出奶头的视频| 午夜两性在线视频| 中文字幕色久视频| 亚洲精品粉嫩美女一区| 亚洲欧美精品综合一区二区三区| 日本撒尿小便嘘嘘汇集6| 在线免费观看的www视频| av电影中文网址| 后天国语完整版免费观看| 国产又色又爽无遮挡免费看| 一区二区三区国产精品乱码| 丝袜人妻中文字幕| 国产一区有黄有色的免费视频| 脱女人内裤的视频| a级毛片在线看网站| 免费看a级黄色片| 丰满迷人的少妇在线观看| 亚洲精品中文字幕一二三四区| 中文字幕制服av| 法律面前人人平等表现在哪些方面| 亚洲av电影在线进入| 天堂俺去俺来也www色官网| 久久久久国产一级毛片高清牌| 在线天堂中文资源库| 黄色成人免费大全| 欧美黄色淫秽网站| 成年人免费黄色播放视频| 一级a爱视频在线免费观看| 夜夜夜夜夜久久久久| 一二三四社区在线视频社区8| 成年版毛片免费区| 日本撒尿小便嘘嘘汇集6| 亚洲成av片中文字幕在线观看| 欧美不卡视频在线免费观看 | 女人爽到高潮嗷嗷叫在线视频| 久久午夜亚洲精品久久| 无遮挡黄片免费观看| 中文字幕av电影在线播放| 18在线观看网站| 免费少妇av软件| 丝袜美足系列| 大香蕉久久成人网| 国产精品香港三级国产av潘金莲| 99久久99久久久精品蜜桃| 制服诱惑二区| 久久精品aⅴ一区二区三区四区| 香蕉久久夜色| 欧美日韩一级在线毛片| 1024香蕉在线观看| 岛国在线观看网站| 国产国语露脸激情在线看| 免费在线观看完整版高清| 激情在线观看视频在线高清 | av视频免费观看在线观看| 国产亚洲精品一区二区www | 99re在线观看精品视频| 王馨瑶露胸无遮挡在线观看|