• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on the Synthesis and Properties of PET Using Hydrotalcite as Catalyst

    2013-07-31 16:23:14LiGuiheFuZhifengCaoDing
    中國煉油與石油化工 2013年3期

    Li Guihe; Fu Zhifeng; Cao Ding

    (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029)

    Study on the Synthesis and Properties of PET Using Hydrotalcite as Catalyst

    Li Guihe; Fu Zhifeng; Cao Ding

    (State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029)

    Poly(ethylene terephthalate) (PET) was synthesized by the in-situ polymerization method using layered double hydrotalcite (LDH) as the catalyst, and the thermal and flame retardation properties of PET were investigated as required. As identified by differential scanning calorimetry (DSC) and thermogravimetric (TGA) analysis, the crystallization rate and thermal degradation temperature of the as-prepared PET sample were enhanced compared with commercial PET sample. It was confirmed from the fire-resistant property study that the LDH can be used as an efficient flame-retardant besides functioning as a catalyst in the transesterification /polycondensation process for PET synthesis.

    poly(ethylene terephthalate); layered double hydrotalcite; transesterification; polycondensation; catalyst

    1 Introduction

    Poly(ethylene terephthalate) (PET) featuring good mechanical strength, toughness, fatigue resistance, and high crystal melting temperature is widely used in the production of films, plastic objects and fibres[1]. The production of PET in an industrial scale is normally carried out through two stages, namely: one is the prepolymer synthesis which is mainly related with bis(2-hydroxyethyl) terephthalate (BHET) and its oligomer, and another is associated with a polycondensation step of the prepolymers. The prepolymer is synthesized either through esterification of terephthalic acid (TPA) with ethylene glycol (EG) or through transesterification of dimethyl terephthalate (DMT) with EG. Although all the catalysts used for transesterification can catalyze the polycondensation reaction, but these catalysts do not provide satisfactory products because they are also active in ester decomposition[2]. Therefore, a different catalyst, which is mainly an antimony compound, has been applied to catalyze the polycondensation step in most commercial plants since the invention of PET[3]. However, there are intensive research activities to find a replacement for antimony compounds because of not only the negative impact of antimony on both health and environment[4]but also its very low activity in the transesterification reaction[5]that needs to use two different catalysts in PET production via the DMT process, which is one of the drawbacks of this process with respect to the TPA process. Recently, the hydrotalcite-like (HT) compounds, the naturally occurring layered double hydroxides (LDH) with carbonate anion, a representative example of which has the formula of Mg6Al2(OH)16(CO3)·4H2O, have been patented as safer, cheaper, and more efficient catalysts in both stages of PET production[6].

    In a previous paper[7], the activity, selectivity and polycondensation reaction kinetics of LDH were studied. It has been proposed that the hydroxide group of LDH is necessary for its activity in polycondensation of BHET. The catalytic activity is not related to its specific surface area, which is common in other heterogeneous catalysts. In addition, the activity of LDH decreases with increasing calcination time and temperature. Like the inorganic hydroxides, LDH has flame-proof properties and has been used for preparation of flame-retardant polymer composites. LDH/PET nanocomposites were also prepared by direct melt compounding[8]. Our aim in this study is tosynthesize and characterize PET via in-situ polymerization method by using hydrotalcite as a catalyst in both DMT transesterification and successive polycondensation. Five kinds of PET nanocomposites had been synthesized, with the mass ratio of LDHs:DMT equating to 0.25% (PET-0.25), 0.5% (PET-0.5), 0.75% (PET-0.75), 3% (PET-3), and 5% (PET-5), respectively. The thermal and flame retardation properties of the PET samples were investigated.

    2 Experimental

    2.1 Materials

    Commercially available DMT (manufactured by the Liaohua Petrochemical Co.), EG (analytical reagent grade, manufactured by the Beijing Chemical Plant), hydrotalcite (Mg6Al2(OH)16(CO3)·4H2O, prepared by the Beijing University of Chemical Technology), were used as received. Irganox? 1010, which was used as the stabilizer, was generously provided by the Research Institute of Liaoyang Petrochemical Corporation. All other chemicals were used without further treatment.

    2.2 Transesterification and polycondensation reaction

    Transesterification was carried out in a 3-L jacketed stainless steel reactor, which was equipped with a transesterification distillation system for removing the released methanol and was also fitted with a polycondensation system. As a typical method for preparation of PET, the starting materials DMT, EG, hydrotalcite and Irganox? 1010 were charged into the reactor under gentle agitation. The esterification reaction was carried out at about 190 ℃ and the temperature in the fractionation column was controlled at 65 ℃ under a nitrogen flow with continuous removal of the released methanol. When the volume of the collected methanol was around 95% of the theoretical value, the esterification was considered to be over.

    The reaction mixture was heated slowly up to 220 ℃ and remained at this temperature for one hour to finish the transesterificaton reaction. The temperature was then raised to 255±5 ℃, and the pressure of the reaction system was gradually reduced to 60 Pa, at which the reaction temperature was raised to the final value of 290±5 ℃.

    The polymerization was carried out isothermally at this temperature for about 2 hours with simultaneous removal of EG and other volatiles by distillation to acquire an expected molecular weight of the product. Finally, the pressure in the system was regulated to the atmospheric pressure using nitrogen purging to prevent degradation of the product by oxidation.

    2.3 Measurements

    Intrinsic viscosity of the product was measured at 30 ℃ by an Ubbelohde viscometer using a polymer solution of 0.1 g/dL in phenol/tetrachloroethane (mass ratio of 60/40) and calculated according to the “one point” method[8].1H NMR spectra of samples were recorded on a Bruker AV600-MHz NMR spectrometer, using tetramethylsilane (TMS) as the internal standard. Either CDCl3or CD3COCD3was used as the solvent. The thermal transition process was carried out by a Perkin-Elmer DSC-7 differential scanning calorimeter under nitrogen purging according to the following procedure. The PET samples were heated at a rate of 40℃/min to the desired temperature to ensure complete melting, and were then kept at this temperature for 3 min. Samples were then cooled down to -100 ℃ at a cooling rate of 100 ℃/min before being reheated to 230 ℃ at a heating rate of 20 ℃/min. Thermogravimetric analysis (TGA) was carried out using a TG 209 thermogravimetric analyzer manufactured by Netzsch GmbH, Germany. Each PET sample weighing about 10 mg was heated at a rate of 10 ℃/min and investigated in the temperature range from 20 ℃ to 600 ℃ under the nitrogen flow at a flow rate of 50 mL/min.

    3 Results and Discussion

    3.1 Synthesis of PET

    PET was synthesized via a typical two-step transesterif ication and polycondensation procedure involving DMT and EG catalyzed by LDH. The influence of polycondensation time on the intrinsic viscosity ([η]) of PET namocomposite (PET-3) is shown in Table 1. It can be seen from Table 1 that the optimum polycondesation time was about 2 hours when the [η] of the formed PET was the same as the commercially available PET ([η]=0.67). The generated PET would degrade when reaction time exceed-ed 2 hours. Therefore, the polycondensation time for all the PET samples was determined. The reaction conditions and results of the prepared PET samples are summarized in Table 2.

    Table 1 The influence of polycondensation time on the [η] of PET-3

    As shown in Table 2, an increase of LDH content would slightly decrease the transesterification time (tt) and initial transesterification temperature (Tini), when the transesterification reaction by-product, methanol, began to be distilled off. The reason for the decline ofttandTiniis that the overall activation energy of the transesterification decreases with an increasing catalyst concentration[9]. These results were similar to that reported by M. Di Serio in the reference[10], which indicated that the active LDH catalysts showed nearly the same activity of those classical catalysts.

    Table 2 Reaction conditions and results (at a polycondensation time of 1.5 h)

    It also can be seen from Table 2 that as more LDH was added (exceeding 3%), no clear reduction inTiniandttwas observed in the transesterification process. This might be attributed to the aggregation of LDH to retain its layered structure and the unsuccessful exfoliation of LHD by EG, oligomer or PET, when the LDH content was higher. At the same time, the decrease of [η] in the PET nanocomposites was observed, which might be attributed to the increase in rigidity of the PET matrix in the presence of LDH mineral. Moreover, the thermal properties as well as the flame-retardant property, which would be discussed later, were effectively influenced by LDH.

    3.2 Polymer composition

    The composition of the samples was characterized by1H NMR spectroscopy as a conventionally adopted approach in polymer science research nowadays[11]. As shown in Figure 1, in addition to the large absorbance of the repeated terephthalate units at 8.41, the peak at 5.09 as been assigned to the EG units. There was no difference between the as-prepared PET sample and commercial PET sample, which confirmed that the LDH could be used as a single catalyst in PET synthesis from DMT with EG to reveal its excellent activity and selectivity.

    Figure 1 Calculated1HNMR results and relative difference of PET samples

    3.3 Thermal properties of PET catalyzed by LDH

    The thermal properties of the synthesized PET samples were measured using DSC (Table 3), and the thermal stability of samples was characterized by means of thermogravimetric analysis (TGA). The results are summarized in Table 3. The TGA thermograms of samples are shown in Figure 2 (a), while the DSC thermograms are illustrated in Figure 2 (b). During the DSC experiments, allsamples were heated well beyond the melting temperature and then cooled down to -100 ℃ before the second run test. Figure 3 shows that the degree of super heating ΔT(ΔT=Tch-Tg) on the heating scans decreased with an increasing mass ratio of LDH in the PET samples. It can be concluded that LDH fillers acted as the nucleating agent of crystallization and could accelerate the crystallization rate of PET matrix[12]. This behavior is similar to the results relating to the general nanocomposites prepared by direct melt-compounding of PET and LDH[8,12-13]. In comparison with the pristine PET, the PET that contains LDH fillers used as catalyst shows similar melting temperature (Tm) and glass transition temperature (Tg), so it is supposed that LDH nanofillers cannot affect PET crystal perfection during the experiment, but can only affect the crystallization rate of PET by acting as a nucleating agent. The thermal degradation temperatures (Td) curves show that an increase of LDH content in the PET composites slightly raises the degradation start temperature (Td,on) from 403.8 ℃ to 413.5 ℃ and the degradation end temperature (Td,end) from 446.1 ℃ to 453.5 ℃, respectively, along with forming the similar weight loss curves and slopes. As it is expected, the thermal degradation temperature is enhanced when the LDH ratio increases, which can be ascribed to the prevention of out-diffusion of the volatile gas from the thermally decomposed products, because the LDH layers act as gas barriers, which can reduce the permeability of the volatile gas[14].

    Table 3 DSC and TGA analysis of PET samples

    Figure 2 TGA (a) and DSC (b) thermograms of PET samples

    Figure 3 The relationship between the degree of super heating and LDH content

    3.4 Fire-resistant properties of PET catalyzed by LDH

    The effect of LDH on the limited oxygen index of PET can be seen clearly from Table 5. The limited oxygen index increased obviously from 23 for pure PET to 31 for PET-3%. The results indicate that the LDH can be used as an efficient flame-retardant, because the magnesium/ aluminum layered double hydroxides can absorb the heat and deliver H2O, CO2upon burning, which can lower the temperature of substrate and enhance the foaming char structure. In addition, the porous thermally decomposed products of LDH with large specific surface area can result in smoke suppression effect by absorbing the smoke and gases produced in the course of combustion[15-16]. The fireresistant property of PET/LDH nanocomposites prepared during in-situ polymerization in this work was higher than that prepared via direct melt compounding of PET and LDH. This phenomenon may be ascribed to the exfoliation of LHD by EG, oligomer or PET in-situ reaction system[8].

    Table 5 The limited oxygen index of new PET

    4 Conclusions

    PET was synthesized by means of a two-step in-situ po-lymerization method using LDH as a catalyst and was characterized by various methods. The transesterification time and initial transesterification temperature decreased with the increase of LDH content. Based on the thermal analysis, the crystallization rate and degradation temperatures of PET samples were improved simultaneously as compared to that of pristine PET sample. The fire-resistant experiments showed that LDH could be used as an efficient flame-retardant. With the growth of the packing industry, which largely uses PET to make bottles and other food packing items, the LDH can be used as a replacement for the traditional antimony catalysts.

    [1] Scheirs J, Long T E. Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters[M]. WILEY, 2003.

    [2] MacDonald W A. New advances in poly(ethylene terephthalate) polymerization and degradation[J]. Polym Int, 2002, 51 (10): 923-930.

    [3] Meyer U, Hoelderich W F. Transesterification of methyl benzoate and dimethyl terephthalate with ethylene glycol over basic zeolites[J]. Appl Catal A: Gen, 1999, 178 (2): 159-166.

    [4] Gorzawski H, Hoelderich W F. Transesterification of methyl benzoate and dimethyl terephthalate with ethylene glycol over superbases[J]. Appl Catal A: Gen., 1999, 179 (1): 131-137.

    [5] Thiele U K. The current status of catalysis and catalyst development for the industrial process of poly(ethylene terephthalate) polycondensation[J]. Int J Polym Mater, 2001, 50(3): 387-394.

    [6] Di Serio M, Tesser R, Ferrara A, et al. Heterogeneous basic catalysts for the transesterification and the polycondensation reactions in PET production from DMT[J]. J Mol Catal A: Chemical, 2004, 212(1/2): 251-257

    [7] El-Toufaili F A. Feix G, Reichert K H. Kinetics and mechanistic investigation of hydrotalcite-catalyzed melt synthesis of poly(ethylene terephthalate)[J]. Macromol Mater Eng, 2006, 291(9): 1144-1154.

    [8] Wang M, Zhu M F, Sun B. A New nano-structured flameretardant poly(ethylene terephthalate)[J]. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2006, 43(11): 1867-1875.

    [9] (a) El-Toufaili F A, Feix G, Reichert K H. Optimization of simultaneous thermal analysis for fast screening of polycondensation catalysts[J]. Thermochim Acta, 2005, 432 (1): 99-105. (b)El-Toufaili F A, Feix G, Reichert K H. Mechanistic investigations of antimony-catalyzed polycondensation in the synthesis of poly(ethylene terephthalate)[J]. J Polym Sci, Part A: Polym Chem, 2006, 44 (3): 1049-1059.

    [10] Di Serio M, Tesser R, Trulli F, et al. Kinetic and catalytic aspects in melt transesteri fication of dimethyl terephthalate with ethylene glycol in the presence of different catalytic systems[J]. J Appl Polym Sci, 1996, 62 (2): 409-415.

    [11] Saint-Loup R, Jeanmaire T, Robin J, et al. Synthesis of (polyethylene terephthalate/ poly e-caprolactone) copolyesters[J]. Polymer, 2003, 44 (12): 3437-3449.

    [12] Lee W D, Im S S. Preparation and properties of layered double hydroxide/poly(ethylene terephthalate) nanocomposites by direct melt compounding[J]. Polymer, 2006, 47 (4): 1364-1371.

    [13] Xu K L, Chen G M, Shen J Q. Exfoliation and dispersion of micrometer-sized LDH particles in poly(ethylene terephthalate) and their nanocomposite thermal stability[J]. Applied Clay Science, 2013, 75-76: 114-119

    [14] Wang G A, Wang C C, Chen C Y. Preparation and characterization of layered double hydroxides-PMMA nanocoposites by solution polymerization[J]. J Inorg Organomet Polym, 2005, 15(2): 239-251.

    [15] Wang H Y, Han E H, Ke W. In fluence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating[J]. Progress in Organic Coatings, 2005, 53(1): 29-37.

    [16] Kim S. Flame retardancy and smoke suppression of magnesium hydroxide filled polyethylene[J]. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41(9): 936-944.

    Recieved date: 2013-05-03; Accepted date: 2013-05-25.

    Prof. Cao Ding, Telephone: +86-010-64423811; E-mail: carlcao2008@gmail.com.

    亚洲人成网站高清观看| 最近视频中文字幕2019在线8| 欧美日韩综合久久久久久 | 成人美女网站在线观看视频| 免费观看的影片在线观看| 国产私拍福利视频在线观看| 国产三级中文精品| 亚洲av五月六月丁香网| 成人精品一区二区免费| 天堂影院成人在线观看| 成熟少妇高潮喷水视频| 久久国内精品自在自线图片| 超碰av人人做人人爽久久| 日韩欧美三级三区| 亚洲精品一区av在线观看| 三级男女做爰猛烈吃奶摸视频| 成人一区二区视频在线观看| 人妻久久中文字幕网| 狂野欧美白嫩少妇大欣赏| 成人午夜高清在线视频| 国产精品爽爽va在线观看网站| 久久国产乱子免费精品| 成人av一区二区三区在线看| 精品福利观看| 亚洲av不卡在线观看| 日本免费a在线| 长腿黑丝高跟| av天堂在线播放| 国产乱人视频| 婷婷精品国产亚洲av| 国产在线男女| 欧美丝袜亚洲另类 | 亚洲久久久久久中文字幕| 亚洲va在线va天堂va国产| 欧美性猛交黑人性爽| www日本黄色视频网| 亚洲中文字幕日韩| 天天一区二区日本电影三级| 亚洲在线自拍视频| 日本三级黄在线观看| 国产真实乱freesex| 欧美在线一区亚洲| 国产一区二区三区av在线 | 亚洲av日韩精品久久久久久密| 日本色播在线视频| 全区人妻精品视频| netflix在线观看网站| 国产精品电影一区二区三区| 欧美日韩精品成人综合77777| 91久久精品电影网| 国产高清视频在线播放一区| 成人特级黄色片久久久久久久| 国产精品国产高清国产av| 伦理电影大哥的女人| 国产精品电影一区二区三区| 国内精品久久久久精免费| 国产综合懂色| 国产精品一区二区免费欧美| 精品午夜福利视频在线观看一区| 啦啦啦啦在线视频资源| 无人区码免费观看不卡| 国产真实乱freesex| 别揉我奶头~嗯~啊~动态视频| 别揉我奶头~嗯~啊~动态视频| 国产成人aa在线观看| 在线免费十八禁| 国产美女午夜福利| 非洲黑人性xxxx精品又粗又长| 精品欧美国产一区二区三| 久久天躁狠狠躁夜夜2o2o| 成人午夜高清在线视频| 亚洲av熟女| а√天堂www在线а√下载| 国产一区二区三区在线臀色熟女| 长腿黑丝高跟| 色哟哟·www| 国产欧美日韩精品亚洲av| 亚洲熟妇熟女久久| 久久久成人免费电影| 五月伊人婷婷丁香| 亚洲精品一区av在线观看| 成年女人看的毛片在线观看| 三级国产精品欧美在线观看| 亚洲电影在线观看av| 国内精品一区二区在线观看| 中国美白少妇内射xxxbb| 99久久精品一区二区三区| 免费在线观看日本一区| 亚洲天堂国产精品一区在线| 国产日本99.免费观看| 99精品久久久久人妻精品| 久久久国产成人免费| 久久九九热精品免费| 日本 欧美在线| 亚洲精华国产精华精| 一夜夜www| 美女高潮喷水抽搐中文字幕| 自拍偷自拍亚洲精品老妇| 国产熟女欧美一区二区| 久久久久久久久久成人| 天堂网av新在线| 日韩欧美在线二视频| 亚洲人成伊人成综合网2020| 午夜免费激情av| 久久6这里有精品| 日本一二三区视频观看| 一级黄片播放器| aaaaa片日本免费| 最新在线观看一区二区三区| 91麻豆av在线| 亚洲国产精品久久男人天堂| 国产又黄又爽又无遮挡在线| 久久人妻av系列| 老女人水多毛片| 日韩欧美国产在线观看| 精品久久久久久久久久久久久| 中出人妻视频一区二区| 别揉我奶头 嗯啊视频| 婷婷丁香在线五月| 人妻久久中文字幕网| 桃色一区二区三区在线观看| 国产又黄又爽又无遮挡在线| 国产激情偷乱视频一区二区| 精品久久久久久久久久免费视频| 成人欧美大片| 欧美日韩国产亚洲二区| 又黄又爽又刺激的免费视频.| 无人区码免费观看不卡| 在现免费观看毛片| 精品久久久久久久末码| 国产黄色小视频在线观看| a级毛片a级免费在线| 亚洲自偷自拍三级| 高清日韩中文字幕在线| 亚洲美女视频黄频| 搡女人真爽免费视频火全软件 | 无人区码免费观看不卡| 午夜精品在线福利| 天天躁日日操中文字幕| 欧美日韩乱码在线| 美女xxoo啪啪120秒动态图| 琪琪午夜伦伦电影理论片6080| 国产成年人精品一区二区| 日日撸夜夜添| 尾随美女入室| 国产精品电影一区二区三区| 午夜久久久久精精品| 一卡2卡三卡四卡精品乱码亚洲| 欧美色视频一区免费| 俺也久久电影网| 日本 欧美在线| 日韩av在线大香蕉| 国内精品宾馆在线| 日韩欧美精品免费久久| 欧美激情在线99| 少妇猛男粗大的猛烈进出视频 | 免费电影在线观看免费观看| 男女下面进入的视频免费午夜| 亚洲国产精品sss在线观看| 久久人人精品亚洲av| 国产精品无大码| av天堂在线播放| 久久久午夜欧美精品| 又粗又爽又猛毛片免费看| 亚洲专区中文字幕在线| 成人毛片a级毛片在线播放| 悠悠久久av| 精品一区二区三区人妻视频| 国产一区二区在线观看日韩| 少妇被粗大猛烈的视频| 国产91精品成人一区二区三区| 露出奶头的视频| 一个人观看的视频www高清免费观看| 18禁裸乳无遮挡免费网站照片| 可以在线观看的亚洲视频| 老司机午夜福利在线观看视频| 国产av一区在线观看免费| 精品一区二区三区av网在线观看| 麻豆一二三区av精品| 亚洲性久久影院| 国产毛片a区久久久久| 国产精品98久久久久久宅男小说| 又紧又爽又黄一区二区| 亚洲中文字幕一区二区三区有码在线看| 国产高潮美女av| 亚洲乱码一区二区免费版| 一区福利在线观看| 成人特级av手机在线观看| 97热精品久久久久久| 亚洲成人久久爱视频| 中文字幕人妻熟人妻熟丝袜美| 啦啦啦观看免费观看视频高清| 国产伦在线观看视频一区| 网址你懂的国产日韩在线| 免费在线观看影片大全网站| av天堂在线播放| 久久这里只有精品中国| 久久久久久国产a免费观看| 日韩av在线大香蕉| 简卡轻食公司| 美女高潮的动态| 一本精品99久久精品77| 中文字幕高清在线视频| 午夜福利在线观看免费完整高清在 | 美女被艹到高潮喷水动态| 99久久精品一区二区三区| 亚洲中文日韩欧美视频| 成人精品一区二区免费| 国产免费男女视频| 波野结衣二区三区在线| 亚洲成人免费电影在线观看| 久久热精品热| www日本黄色视频网| 免费av毛片视频| 色综合站精品国产| 俄罗斯特黄特色一大片| 男女视频在线观看网站免费| 国产69精品久久久久777片| 99精品在免费线老司机午夜| 久久久久久久久中文| 亚洲精华国产精华液的使用体验 | 免费不卡的大黄色大毛片视频在线观看 | 精品免费久久久久久久清纯| 少妇猛男粗大的猛烈进出视频 | 一个人观看的视频www高清免费观看| 欧美xxxx黑人xx丫x性爽| 成年人黄色毛片网站| 亚洲人成网站在线播| 波多野结衣巨乳人妻| 国产亚洲精品久久久久久毛片| 欧美日韩精品成人综合77777| 欧美精品国产亚洲| 夜夜爽天天搞| 在线看三级毛片| 国产精品野战在线观看| 成人特级黄色片久久久久久久| 亚洲精品成人久久久久久| 欧美在线一区亚洲| 99精品久久久久人妻精品| 99久国产av精品| 国内精品久久久久精免费| 国产免费男女视频| 欧美三级亚洲精品| 亚洲美女黄片视频| 日日撸夜夜添| 黄色视频,在线免费观看| 春色校园在线视频观看| xxxwww97欧美| 亚洲天堂国产精品一区在线| 亚洲午夜理论影院| 九九在线视频观看精品| 欧美日本亚洲视频在线播放| 十八禁网站免费在线| 成人无遮挡网站| 欧美日韩亚洲国产一区二区在线观看| 小蜜桃在线观看免费完整版高清| 老熟妇乱子伦视频在线观看| 成人毛片a级毛片在线播放| 3wmmmm亚洲av在线观看| 欧美性猛交黑人性爽| 久9热在线精品视频| 欧美成人免费av一区二区三区| 久久久久久久久中文| 亚洲,欧美,日韩| 成人特级黄色片久久久久久久| 深夜a级毛片| 国产91精品成人一区二区三区| 日本a在线网址| 18禁裸乳无遮挡免费网站照片| 亚洲男人的天堂狠狠| 久久精品国产99精品国产亚洲性色| 老师上课跳d突然被开到最大视频| 精品午夜福利视频在线观看一区| 中文在线观看免费www的网站| 国产精品1区2区在线观看.| 日韩欧美国产一区二区入口| 美女高潮喷水抽搐中文字幕| 岛国在线免费视频观看| 97超级碰碰碰精品色视频在线观看| 亚洲av中文字字幕乱码综合| 成人高潮视频无遮挡免费网站| 在线天堂最新版资源| 成人av一区二区三区在线看| 欧美日韩精品成人综合77777| 精品午夜福利在线看| 听说在线观看完整版免费高清| 国产成人影院久久av| 亚洲精品乱码久久久v下载方式| 在线播放无遮挡| 久久热精品热| 亚洲精品色激情综合| 久久天躁狠狠躁夜夜2o2o| 色av中文字幕| 国产精品一区二区三区四区免费观看 | 综合色av麻豆| 久久久色成人| 欧美高清性xxxxhd video| 久久精品国产亚洲av涩爱 | 男插女下体视频免费在线播放| 夜夜夜夜夜久久久久| 免费一级毛片在线播放高清视频| 在线天堂最新版资源| 久久精品夜夜夜夜夜久久蜜豆| 嫩草影院精品99| 成人性生交大片免费视频hd| 男女那种视频在线观看| 精品福利观看| www日本黄色视频网| 超碰av人人做人人爽久久| 国产美女午夜福利| 欧美最黄视频在线播放免费| 悠悠久久av| 久久精品国产清高在天天线| 国模一区二区三区四区视频| 欧美另类亚洲清纯唯美| 亚洲欧美日韩东京热| 亚洲精品一区av在线观看| www.色视频.com| 亚洲内射少妇av| 亚洲精品影视一区二区三区av| 黄色丝袜av网址大全| 在线天堂最新版资源| 亚洲精品色激情综合| 亚洲欧美日韩高清专用| 欧美一级a爱片免费观看看| 精品人妻偷拍中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 超碰av人人做人人爽久久| 夜夜夜夜夜久久久久| 国产大屁股一区二区在线视频| 天堂av国产一区二区熟女人妻| 波野结衣二区三区在线| 日本与韩国留学比较| 五月玫瑰六月丁香| 日本一二三区视频观看| 欧美国产日韩亚洲一区| 内射极品少妇av片p| 日本免费一区二区三区高清不卡| 国产 一区精品| 国产一区二区亚洲精品在线观看| 成年免费大片在线观看| 日韩精品中文字幕看吧| 久久婷婷人人爽人人干人人爱| 亚洲精品久久国产高清桃花| 国产aⅴ精品一区二区三区波| 免费av不卡在线播放| 国产不卡一卡二| 69av精品久久久久久| 内地一区二区视频在线| 亚洲精品一卡2卡三卡4卡5卡| 国产蜜桃级精品一区二区三区| 无遮挡黄片免费观看| 欧美精品国产亚洲| 午夜爱爱视频在线播放| 真人做人爱边吃奶动态| 久久精品人妻少妇| 免费看美女性在线毛片视频| 三级毛片av免费| 赤兔流量卡办理| 成人国产一区最新在线观看| 免费高清视频大片| 久久国内精品自在自线图片| 级片在线观看| 小说图片视频综合网站| avwww免费| 国产伦人伦偷精品视频| 国产日本99.免费观看| 欧美人与善性xxx| 美女大奶头视频| 99riav亚洲国产免费| 亚洲人成网站高清观看| 嫩草影视91久久| 超碰av人人做人人爽久久| 精品日产1卡2卡| 欧美日韩综合久久久久久 | 成人特级av手机在线观看| 麻豆av噜噜一区二区三区| 亚洲成av人片在线播放无| 久久人人精品亚洲av| 亚洲精华国产精华精| 国产在线精品亚洲第一网站| 国产亚洲精品久久久久久毛片| 亚洲av.av天堂| 亚洲欧美日韩高清专用| 中文字幕久久专区| 精品人妻偷拍中文字幕| 搡老妇女老女人老熟妇| 久久精品国产鲁丝片午夜精品 | 91在线精品国自产拍蜜月| 蜜桃久久精品国产亚洲av| 亚洲国产高清在线一区二区三| 琪琪午夜伦伦电影理论片6080| 国产视频内射| 国产乱人伦免费视频| 变态另类丝袜制服| 亚洲avbb在线观看| 三级国产精品欧美在线观看| 狂野欧美激情性xxxx在线观看| 精品无人区乱码1区二区| 成人高潮视频无遮挡免费网站| 色综合亚洲欧美另类图片| 久久国内精品自在自线图片| 麻豆一二三区av精品| 波多野结衣高清无吗| 制服丝袜大香蕉在线| 校园春色视频在线观看| 日本成人三级电影网站| 十八禁网站免费在线| 成人二区视频| 精品一区二区三区视频在线观看免费| 亚洲精品粉嫩美女一区| 欧美色欧美亚洲另类二区| 国产白丝娇喘喷水9色精品| 亚洲18禁久久av| 亚洲一区高清亚洲精品| h日本视频在线播放| 色综合站精品国产| 一卡2卡三卡四卡精品乱码亚洲| 精品不卡国产一区二区三区| 欧美一区二区国产精品久久精品| 如何舔出高潮| 少妇高潮的动态图| 久久这里只有精品中国| 久久久久九九精品影院| 精品国内亚洲2022精品成人| 男女啪啪激烈高潮av片| 免费大片18禁| 精品久久久久久成人av| 亚洲国产高清在线一区二区三| 日韩欧美免费精品| 欧美最黄视频在线播放免费| www日本黄色视频网| 99riav亚洲国产免费| 中国美白少妇内射xxxbb| 男女做爰动态图高潮gif福利片| 91午夜精品亚洲一区二区三区 | 最新在线观看一区二区三区| 精品不卡国产一区二区三区| 舔av片在线| 成人亚洲精品av一区二区| 熟女电影av网| 久久久久久国产a免费观看| 久久精品国产亚洲网站| 久久久久国产精品人妻aⅴ院| 亚洲av.av天堂| 国产成人aa在线观看| 天天一区二区日本电影三级| 色综合站精品国产| 国产高清三级在线| 久久精品国产自在天天线| av女优亚洲男人天堂| 亚洲无线观看免费| 日韩精品有码人妻一区| 一本一本综合久久| 亚洲国产精品合色在线| 久久久久久大精品| 久久久久精品国产欧美久久久| 亚洲av中文av极速乱 | 色综合婷婷激情| www.色视频.com| 亚洲欧美激情综合另类| 精品一区二区三区视频在线观看免费| 亚洲aⅴ乱码一区二区在线播放| 18+在线观看网站| 黄色女人牲交| 两人在一起打扑克的视频| 日本黄色视频三级网站网址| 欧美性感艳星| 精品人妻一区二区三区麻豆 | 亚洲av成人精品一区久久| 村上凉子中文字幕在线| 嫁个100分男人电影在线观看| 亚洲精华国产精华液的使用体验 | 精品午夜福利视频在线观看一区| 一进一出抽搐gif免费好疼| av视频在线观看入口| 国产精品电影一区二区三区| 久久婷婷人人爽人人干人人爱| 国产淫片久久久久久久久| 日韩国内少妇激情av| 国产精品日韩av在线免费观看| 精品久久久久久成人av| 亚洲熟妇熟女久久| 欧美中文日本在线观看视频| 国产高潮美女av| 色播亚洲综合网| 亚洲国产日韩欧美精品在线观看| 日日撸夜夜添| 干丝袜人妻中文字幕| 午夜免费成人在线视频| 国产人妻一区二区三区在| 精品人妻偷拍中文字幕| 亚洲成人久久爱视频| 日本黄大片高清| 亚洲五月天丁香| 成人欧美大片| 日韩中字成人| 久99久视频精品免费| 免费无遮挡裸体视频| 色综合站精品国产| av黄色大香蕉| 2021天堂中文幕一二区在线观| 色精品久久人妻99蜜桃| 亚洲国产日韩欧美精品在线观看| 久久中文看片网| 啦啦啦啦在线视频资源| 日本-黄色视频高清免费观看| 欧美日韩乱码在线| 国产探花在线观看一区二区| 久久99热这里只有精品18| 男人和女人高潮做爰伦理| 欧美+日韩+精品| 国产成人福利小说| 真实男女啪啪啪动态图| 精华霜和精华液先用哪个| 久久午夜亚洲精品久久| 欧美激情久久久久久爽电影| 琪琪午夜伦伦电影理论片6080| 别揉我奶头 嗯啊视频| av在线观看视频网站免费| 亚洲最大成人手机在线| 色综合色国产| 乱人视频在线观看| 淫妇啪啪啪对白视频| 精品国产三级普通话版| 18禁黄网站禁片午夜丰满| 国产视频一区二区在线看| 欧美日韩乱码在线| 欧美潮喷喷水| 亚洲综合色惰| 啦啦啦啦在线视频资源| 一进一出抽搐gif免费好疼| 嫩草影院入口| 人妻制服诱惑在线中文字幕| 日本爱情动作片www.在线观看 | 国产av麻豆久久久久久久| 欧美日韩精品成人综合77777| 久99久视频精品免费| 国产视频一区二区在线看| 最近中文字幕高清免费大全6 | av福利片在线观看| 99九九线精品视频在线观看视频| 亚洲欧美日韩高清在线视频| 国产一区二区在线观看日韩| 热99re8久久精品国产| 国产高潮美女av| 性插视频无遮挡在线免费观看| 一个人看视频在线观看www免费| 国产精品日韩av在线免费观看| 精品国内亚洲2022精品成人| 国产精品,欧美在线| 亚洲图色成人| 日本 av在线| 国产单亲对白刺激| 无遮挡黄片免费观看| 国产日本99.免费观看| 在线观看av片永久免费下载| 亚洲av免费高清在线观看| 夜夜看夜夜爽夜夜摸| 97热精品久久久久久| 国产黄片美女视频| 欧美激情在线99| 两性午夜刺激爽爽歪歪视频在线观看| 中文字幕熟女人妻在线| 啦啦啦韩国在线观看视频| 亚洲av免费在线观看| 婷婷丁香在线五月| 五月伊人婷婷丁香| 成年女人毛片免费观看观看9| 神马国产精品三级电影在线观看| 99精品久久久久人妻精品| 永久网站在线| 一本一本综合久久| 国产一级毛片七仙女欲春2| 嫩草影院入口| 国产精品乱码一区二三区的特点| 中文字幕熟女人妻在线| 欧美日本视频| 国产精品精品国产色婷婷| 在线播放无遮挡| 精品久久国产蜜桃| 精品国内亚洲2022精品成人| 国产一区二区激情短视频| 精品久久久久久久人妻蜜臀av| 深夜精品福利| 成人欧美大片| 欧美日韩中文字幕国产精品一区二区三区| 国产av麻豆久久久久久久| 亚洲最大成人av| 久久久久免费精品人妻一区二区| 少妇裸体淫交视频免费看高清| 欧美日韩瑟瑟在线播放| 国产精品久久久久久av不卡| 精品福利观看| 嫩草影院入口| av天堂中文字幕网| 一边摸一边抽搐一进一小说| 欧美最新免费一区二区三区| 最近最新免费中文字幕在线| 在线天堂最新版资源| 精品人妻熟女av久视频| 久久人人精品亚洲av| 99久久成人亚洲精品观看| 久久久久久久久久黄片| 大又大粗又爽又黄少妇毛片口| 99在线人妻在线中文字幕| 日日摸夜夜添夜夜添小说| 欧美一区二区国产精品久久精品| 国产在线男女| 99九九线精品视频在线观看视频| 国产精品99久久久久久久久| 一级毛片久久久久久久久女| 亚洲欧美日韩东京热| 少妇猛男粗大的猛烈进出视频 | 亚洲专区中文字幕在线|