• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced Film-Forming and Electrochromic Properties by lncorporating Bithiophene into Triphenylamine

    2013-07-25 09:09:36OUYANGMiFUZhiYanXiaoJingCHENHuanLeHUBinXIAXuFengZHANGCheng
    物理化學學報 2013年5期
    關鍵詞:物理化學學報

    OUYANG Mi FU Zhi-Yan Lü Xiao-Jing CHEN Huan-Le HU Bin XIAXu-Feng ZHANG Cheng

    (State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology,International Science&Technology Cooperation Base of Energy Materials and Application,College of Chemical Engineering and Materials Science,Zhejiang University of Technology,Hangzhou 310014,P.R.China)

    1 lntroduction

    Electrochromism is a phenomenon that optical changes occur in chemical materials by a reversible electrochemical process.1-3For electrochromic(EC)conjugated polymers(CPs),the electrochromism is related to the changing of band gaps during the doping-dedoping process.Thus,it is necessary to achieve different kinds of EC propertiesviaadjusting the electronic characters of thep-orbit along the neutral polymer backbone.4Electrochromic materials have been attracting much interest for several decades,as they have several important applications,such as energy-saving“smart”windows,5rear-view mirrors,6electrochromic displays,7and electronic paper or electrochromic painting.8At present,there is significant attention in the design of new EC materials combining polyelectrochromic property,high contrast ratio(a large change in percent transmittance between the colored and bleached states),and fast switching time.9In principles,high contrast ratio originates from significant changes of molecular planarity between two redox states.Thus by designing EC materials with twisted structure in neutral state and planiform structure in charged state,high contrast ratio in EC process would be realized.

    Triphenylamine(TPA)derivatives have played important roles in organic optoelectronic devices10,11and electrochromic applications during the past few decades due to their excellent charge transport properties,improved thermal and morphological stabilities.12,13TPA is a highly twisted molecule with twisted angle of 42°to 44°,while under charge state(TPA+),TPA trends to become planar and extends the electron delocalization,leading to obvious color change.In this context,the introduction of TPA and its derivatives to EC materials has become one of the important approaches to obtain high contrast ratio.Usually thepara-position of TPA needs to be protected by grafting electron-donating groups to prevent the oxidation coupling between electrogenerated radical cation of TPA to form tetraphenylbenzidine(TPB),14-17which is considered as an undesired side reaction in EC process as it might lead to irreversible defect after several redox switches.18Recently star-shaped molecule TTPA consisting of a TPA core substituted by thiophene functionalities was reported.19PTTPA as EC material exhibited reasonable electrochromic characters.However,optical contrasts and the switching time could not simultaneously achieve excellent level.Herein we would present a novel EC materialcontainingTPAcoreandperipheralbithiophene groups.

    In this study,a novel EC material(TBTPA)consisting of triphenylamine core and peripheral bithiophene groups was synthesized,and the corresponding polymer(PTBTPA)was prepared by electrochemically oxidative cross-linking.The electrochromic and spectroelectrochemical properties of PTBTPA were studied in detail.The differences of the spectroelectrochemical and electrochromic properties of PTBTPA and the reported PTTPAwere also discussed.

    2 Experimental

    2.1 Materials

    Triphenylamine(Aladdin,98%),thiophene(Aladdin,98%),Mg(Aladdin,99%),N-bromosuccinimide(NBS)(ENERGY CHEMICAL,98%),tetrabutylammonium perchlorate(TBAP)(ACROS,99%)were used without further purification.Tetrahydrofuran(THF)(Hangzhou Shuanglin Chemical Reagent Company),chromatography grade acetonitrile(ACN),dichloromethane(DCM)(Hangzhou Shuanglin Chemical Reagent Company)were distilled from CaH2and then stored over 4A molecular sieves.

    2.2 Equipments

    1H NMR spectra of synthesized products were recorded in CDCl3solution on a Bruker AVANCE III 500 MHz instrument(Bruker,Switzerland).The micro-Fourier-transform infrared(FTIR)spectra of monomers samples and the both polymer films samples at Neutral state peeled off from the indium tin oxide(ITO)electrode were pressed in a diamond cell and then examined between 4000 and 650 cm-1by a Nicolet 6700 FTIR(Thermo Fisher Nicolet,USA),equipped with a nitrogen cooled MCT/A detector and a continuum infrared-microscope.A CHI 660C electrochemical analyzer(CH Instruments,China)was applied to conduct the electrochemical measurements.UV-Vis spectra were recorded on a Shimadzu UV-1800 UVVis spectrophotometer(Shimadzu,Japan).The transmittance and absorbance spectra were recordedin situunder various applied potentials.All experiments were carried out at room temperature.SEM measurements were taken by using a Hitachi S-4800 scanning electron microscopy(Hitachi,Japan).Digital photographs of the polymer films were obtained through the Canon E0S 500D(Canon,Japan)digital camera.

    2.3 Synthesis

    The synthetic approach of both monomers was outlined in Scheme 1.

    2.3.1 tris[4-(2-thienyl)phenyl]amine

    The monomer of tris[4-(2-thienyl)phenyl]amine(TTPA)was synthesized according to the reported method by palladiumcatalyzed cross-coupling reactions oftris(4-bromophenyl)amine with Grignard thiophene in THF for 12 h.20Yield:78%.MS:m/z=491(M+).FTIR(KBr):1598,1533,1498,1431,1290,1274,1184,848,818,696 cm-1.1H NMR(CDCl3,500 MHz)δ:7.08(t,3H),7.14(d,6H),7.27(d,6H),7.54(d,6H).

    2.3.2 4,4′,4″-tris[4-(2-bithienyl)pheny]amine

    The monomerof4,4′,4″-tris[4-(2-bithienyl)pheny]amine(TBTPA)was synthesized from Grignard thiophene and tris(4-(2-bromothienyl)phenyl)amine which was obtained from bromination of PTBTPA.20Yield:70%.MS:m/z=737(M+).FTIR(KBr):1596,1518,1457,1322,1290,1182,833,796,639 cm-1.1H NMR(CDCl3,500 MHz)δ:7.04(dd,3H),7.17(m,9H),7.23(m,9H),7.52(d,6H).

    2.4 Electrochemistry

    The electropolymerization and measurements were performed in a conventional three-electrode cell with an ITO-coated glass(CSG holding Co.LTD,Rs≤10 Ω-1.the active area:1.0 cm×2.0 cm)as working electrode which was sequencely washed with ethanol,acetone and deionized water under ultrasonic before use,a platinum sheet and a double-junction Ag/AgCl electrode(silver wire coated with AgCl in saturated KCl solution,0.1 mol·L-1TBAP in DCM/ACN(7:3,by volume)solution as the second junction)were applied as the counter electrode and the reference electrode,respectively.All the electrochemistry experiments were carried out at room temperature under N2atmosphere.

    3 Results and discussion

    3.1 Electrochemical characterization and electropolymerization

    The redox behaviors of TTPA and TBTPA were investigatedviacyclic voltammetry(CV)in DCM/ACN(7:3,by volume)using 0.1 mol·L-1tetrabutylammonium perchlorate(TBAP)as supporting electrolyte with scan intervals 0 V/1.4 V and 0 V/1.2 V(vsAg/AgCl),respectively(Fig.1a).In the first CV cycle,TTPA showed a couple of quasi-reversible redox peaks with the oxidative onset potential at 0.92 V,oxidative peak at 1.12 V,and reductive peak at 0.91 V,respectively.By comparison,TBTPA exhibited a couple of reversible redox peaks with the oxidative onset potential at 0.87 V,oxidative peak at 0.99 V,and reductive peak at 0.88 V,respectively.TBTPA showed lower oxidative onset potential than TTPA due to the enhanced conjugated length by adding another thiophene unit.21TBTPA presented better redox reversibility compared with TTPA,which was benefit to the stability in EC process.On subsequent scans in the potential range from 0 to 1.4 V for TTPA and 0 to 1.2 V for TBTPA as shown in Fig.1b,the redox peak current increased in the successive cycles,indicating cross-linking between the thiophene units and the growth of the film on the electrode.After washed in ACN solution,the PTTPA and PTBTPA film exhibited yellow and orange color,respectively.It was worth mentioning that PTTPA film was automatically peeled off from electrode even in polymerization process,which revealed poor adhesion to electrode.This phenomenon was commonly observed in other TPA based EC materials.The reason could be concluded as the low cross-linking efficiency because the oxidative potential of TPA was lower than that of thiophene,resulting in coulometric wastage.By contrast,the adhesion of PTBTPA film to electrode was very better,and no films peeled off from electrode even under sonication.We pointed out that the contact of film and electrode was a basic requirement to achieve high EC performance,and PTBTPA film exhibiting stronger adhesion to electrode clearly satisfy it.

    Scheme 1 Synthetic route and chemical structures for monomers TTPAand TBTPA

    Fig.1 (a)The first CV cycles and(b)repeated cyclic voltammograms of 1.5 mmol·L-1TTPAand TBTPAon ITO electrode in 0.1 mol·L-1TBAPin DCM/ACN(7:3,by volume)at a scan rate of 100 mV·s-1

    The polymer films could be preparedviaconstant potentiostatic orviacyclic voltammetry,22And the films of PTTPA and PTBTPA were synthesizedviaconstant potential electrolysis on ITO electrode in DCM/ACN(7:3,by volume)containing 0.1 mol·L-1TBAP as supporting electrolyte and 1.5 mmol·L-1monomer.The redox behaviors of the films were carried out in DCM containing 0.1 mol·L-1TBAP,which were presented in Fig.2a.PTTPA film showed better reversibility than the precursor in solution with redox peaks at 0.91 and 1.07 V,respectively.By comparison,the PTBTPA film showed more polarized redox peaks at 0.87 and 1.07 V.This revealed that there were stronger interactions between electroactive groups(TPA,thiophene)and supporting electrolytes in PTBTPA film.The redox currents of PTTPA and PTBTPA films were correspondingly enhanced by the increase of scan rate(Fig.2b).Linear relationships between scan rates and current intensities indicated that all polymers were well adhered on ITO surface and the electrochemical processes were not limited by diffusion control.23,24

    3.2 Morphology

    The polymer films of PTTPA and PTBTPA were prepared through constant potential electrolysis in 0.1 mol·L-1TBAP/DCM containing relevant monomers on ITO electrodes.And the morphologies of the neutral PTTPA and PTBTPA films were investigated comparatively by SEM after dedoping at-0.2 V for 30 min in a precursor-free solution.

    Fig.2 (a)CV curves of PTTPAand PTBTPAfilms in 0.1 mol·L-1TBAPin DCM/ACN(7:3,by volume)at a scan rate of 100 mV·s-1,(b)scan rate dependence of PTTPAand PTBTPAfilms on ITO electrode in 0.1 mol·L-1TBAPin DCM/ACN(7:3,by volume)solution

    Fig.3 SEM images of(a)PTTPAfilm(1.40 V)and(b)PTBTPAfilm(1.20 V)

    As depicted in Fig.3,the surface of two polymer films showed an accumulation state of clusters of globules,and the approximate diameters of these globules were in the range of 500-1000 nm.But the diameter of PTBTPA(500 nm)was smaller than that of the PTTPA(1000 nm).The smaller size of globules of PTBTPA film could provide larger surface area and more contact interface for the insert/extract of charge carrier,which could offer the proof for the following enhanced electrochromic performance.

    3.3 Spectroelectrochemistry

    Spectroelectrochemical analyses of the resulted polymers were performed in order to investigate their optical and structural responses upon doping process,which proved the evolution of the charge carries in the structure.25,26The electrochromic absorption spectra were monitored by an UV-Vis spectrometer in DCM/ACN(7:3,by volume)containing 0.1 mol·L-1TBAP as supporting electrolyte at different applied potentials.

    As shown in Fig.4,TPA-based polymers displayed two transitions due to the TPA-thiophene hyperbranched structure.The largest energy transitions affected the colors of neutral films because the other transitions were not in the visible region dominantly.27PTTPA and PTBTPA films showed the relative maximum absorption peak located at about 440 and 470 nm due to theπ→π*electron transition.Correspondingly,they exhibited yellow and orange color in their neutral state,respectively.The absorption peak of films was red-shifted with the increasing number of peripheral thiophene groups.The reason was mainly attributed to the appearance of 2,2′-bithienyl which located at thepara-position of triphenylamine as donor group and possessed higher electron density and better conjugated characteristic.With the increasing of oxidative potential,formation of charge carriers such as polarons and bipolarons in the PTTPA and PTBTPA backbones caused new absorption bands in near infrared(NIR)while absorptions for the neutral states were decreasing.The new broad absorption tails for PTTPA and PTBTPA were located at around 680 and 720 nm,respectively.During the process,the PTTPA film showed the color changed from olivedrab to dimgry.On the other hand,the films of PTBTPA presented the color from olivegreen to dimgry(see Fig.4b).Moreover,PTBTPA exhibited better ratio of color change(44.7%,calculated by the change of maximum absorption intensity)than PTTPA(40.7%),which revealed the enhanced peripheral thiophene group benefited for the doping process and the ratio of color change.

    3.4 Kinetic studies

    Optical contrasts were monitored at the maximum absorption of PTTPA and PTBTPA in order to characterize their response times and switching abilities.The films of PTTPA and PTBTPA(coated on ITO electrode with the polymerization charge of 0.02 C)were carried out with a residence time of 3 s at visible region(680 and 720 nm).At NIR wavelength(1100 nm),both the polymer films were carried out with a residence time of 4 s.The switching time was defined as the time required for reach 95%of the full change in absorbance after the switching of the potential.

    Fig.4 Spectroelectrochemical spectra of PTTPAand PTBTPAfilms as applied potentials

    Fig.5 Electrochromic switching response for PTTPAfilm monitored at 680 and 1100 nm in 0.1 mol·L-1TBAPin DCM/ACN(7:3,by volume)solution between-0.2 and 1.3 V

    Fig.6 Electrochromic switching response for PTBTPAfilm monitored at 720 and 1100 nm in 0.1 mol·L-1TBAPin DCM/ACN(7:3,by volume)solution between-0.2 and 1.4 V

    PTTPA film was switched between-0.2 and 1.3 V.As depicted in Fig.5,the percentage transmittance changes(ΔT)between the neutral and oxidized states were 22%for 680 nm and 44%for 1100 nm.And the switching times were 0.96 s at 680 nm and 0.93 s at 1100 nm,respectively.While PTBTPA film was switched between-0.2 and 1.4 V(Fig.6).The percentage transmittance changes between the neutral and oxidized states were found to be 49%for 720 nm and 52%for 1100 nm.And the switching times were 0.93 s at 720 nm and 0.91 s at 1100 nm.These results showed that TBTPA could simultaneously achieve excellent level in optical contrasts and switching time.

    The coloration efficiency(CE)was also an important characteristic for the electrochromic materials.It was defined as the change in the optical density(ΔOD)for the charge consumed per unit electrode area(ΔQ).28The corresponding equations are given below:

    whereTbandTcwere the transmittances and colored states,respectively,andηrepresented the coloration efficiency.CE values of PTBTPA and PTTPA were measured at the corresponding wavelength under full doped state(PTTPA:108 cm2·C-1(680 nm),212 cm2·C-1(1100 nm);PTBTPA:198 cm2·C-1(720 nm),285 cm2·C-1(1100 nm)).Both of PTTPA and PTBTPA showed reasonable coloration efficiency.From the result of CE of the two polymers,PTBTPA showed higher coloration efficiency compared with PTTPA.

    The above results demonstrated PTBTPA film possessed higher optical contrast than PTTPA film which may be attributed to stronger adhesion to electrode,better doping/dedoping process and smaller globule morphology.The EC performance is acceptable in EC devices,indicating that PTBTPA had its potentials to an efficient EC material.

    4 Conclusions

    The EC material TBTPA was synthesized and characterized.TBTPA presented better redox reversibility,excellent filmforming property and strong adhesion to electrode relative to the reported TTPA,which satisfied the basic requirement to achieve high EC performance.Furthermore,compared to reported PTTPA,PTBTPA displayed the enhanced EC performance with better contrast ratio of 44.7%,percentage transmittance changes(ΔT)of 49%for 720 nm and 52%for 1100 nm and faster switching response of 0.93 s(720 nm)and 0.91 s(1100 nm).Meanwhile,PTBTPAhad higher coloration efficiency(198 cm2·C-1(720 nm),285 cm2·C-1(1100 nm)).Besides,SEM images illustrated that the surface of PTBTPA film showed an accumulation state of clusters of globules,which was smaller than that of PTTPA.The excellent performance indicated that PTBTPA had its potentials to be an efficient EC material.

    (1)Argun,A.A.;Aubert,P.H.;Thompson,B.C.;Schwendeman,I.;Gaupp,C.L.;Hwang,J.;Pinto,N.J.;Tanner,D.B.;MacDiarmid,A.G.;Reynolds,J.R.Chem.Mater.2004,16,4401.doi:10.1021/cm049669l

    (2)Verghese,M.M.;Ram,M.K.;Vardhan,H.;Malhotra,B.D.;Ashraf,S.M.Polymer1997,38,1625.doi:10.1016/S0032-3861(96)00655-6

    (3) Beaupré,S.;Dumas,J.;Leclerc,M.Chem.Mater.2006,18,4011.doi:10.1021/cm060407o

    (4) Quinto,M.;Bard,A.J.J.Electroanal.Chem.2001,498,67.doi:10.1016/S0022-0728(00)00266-7

    (5) Azens,A.;Granqvist,C.G.J.Solid State Electrochem.2003,7,64.

    (6) Heuer,H.W.;Wehrmann,R.;Kirchmeyer,S.Adv.Funct.Mater.2002,12,89.doi:10.1002/(ISSN)1616-3028

    (7) Mortimer,R.J.;Dyer,A.L.;Reynolds,J.R.Displays2006,27,2.doi:10.1016/j.displa.2005.03.003

    (8) Shah,J.;Brown,R.M.,Jr.Appl.Microbiol.Biotechnol.2005,66,352.doi:10.1007/s00253-004-1756-6

    (9) Sapp,A.S.;Sotzing,A.G.;Reynolds,J.R.Chem.Mater.1998,10,2101.doi:10.1021/cm9801237

    (10)Chu,Z.Z.;Wang,D.;Zhang,C.;Zou.D.C.Acta Phys.-Chim.Sin.2012,28(8),2000.[初增澤,王 丹,張 超,鄒德春.物理化學學報,2012,28(8),2000.]doi:10.3866/PKU.WHXB201206071

    (11) Pei,J.;Liang,M.;Chen,J.;Tao,Z.L.;Xu,W.Acta Phys.-Chem.Sin.2008,24(11),1950. [裴 娟,梁 茂,陳 軍,陶占良,許 煒.物理化學學報,2008,24(11),1950.]doi:10.1016/S1872-1508(08)60077-7

    (12) Hagberg,D.P.;Edvinsson,T.;Marinado,T.;Boschloo,G.;Hagfeldt,A.;Sun,L.C.Chem.Commun.2006,No.21,2245.

    (13) Karthikeyan,C.S.;Peter,K.;Wietasch,H.;Thelakkat,M.Sol.Energy Mater.Sol.Cells 2007,91,432.doi:10.1016/j.solmat.2006.10.006

    (14)Nelson,R.F.;Adams,R.N.J.Am.Chem.Soc.1968,90,3925.doi:10.1021/ja01017a004

    (15) Lapkowskia,M.;Golba,S.;Soloduchoc,J.;Idzikc,K.Synthetic Met.2009,159,2202.doi:10.1016/j.synthmet.2009.09.005

    (16)Zhang,C.;Wang,G.H.;Ouyang,M.J.Electroanal.Chem.2011,660,45.doi:10.1016/j.jelechem.2011.06.002

    (17) Idzika,K.;Soloducho,J.;Lapkowski,M.;Golba,S.;Electrochim.Acta2008,53,5665.doi:10.1016/j.electacta.2008.03.019

    (18) Chiu,K.Y.;Su,T.X.;Li,J.H.;Lin,T.H.;Liou,G.S.;Cheng,S.H.J.Electroanal.Chem.2005,575,95.doi:10.1016/j.jelechem.2004.09.005

    (19) Cheng,X.F.;Zhao,J.S.;Cui,C.S.;Fu,Y.Z.;Zhang,X.X.J.Electroanal.Chem.2012,677-680,24.

    (20) Cho,J.S.;Uchida,K.;Yoshioka,N.;Yamamoto,K.Sci.Technol.Adv.Mat.2004,5,697.doi:10.1016/j.stam.2004.03.006

    (21)Ouyang,M.;Wang,G.H.;Zhang,C.Electrochim.Acta2011,56,4645.doi:10.1016/j.electacta.2011.02.103

    (22) Gu,C.;Liu,H.;Hu,D.H.;Zhang,W.S.;Lv,Y.;Lu,P.;Lu,D.;Ma,Y.G.Macromol.Rapid Commun.2011,32,1014.doi:10.1002/marc.v32.13

    (23)Sonmez,G.;Schwendeman,I.;Schottland,P.;Zong,K.;Reynolds,J.R.Macromolecules2003,36,639.doi:10.1021/ma021108x

    (24)Gu,C.;Dong,W.Y.;Yao,L.;Lv,Y.;Zhang,Z.B.;Lu,D.;Ma,Y.G.Adv.Mater.2012,24,2413.doi:10.1002/adma.201200559

    (25)Sonmez,G.Chem.Commun.2005,No.42,5251.

    (26)Beyazyildirim,S.;Camurlu,P.;Yilmaz,D.;Gullu,M.;Toppare,L.J.Electroanal.Chem.2006,587,235.doi:10.1016/j.jelechem.2005.11.018

    (27)Akpinar,H.;Balan,A.;Baran,D.;ünver,E.K.;Toppare,L.Polymer2010,51,6123.doi:10.1016/j.polymer.2010.10.045

    (28)Deepa,M.;Awadhia,A.;Bhandari,S.Phys.Chem.Chem.Phys.2009,11,5674.

    猜你喜歡
    物理化學學報
    提高物理化學實驗技能的探討
    云南化工(2021年11期)2022-01-12 06:06:56
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    致敬學報40年
    Chemical Concepts from Density Functional Theory
    《物理化學學報》編輯委員會
    學報簡介
    學報簡介
    《深空探測學報》
    Effects of Experimental Conditions on The Morphology and Photocurrent Density of TiO2 Nanorods
    三级毛片av免费| 成年女人在线观看亚洲视频 | 国产成人91sexporn| 国产av码专区亚洲av| 久久久a久久爽久久v久久| 国产黄色视频一区二区在线观看| 2018国产大陆天天弄谢| av在线观看视频网站免费| 免费无遮挡裸体视频| 别揉我奶头 嗯啊视频| 老司机影院成人| 观看美女的网站| 国产精品人妻久久久影院| 日韩精品有码人妻一区| av播播在线观看一区| 夜夜看夜夜爽夜夜摸| 大香蕉久久网| 国产成人午夜福利电影在线观看| 直男gayav资源| 三级毛片av免费| 一级毛片我不卡| 亚洲av一区综合| 成人综合一区亚洲| 三级毛片av免费| 少妇熟女欧美另类| 国产乱来视频区| 最近的中文字幕免费完整| 亚洲国产精品成人久久小说| 欧美成人a在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲欧美日韩卡通动漫| 毛片女人毛片| 久99久视频精品免费| 男人爽女人下面视频在线观看| 2021少妇久久久久久久久久久| 插阴视频在线观看视频| 亚洲va在线va天堂va国产| 亚洲国产最新在线播放| 国产成人aa在线观看| 精品人妻熟女av久视频| 女人被狂操c到高潮| 女人被狂操c到高潮| 亚洲精品中文字幕在线视频 | 两个人视频免费观看高清| 欧美激情在线99| 在线观看免费高清a一片| 嫩草影院入口| 国产精品一区www在线观看| 精品久久久久久久久久久久久| 欧美不卡视频在线免费观看| 看非洲黑人一级黄片| 欧美日韩视频高清一区二区三区二| 在线免费观看不下载黄p国产| 精品国内亚洲2022精品成人| 麻豆久久精品国产亚洲av| 99久久中文字幕三级久久日本| 嫩草影院入口| 国产在线一区二区三区精| h日本视频在线播放| 亚洲精品成人久久久久久| 免费看美女性在线毛片视频| 欧美日韩亚洲高清精品| 成人亚洲精品一区在线观看 | 国产成人freesex在线| 亚洲乱码一区二区免费版| 男女国产视频网站| 一级av片app| 亚洲,欧美,日韩| 2021天堂中文幕一二区在线观| 丰满乱子伦码专区| 美女高潮的动态| 日日摸夜夜添夜夜添av毛片| 哪个播放器可以免费观看大片| 久久综合国产亚洲精品| 免费看av在线观看网站| 亚洲最大成人中文| 精品久久久久久久久亚洲| 午夜亚洲福利在线播放| av线在线观看网站| 国产免费福利视频在线观看| 久久久精品94久久精品| 非洲黑人性xxxx精品又粗又长| 国产一区有黄有色的免费视频 | 九九在线视频观看精品| .国产精品久久| www.av在线官网国产| 国产熟女欧美一区二区| 男女啪啪激烈高潮av片| 久久这里只有精品中国| xxx大片免费视频| 九色成人免费人妻av| 亚洲欧美一区二区三区黑人 | 久久精品国产亚洲av涩爱| 一个人看的www免费观看视频| 国产永久视频网站| 亚洲伊人久久精品综合| 校园人妻丝袜中文字幕| 成年人午夜在线观看视频 | 国产成人freesex在线| 婷婷色麻豆天堂久久| 国产成人免费观看mmmm| 女人十人毛片免费观看3o分钟| 女人十人毛片免费观看3o分钟| 国产精品久久久久久av不卡| 国产淫片久久久久久久久| 亚洲av不卡在线观看| 男人和女人高潮做爰伦理| 最近2019中文字幕mv第一页| 超碰av人人做人人爽久久| 亚洲av电影在线观看一区二区三区 | 国内精品宾馆在线| 97精品久久久久久久久久精品| 美女高潮的动态| 一级爰片在线观看| 少妇高潮的动态图| 国产欧美另类精品又又久久亚洲欧美| 一级黄片播放器| 在线播放无遮挡| 街头女战士在线观看网站| 青青草视频在线视频观看| 一级av片app| 黄色一级大片看看| 97超视频在线观看视频| 少妇人妻精品综合一区二区| 少妇熟女aⅴ在线视频| 少妇丰满av| 精品人妻熟女av久视频| 91精品一卡2卡3卡4卡| 亚洲欧美精品专区久久| 好男人视频免费观看在线| 成人亚洲精品av一区二区| 亚洲av二区三区四区| 亚洲av.av天堂| 国产亚洲精品久久久com| 青春草视频在线免费观看| 91久久精品电影网| 青青草视频在线视频观看| 亚洲一区高清亚洲精品| 最近中文字幕2019免费版| 免费不卡的大黄色大毛片视频在线观看 | 国产亚洲精品av在线| 日韩av在线免费看完整版不卡| 日韩强制内射视频| 99久国产av精品| 白带黄色成豆腐渣| 国产精品一及| 午夜爱爱视频在线播放| 国产精品一区二区三区四区免费观看| 日日撸夜夜添| 韩国av在线不卡| 不卡视频在线观看欧美| 亚洲18禁久久av| 亚洲欧美中文字幕日韩二区| 中国美白少妇内射xxxbb| eeuss影院久久| videossex国产| 国产日韩欧美在线精品| 国产 一区精品| 日韩av在线大香蕉| videos熟女内射| 纵有疾风起免费观看全集完整版 | 乱码一卡2卡4卡精品| 国产成人精品久久久久久| 精品久久国产蜜桃| 超碰97精品在线观看| 人人妻人人澡人人爽人人夜夜 | 中文字幕免费在线视频6| 国产老妇女一区| 又粗又硬又长又爽又黄的视频| 一级黄片播放器| 黄色配什么色好看| 最近最新中文字幕免费大全7| 简卡轻食公司| 亚洲av二区三区四区| 亚洲18禁久久av| 日韩一区二区三区影片| 你懂的网址亚洲精品在线观看| 少妇的逼好多水| 欧美丝袜亚洲另类| 欧美最新免费一区二区三区| 有码 亚洲区| 一级av片app| 亚洲成人av在线免费| 国产精品一区二区三区四区久久| 免费看日本二区| 你懂的网址亚洲精品在线观看| 亚洲国产欧美人成| 久久草成人影院| 精品不卡国产一区二区三区| 亚洲国产av新网站| 69人妻影院| 亚洲成人精品中文字幕电影| 爱豆传媒免费全集在线观看| 丰满少妇做爰视频| 久热久热在线精品观看| 国产亚洲精品av在线| 日产精品乱码卡一卡2卡三| 日本爱情动作片www.在线观看| 成人亚洲精品av一区二区| 天天一区二区日本电影三级| 国产午夜精品久久久久久一区二区三区| 久久久久精品久久久久真实原创| 少妇的逼好多水| 国产成人a∨麻豆精品| 亚洲av免费高清在线观看| 极品教师在线视频| 看黄色毛片网站| 人人妻人人澡人人爽人人夜夜 | 一级毛片 在线播放| 啦啦啦中文免费视频观看日本| 免费黄色在线免费观看| 亚洲在线自拍视频| 国产精品.久久久| 婷婷色麻豆天堂久久| 有码 亚洲区| 在线免费十八禁| 熟妇人妻久久中文字幕3abv| 日本猛色少妇xxxxx猛交久久| 免费看日本二区| 日本免费在线观看一区| 日韩成人av中文字幕在线观看| 国产乱人偷精品视频| 午夜日本视频在线| 97热精品久久久久久| 午夜免费男女啪啪视频观看| 日韩制服骚丝袜av| 亚洲成人一二三区av| 免费观看av网站的网址| 观看美女的网站| 又黄又爽又刺激的免费视频.| 蜜臀久久99精品久久宅男| 美女内射精品一级片tv| 欧美+日韩+精品| 丰满人妻一区二区三区视频av| 日韩一区二区三区影片| 亚洲精品aⅴ在线观看| 日韩成人av中文字幕在线观看| 99热这里只有是精品50| av免费观看日本| 久久久色成人| 欧美不卡视频在线免费观看| 一级二级三级毛片免费看| 免费黄频网站在线观看国产| 又大又黄又爽视频免费| 国产亚洲一区二区精品| 亚洲第一区二区三区不卡| 在线观看美女被高潮喷水网站| av在线老鸭窝| 亚洲欧洲国产日韩| 久久精品久久久久久久性| 国产老妇女一区| 久久久精品欧美日韩精品| 国产乱人偷精品视频| 2022亚洲国产成人精品| 国产精品嫩草影院av在线观看| 久久精品国产亚洲av涩爱| 午夜激情久久久久久久| 久久精品国产亚洲av天美| 国产乱人视频| 国精品久久久久久国模美| 国产色婷婷99| 热99在线观看视频| 久热久热在线精品观看| 国产亚洲5aaaaa淫片| 婷婷色综合www| 国产探花极品一区二区| 国国产精品蜜臀av免费| 丝袜喷水一区| 亚洲怡红院男人天堂| 久久久久性生活片| 精品久久久久久久末码| 少妇熟女aⅴ在线视频| 亚洲国产欧美人成| 黄色欧美视频在线观看| 久久久久久久久大av| 一级av片app| 成人毛片a级毛片在线播放| 嫩草影院入口| 国产精品一区二区三区四区免费观看| 免费看美女性在线毛片视频| 午夜免费男女啪啪视频观看| 国产精品一及| 三级国产精品片| 一个人看视频在线观看www免费| 黄色欧美视频在线观看| 中文字幕亚洲精品专区| 久久精品久久久久久久性| 婷婷色av中文字幕| 99久国产av精品| 观看免费一级毛片| 久久精品熟女亚洲av麻豆精品 | 国产高清三级在线| 免费av观看视频| 国产欧美日韩精品一区二区| 欧美一级a爱片免费观看看| 久久久精品免费免费高清| av黄色大香蕉| 久久这里有精品视频免费| 色5月婷婷丁香| 亚洲在久久综合| 国产成人freesex在线| 欧美xxⅹ黑人| 国产 一区精品| 亚洲18禁久久av| 听说在线观看完整版免费高清| 一夜夜www| 欧美高清性xxxxhd video| 日日啪夜夜撸| 在线免费观看不下载黄p国产| 亚洲欧美一区二区三区黑人 | 全区人妻精品视频| 少妇猛男粗大的猛烈进出视频 | 国产 一区精品| 一级黄片播放器| 永久免费av网站大全| 国语对白做爰xxxⅹ性视频网站| 黄色配什么色好看| 久久97久久精品| 中国美白少妇内射xxxbb| 一级a做视频免费观看| 日本一本二区三区精品| 久久久久久伊人网av| 午夜福利成人在线免费观看| av国产免费在线观看| 韩国av在线不卡| 22中文网久久字幕| 亚洲欧美中文字幕日韩二区| 边亲边吃奶的免费视频| 精品欧美国产一区二区三| 国产熟女欧美一区二区| 最近手机中文字幕大全| 熟女电影av网| 性色avwww在线观看| 色综合色国产| 国产免费视频播放在线视频 | 美女cb高潮喷水在线观看| 女人久久www免费人成看片| 日本免费a在线| 亚洲精华国产精华液的使用体验| 男女边吃奶边做爰视频| 国产伦精品一区二区三区四那| 亚州av有码| 尤物成人国产欧美一区二区三区| 精品人妻视频免费看| 大香蕉97超碰在线| 91狼人影院| 国产成人精品婷婷| 九九爱精品视频在线观看| 神马国产精品三级电影在线观看| 一个人观看的视频www高清免费观看| 亚洲av成人精品一区久久| 国产三级在线视频| 天天躁日日操中文字幕| 亚洲三级黄色毛片| 在线观看一区二区三区| 在线 av 中文字幕| 少妇高潮的动态图| 国国产精品蜜臀av免费| 丝瓜视频免费看黄片| 午夜日本视频在线| 久久久久九九精品影院| 国产视频内射| 国产午夜福利久久久久久| 亚洲精品久久午夜乱码| 成人美女网站在线观看视频| 街头女战士在线观看网站| 久久97久久精品| 97精品久久久久久久久久精品| 亚洲人成网站在线观看播放| 天天躁夜夜躁狠狠久久av| 免费不卡的大黄色大毛片视频在线观看 | 久久久精品欧美日韩精品| 水蜜桃什么品种好| 啦啦啦韩国在线观看视频| 日本黄大片高清| 久久99热这里只有精品18| 欧美性猛交╳xxx乱大交人| 国产精品美女特级片免费视频播放器| 99热这里只有精品一区| 色5月婷婷丁香| 亚洲欧美日韩无卡精品| 国产亚洲午夜精品一区二区久久 | xxx大片免费视频| 男女视频在线观看网站免费| 国产亚洲一区二区精品| 成人一区二区视频在线观看| 伦理电影大哥的女人| 免费看a级黄色片| 一二三四中文在线观看免费高清| 成人欧美大片| 久久久久久久久大av| 人妻系列 视频| 熟女电影av网| 亚洲欧美日韩卡通动漫| 国产精品不卡视频一区二区| 免费不卡的大黄色大毛片视频在线观看 | 国产精品99久久久久久久久| 91在线精品国自产拍蜜月| 久久鲁丝午夜福利片| 久久6这里有精品| 日韩,欧美,国产一区二区三区| 日韩成人av中文字幕在线观看| 99re6热这里在线精品视频| 午夜亚洲福利在线播放| 伊人久久精品亚洲午夜| 国产精品久久久久久av不卡| 在线天堂最新版资源| 日本一二三区视频观看| 国产精品福利在线免费观看| 亚洲成人一二三区av| 亚洲精品日韩av片在线观看| 成年av动漫网址| 婷婷六月久久综合丁香| 观看免费一级毛片| 精品久久久久久久久av| 欧美高清成人免费视频www| 国产精品精品国产色婷婷| 伦精品一区二区三区| 69人妻影院| 国产精品一区二区三区四区免费观看| 欧美xxxx黑人xx丫x性爽| 大陆偷拍与自拍| 一本久久精品| 亚洲成人av在线免费| 亚洲精品国产av成人精品| 国产成人精品久久久久久| 亚洲欧美中文字幕日韩二区| 男女啪啪激烈高潮av片| 成人鲁丝片一二三区免费| 欧美日韩精品成人综合77777| 亚洲久久久久久中文字幕| 亚洲伊人久久精品综合| 夜夜爽夜夜爽视频| 国产一区二区亚洲精品在线观看| 天堂影院成人在线观看| 国产精品福利在线免费观看| 日本一二三区视频观看| 成人高潮视频无遮挡免费网站| 亚洲国产欧美人成| 又黄又爽又刺激的免费视频.| 国产精品av视频在线免费观看| 熟女人妻精品中文字幕| 在线天堂最新版资源| 久久6这里有精品| 亚洲人成网站高清观看| 久久久午夜欧美精品| 丝袜美腿在线中文| 国产色爽女视频免费观看| 97人妻精品一区二区三区麻豆| 日本欧美国产在线视频| 国内精品一区二区在线观看| 国产成人福利小说| 一级av片app| 中文天堂在线官网| 国模一区二区三区四区视频| 日日摸夜夜添夜夜添av毛片| 日本猛色少妇xxxxx猛交久久| 久久久久久久亚洲中文字幕| 在线观看一区二区三区| 中文在线观看免费www的网站| 亚洲熟妇中文字幕五十中出| 午夜免费男女啪啪视频观看| av在线播放精品| 亚洲人成网站高清观看| 有码 亚洲区| 国产亚洲精品av在线| 日日干狠狠操夜夜爽| 欧美日韩综合久久久久久| 好男人在线观看高清免费视频| 久久精品人妻少妇| 极品教师在线视频| 丰满人妻一区二区三区视频av| 久久精品熟女亚洲av麻豆精品 | 老女人水多毛片| 国产av不卡久久| kizo精华| 毛片一级片免费看久久久久| 成年女人看的毛片在线观看| 少妇熟女欧美另类| 久久精品夜夜夜夜夜久久蜜豆| 极品少妇高潮喷水抽搐| 2018国产大陆天天弄谢| 熟妇人妻久久中文字幕3abv| 一区二区三区乱码不卡18| 肉色欧美久久久久久久蜜桃 | 啦啦啦韩国在线观看视频| 国产成年人精品一区二区| 国产精品久久久久久久久免| 老司机影院毛片| 97在线视频观看| 亚洲国产成人一精品久久久| 大话2 男鬼变身卡| 综合色av麻豆| 18禁裸乳无遮挡免费网站照片| 在线观看人妻少妇| 国产精品一区二区性色av| 精品午夜福利在线看| 欧美xxxx性猛交bbbb| 天天一区二区日本电影三级| 亚洲一级一片aⅴ在线观看| 乱系列少妇在线播放| 日日摸夜夜添夜夜添av毛片| 久久精品国产自在天天线| 最近手机中文字幕大全| 国产午夜精品一二区理论片| 亚洲精品成人久久久久久| 亚洲最大成人手机在线| 日日摸夜夜添夜夜添av毛片| 美女国产视频在线观看| 午夜激情福利司机影院| 欧美不卡视频在线免费观看| 高清av免费在线| 中文字幕制服av| 国产极品天堂在线| 97精品久久久久久久久久精品| 国产永久视频网站| 亚洲成人久久爱视频| 国产精品综合久久久久久久免费| 精品一区二区三区视频在线| 边亲边吃奶的免费视频| 国产片特级美女逼逼视频| 国产精品一区二区性色av| 久久久久网色| 免费观看av网站的网址| 91久久精品国产一区二区成人| 久久久久国产网址| 99九九线精品视频在线观看视频| 80岁老熟妇乱子伦牲交| 男女边吃奶边做爰视频| 中文字幕av在线有码专区| 亚洲欧洲日产国产| a级一级毛片免费在线观看| 黑人高潮一二区| 最近最新中文字幕大全电影3| 国产精品久久久久久精品电影| 国产单亲对白刺激| 国产极品天堂在线| 国产美女午夜福利| 高清午夜精品一区二区三区| 亚洲精品影视一区二区三区av| 成年版毛片免费区| 国产av国产精品国产| 女人久久www免费人成看片| 国产成人a∨麻豆精品| 夫妻性生交免费视频一级片| 久久午夜福利片| 一级毛片黄色毛片免费观看视频| 午夜精品在线福利| 国产永久视频网站| 亚洲一区高清亚洲精品| 国产欧美另类精品又又久久亚洲欧美| 搞女人的毛片| 亚洲四区av| av免费观看日本| 精品国内亚洲2022精品成人| 亚洲国产精品成人综合色| 国产永久视频网站| 国产在线一区二区三区精| 亚洲最大成人av| 精品国产露脸久久av麻豆 | 黄色日韩在线| 亚洲精品第二区| 国产成人免费观看mmmm| 国产伦一二天堂av在线观看| 久久国内精品自在自线图片| 日韩欧美精品v在线| 精品久久久噜噜| 亚洲欧美日韩卡通动漫| 国产乱人视频| 精品人妻一区二区三区麻豆| 欧美一区二区亚洲| 亚洲av日韩在线播放| 午夜福利成人在线免费观看| 国产精品日韩av在线免费观看| 波野结衣二区三区在线| 久久人人爽人人片av| 免费电影在线观看免费观看| 久久精品国产亚洲av涩爱| 国产片特级美女逼逼视频| 热99在线观看视频| 亚洲欧美成人精品一区二区| 亚洲欧美清纯卡通| 国产 一区精品| 日韩一区二区视频免费看| 少妇猛男粗大的猛烈进出视频 | 高清毛片免费看| 搡老乐熟女国产| 国产有黄有色有爽视频| 99久国产av精品| 久久久久久国产a免费观看| 久久久久久久久久人人人人人人| 国产乱来视频区| 国产精品一区二区三区四区久久| 欧美不卡视频在线免费观看| 99热全是精品| 国产欧美另类精品又又久久亚洲欧美| 看免费成人av毛片| 非洲黑人性xxxx精品又粗又长| 国产精品国产三级国产av玫瑰| 亚洲欧美日韩东京热| 久久久久精品性色| 国产成人91sexporn| 搞女人的毛片| 国产精品美女特级片免费视频播放器| 久久久久久久久大av| 18+在线观看网站| 国内精品宾馆在线| 久久精品夜夜夜夜夜久久蜜豆| 欧美日本视频| 国产精品嫩草影院av在线观看| 草草在线视频免费看| 欧美+日韩+精品| 国产美女午夜福利| 97超视频在线观看视频| 色综合色国产|