• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural,Elastic,Electronic and Optical Properties of Zinc-Blende MTe(M=Zn/Mg)

    2013-07-25 09:09:58GUOLeiHUGeFENGWenJiangZHANGShengTao
    物理化學(xué)學(xué)報(bào) 2013年5期
    關(guān)鍵詞:德林海濱物理化學(xué)

    GUO Lei HU Ge,* FENG Wen-Jiang ZHANG Sheng-Tao

    (1School of Chemistry and Chemical Engineering,Chongqing University,Chongqing 400044,P.R.China;2College of Physics Science and Technology,Shenyang Normal University,Shenyang 110034,P.R.China)

    1 lntroduction

    In the last few decades,II-VI ground semiconductors(MX;M=Be,Mg,Ca,Ba,Zn,Cd,Hg,X=O,S,Se,Te)have attracted both scientific and technological interest due to their good chemical and physical properties,technological applications in fabricating light-emitting devices.1The devices are used in rectifiers,transparent conductors,optical switching,solar cells,visible-light detectors,solid-state laser devices,etc.2,3Complex quantum structures such as quantum wires and wells,self organised quantum dots,laser structures,and microcavities are grown using II-VI materials(ZnTe,CdTe,and MgTe).4

    In recent years numerical simulations,and increasing computational power of the computer have made it possible to predict properties of solids under experimental conditions with great accuracy.The electronic band structures of ZnTe and BeTe have been investigated by Joshiet al.5using empirical pseudo-potential method.A three-body potential(Tersoff potential)coupled with a molecular-dynamics(MD)method have been used to calculate structural and thermodynamic properties of ZnTe in zinc-blende(B3)phase.6Duanet al.7calculated the electronic band structures of zinc-blende ZnTe and CdTe applying a self-consistent full-potential linearized augmented planewave(FP-LAPW)method.Khenataet al.8have used the local density approximation(LDA)within the FP-LAPW+lo method to study the structural,electronic and optical properties of ZnX(X=S/Se/Te)in B3 structure.Experimental structural studies on MgTe are less frequently reported mainly because of its high hygroscopicity.However,there were a large amount of reports on the studies of structural properties and possible phase transitions under pressure for MgTe9-11and ZnTe3,12,13.For ZnTe the structural sequence under pressure is B3→cinnabar→Cmcm.Cocoletzi's results9show that generalized gradient approximation(GGA)calculations predict the ground state phase:wurtzite/B3 for MgTe.Gko?luet al.14investigated the structural stability of three magnesium chalcogenides using projector augmented waves(PAW)potentials.They found that zincblende and wurtzite structures have similar energetics for MgTe using both LDAandGGAfunctionals.

    With the development of functional,DFT15leads to more and more accurate results from the initial LDA,GGAto hybridization functional.Further,different computation methods can result in tiny differences.In this work,we performab initiocalculations for binary compounds MgTe and ZnTe in B3 structure by using a pseudopotential plane wave(PP-PW)method.Our main aim is to present a systematic and complementary investigation on the structural stabilities,elastic,electronic,and optical properties.The lattice parameters,band-gap energies,density of states(DOS),elastic and dielectric constants are theoretically reported.Comparisons have been made wherever possible with the experimental and previously reported theoretical data.

    2 Computational methods

    The first-principles calculations were performed within DFT,as implemented in the CASTEP16package.The exchange-correlation function was described in GGA with Perdew-Burke-Ernzerhof parameterization method.17We used the ultrasoft vanderbilt pseudopotential18to describe the electron-ion interaction.The Mg(2p63s2),Te(5s25p4),and Zn(3d104s2)electrons were treated as valence electrons.The plane-wave basis set cut-off was 380 eV for all cases.The special point sampling integration over the Brillouin zone was employed by using the Monkhorst-Pack method with varied specialk-point mesh.19The tolerances for geometry optimization were set as the difference in total energy within 5.0×10-6eV·atom-1,the maximum ionic Hellmann-Feynman force within 0.1 eV·nm-1,the maximum ionic displacement within 5.0×10-5nm,and the maximum stress within 0.02 GPa.

    Considering the usual underestimation of energy gaps within the GGA/LDA approximation which is known to result from the discontinuity of the exchange-correlation energy,screened exchange LDA(sX-LDA)20and the hybrid density functional B3LYP21were also applied here to obtain more reliable electronic properties,which are computationally much less demanding than using the GW quasiparticle method.

    Elastic constants were calculated for cubic lattice structures.In this work,the volume contribution to total energy can be eliminated using volume conserving strains.For both structures,we carried out calculations for strains in the range of-0.003 to 0.003 with the step of 0.0012 for each distortion.The systems were fully relaxed after each distortion in order to reach the equilibrium state with approximately zero forces on all atoms.22Here,the second-order elastic constants were determined by the analysis of change in calculated stress values resulting from change in the strain.

    Optical properties of a solid may be determined using the complex dielectric functionε(ω)=ε1(ω)+iε2(ω),which is mainly connected with the electronic structures.23The imaginary part of the dielectric functionε2(ω)was calculated from the momentum matrix elements between the occupied and unoccupied wave functions24as follows:

    whereeis the electron charge,mis the electron mass,Vis the unit cell volume,ωis the photon frequency,is the momentum operator,ωis the energy of the incident phonon,andare the conduction band(CB)and valence band(VB)wave functions corresponding to thenth andn′th eigenvalue with crystal momentum,andis the Fermi distribution func-tion.The real part of the dielectric functionε1(ω)can be attracted fromε2(ω)by using the Kramers-Kronig relationship:25

    Fig.1 Zinc-blend conventional unit cells of bulk MTe(M=Mg/Zn)

    wherepis the principal value of the integral.The knowledge of both the real and imaginary parts of the dielectric function allows the calculation of important optical functions such as the refractive indexn(ω),normal-incidence reflectivityR(ω),and energy-loss spectrumL(ω):

    3 Results and discussion

    3.1 Structural properties

    Firstly,the total energies of MTe(M=Zn/Mg)with a set of volumes were calculated.Then the lattice constantsa0,bulk modulusBand its derivativeB'were obtained by fitting the entire energyversusvolume according to the Birch-Murnaghan equation of states(EOS),26and were summarized in Table 1,together with previous data.3,4,13,14,27,28

    The calculated structural parameters are 0.618 and 0.652 nm for ZnTe and MgTe,respectively,it can be clearly seen that they are slightly beyond the experimental values.This overestimation of the lattice constants based on the GGAmethod is reasonable.The small discrepancies compared to other theoretical results may be explained by using different approximations in the density functional methods.In Table 1,the calculated bulk modulus is 49.7 and 34.3 GPa for ZnTe and MgTe,the corresponding compressibility is 0.02 and 0.03,respectively.This result confirms the validity of the empirical relation proposed by Cohen,29B=1761d-3.5(wheredis the nearest-neighbor distance in angstroms).

    To investigate the phase stability,the enthalpy of formation(ΔfH)of MTe compounds was calculated by using the following expressions:30

    Table 1 Calculated lattice constant(a0),bulk modulus(B),and pressure derivative(B′)at equilibrium volume in B3 structure for MTe(M=Zn/Mg)compounds compared with previous results

    We calculate the ΔfHand obtain the results of-6.65 and-5.81 eV for MgTe and ZnTe,respectively.The fact that all enthalpy of formation are negative means that the structure,of both compounds can exist and should be stable.Generally speaking,larger ΔfHvalue provides lower thermodynamic stability.Grounded on these calculated values,we conclude that MgTe phase is more stable than ZnTe due to the smaller ΔfHin the ground state.

    3.2 Elastic properties

    The elastic constants are fundamental and indispensable parameters that describe the response to an applied macroscopic stress and especially important as they are related to various physical properties,such as the elasticity,mechanical stability and stiffness of materials.

    For cubic crystals,there are three independent elastic constants(C11,C12,andC44)and the traditional mechanical stability conditions areC11-C12>0,C11>0,C44>0,C11+2C12>0,C12<B<C11.For MTe(M=Zn/Mg)compounds,the present elastic constants in Table 2 satisfy these stability criterions,indicating that they are mechanically stable.

    The Poisson's ratiov,Zener anisotropy factorA,and Young's modulusE,which are the most interesting elastic properties for applications,are often measured for polycrystalline materials when investigating their hardness.These quantities are calculated in term of the computed data using the following relations:

    whereB=(C11+2C12)/3,is bulk modulus,andG=(GR+GV)/2,is the isotropic shear modulus,GRis the Reuss's shear modulus corresponding to the lower bound ofGvalues,andGVis the Voigt's shear modulus corresponding to the upper bound ofGvalues;they can be written as:GV=(C11-C12+3C44)/5,5/GR=4/(C11-C12)+3/C44.

    The Kleinman parameterξdescribes the relative positions of the cation and anion sublattices under volume conserving strain distortions for which positions are not fixed by symmetry.It is known that a low value ofξimplies the existence of a large resistance against bond bending or bond-angle distortion andvice versa.31This parameter can be written as:

    The calculated elastic constants,B,A,v,E,G,andξ,based on the above expressions,for MTe are found to be in reason-able order and given in Table 2.Also are shown for comparison the available experimental32and theoretical8data from the literature.Contrast Table 1 with Table 2,the bulk modulus from the total energy minimization and elastic constants have nearly the same value.This may be an estimate of the reliability and accuracy of our calculated elastic constants.Form Table 2,it is obvious to observe a light difference between our results and those found recently.It results from the different input data and calculated methods which have been used.We can see that theAvalues are greater than 1.0 and we cannot regard MgTe and ZnTe as elastically isotropic.Push33introduced the ratio of the bulk modulus to shear modulus(B/G)of polycrystalline phases as prediction of the brittleness and ductile behavior of materials.A high(low)B/Gvalue is associated with ductility(brittleness).The critical value which separates ductility from brittleness is about 1.75.It can be seen that both compounds are not brittle materials.According to the Young's modulusE,MgTe has a better plasticity than ZnTe,but the latter is stiffer than the former.νprovides the information about the characteristic of the bonding forces.The calculatedνfor ZnTe is very close to 0.25,which means that this material is with predominantly central inter-atomic forces.34

    Table 2 Calculated bulk modulus(B),elastic constants(Cij),shear modulus(G),Young's modulus(E),B/G,Zener anisotropy factor(A),Poisson's ratio(ν),and Kleinman parameter(ξ)for MTe(Te=Zn/Mg)

    The Debye temperature(ΘD)is known to be an important fundamental parameter closely related to many physical properties,and is used to distinguish between high-and low-temperature regions for a solid.IfT>ΘDwe expect all modes to have energykBT,and ifT<ΘDone expects high-frequency modes to be frozen.35Hence,at low temperatures the Debye temperature calculated from elastic constants is the same as that determined from specific heat measurements.We have estimated theΘDusing the calculated elastic constant data,sinceΘDis proportional to the sound velocity(averaged)νmby the equation36

    wherehis Planck's constant,kBis Boltzmann's constant,NAis Avogadro's number,nis the number of atoms per formula unit,Mis the molecular mass per formula unit,ρis the density,andνmis approximately given by

    whereνtandνlare the transverse and longitudinal elastic wave velocities,respectively,which are obtained from the Navier's equation37

    The present Debye temperatures computed for ZnTe and MgTe are 758 and 585 K,respectively.The Debye temperature defines a division line between quantum mechanical and classical behaviour of phonons.In the absence of any available measured data in the literature,they could not be compared.Future experimental work will testify our calculated results.ΘDcan be used to describe the strength of the covalent bond in solid.Thus,the covalent interaction in ZnTe could be stronger.

    3.3 Electronic and bonding properties

    Fig.2 Electronic band structures of the ZnTe(a)and MgTe(b)compounds from GGAcalculations

    Fig.2(a,b)shows the calculated electronic band structures along the high symmetry points in the Brillouin zone(BZ)for ZnTe and MgTe.Basically,the energy structure of crystals depends on the interactions between orbitals in the lattice.In both cases,the maximum valance band and minimum conduction band occur at theGpoint.The existence of a gap at Fermi level confirms the semiconductor character and indicates the respective presence of conducting features.The calculated band structure profiles for MTe(M=Mg/Zn)were similar except for the values of their band gaps.At the bottom,there are Tesbands exhibiting a weak dispersion.For ZnTe,a group of bands above thesband is composed of five Zndbands.Thesedbands are very narrow and show very little dispersion.The finite bandwidth results from thep-dhybridization with the Tepbands.38The bandwidth(i.e.,splitting)of Zn 3dlevels atGis 0.21 eV.Thisp-dcoupling exists,because in tetrahedral coordinated compounds(withTdsite symmetry)both the anionpand the cationdorbitals have the same representation atG.39These two equal-symmetry states can thus interact with each other,leading to consequent dramatic consequences(i)lower the band gaps,(ii)reduce the cohesive energy,(iii)increase the equilibrium lattice parameters and also have an influence on other features.

    In Table 3,calculated direct and indirect band-gaps of MTe together with a few experimental40,41and published results3,42are summarized.The calculated minimum band gaps by GGA deviatefromtheexperimentalvalueswithin-51.7%and-34.0%for ZnTe and MgTe,respectively.However,they are in good agreement with other theoretical results.This underestimation of the band gaps is mainly due to the fact that the simple form of GGA neglects the quasiparticle self-energy which makes it not sufficiently flexible to accurately reproduce both exchange correlation energy and its charge derivative.43According to the data in the Table 3,the simulation results show that the B3LYP results are closer to the experimental data,and this method is more reasonable and precise than that of sX-LDAalgorithm.

    In order to elucidate the major contribution of orbital in the band structure,the total and partial density of states(TDOS,PDOS)of these two compounds are calculated and shown in Fig.3.Likewise,a band gap at the Fermi level can be observed for the two crystals.The large peaks in the calculated TDOS from-7.0 to-6.0 eV for ZnTe and-42.6 to-41.6 eV for MgTe are mainly driven from Zn 3dand Mg 2porbitals,respectively.Additionally,the calculated PDOS of both ZnTe and MgTe crystals indicates that 5sand 5porbitals of Te are in low-lying states.Specially,a strong hybridization can be observed for ZnTe in the energy range between-7.0 and-6.0 eV due to an overlap with 3dorbital of Zn,which confirms the energy band structure analysis.The PDOS in Fig.3(a)indicate that conduction band minimum of ZnTe originate mainly from the cooperative contributions of Zn 4sand Te 5porbitals.For MgTe,the lower part of the valence bands is dominated by Te 5sstate,and upper part by Te 5p,Mg 3p,and Mg 3sstates.The first conduction band of MgTe consists mainly of Mg 3sand Mg 3pstates.

    Table 3 Calculated energy band gap(eV)for MTe compounds compared to experimental and other theoretical works

    In addition,we also calculated Mulliken populations for both ZnTe and MgTe on the grounds and this helps to understand bonding behavior,as listed in Table 4.In addition to providing an objective criterion for bonding between atoms,the overlap population may be used to assess the covalent or ionic nature of a bond.44The calculated overlap populations of Zn―Te and Mg―Te bonds are 0.43 and 0.09,respectively.It is clear that these values are positive,which means that both bonds are covalent.Bonding states may correlate with the relative high values of theB/Gof these two compounds.Moreover,Zn―Te bonds are more covalent than Mg―Te bonds due to the higher overlap population values.The bonding nature of MgTe may be described as a mixture of covalent-ionic,as mentioned above,and be partly metallic characters.In short,ZnTe with a valence state of Zn-0.18Te0.18is more covalent than MgTe with Mg0.51Te-0.51,while the ionicity of studied compounds decreases in the following sequence MgTe→ZnTe.

    The bonding picture can be more vividly illustrated by plotting the charge density maps of specific crystallographic planes.The electron density distribution map is plotted in the way of the electron density difference map,as presented in Fig.4.The electron density difference was determined as Δρ={ρcrystal-Σρa(bǔ)tom},whereρcrystalandρa(bǔ)tomare the valence electron densities for MTe(M=Zn/Mg)and the corresponding free atoms,respectively.In general,many isolated atoms are connected together through such as chemical bond to form a solid and liquid.The electron density difference here denotes the difference in the electron density between the bonded atoms and the isolated atoms.This index allows visualizing the electron redistribution of the atoms after chemical bonding.It is obvious that the electron density on Zn―Te is stronger than that on Mg―Te,certificating that the covalence of Zn―Te is stronger than Mg―Te,which is coincided with the Mulliken population analysis.

    Fig.3 Calculated total density of state(TDOS)and partial density of state(PDOS)for ZnTe and MgTe compounds by GGA

    Table 4 Mulliken populations of MgTe and ZnTe

    Fig.4 Electron density difference map of the plane containing M―Te bonds for MTe(M=Mg/Zn)plotted from-50 e·nm-3(blue)to 100 e·nm-3(red)

    3.4 Optical properties

    The optical properties are important for compounds under investigation,since they can find potential applications in photoelectron devices and the semiconductor industry.We already identify that the calculated direct band gap is smaller than the measured value,and the calculated dielectric function shifts towards lower energy.Hence,we amended bands gaps by using a scissor operator(scissor:ZnTe~1.18 eV,MgTe~1.19 eV).

    Fig.5 Calculated imaginary part ε2(ω)and real part ε1(ω)of the dielectric function ε(ω),refractive index n(ω),reflectivity spectrum R(ω),and energy loss spectrum L(ω)of MTe(M=Mg/Zn)

    Table 5 Calculated refractive indices n and static dielectric constant ε for ZnTe and MgTe

    The curves ofε2(ω)in Fig.5(a,b)indicate that the threshold energy(first critical point)of the dielectric function occurs at 2.26 and 3.48 eV for ZnTe and MgTe,respectively.These correspond to theGV-GCsplitting,for which evidence can be found in Fig.2,and give the threshold for direct optical transitions between the highest valence and the lowest conduction bands,which is known as the fundamental absorption edge.As illustrated in Fig.5(a),our calculatedε2(ω)for ZnTe reproduced qualitatively well the features observed in the experiment.45Additionally,three prominent peaks have been obtained by fitting theε2(ω)curve for ZnTe based on Lorenz function model:1(3.8 eV),2(5.0 eV),and 3(6.8 eV).Peak 1 mainly corresponds to the Te 4pVBs to the unoccupied CBs.Peaks 2 and 3 are assigned to the transition of inner electrons from Te 4sorbitals to the Zn 3dor Te 4pVBs,for which evidence can be found in the partial density of state(Fig.3(a)).The remarkable peak(5.7 eV)of MgTe in Fig.5(b)originates predominantly from the transitions of Te 4pelectrons into Mg 2pand 2sconduction bands.

    The static dielectric constantεis given by the low energy limit ofε1(ω)as shown in Fig.5(c).Calculated values of the static macroscopic dielectric constants are given in Table 5.Unfortunately,as far as we know,there are no data available related to the static macroscopic dielectric constants in the literature for MTe(M=Zn/Mg),and this can serve as a prediction for future investigations.

    The knowledge of the refractive indices of semiconductors is important in the design and analysis of heterostructure lasers and other wave-guiding semiconductor devices.Numerous semiempirical models have been proposed in the past years to model the refractive index of semiconductors below the lowest direct gap.46Such information forms an important part in the design of various optoelectronic devices.In this article,the refractive index(n)is also calculated using the Hervé and Vandamme empirical formula47which is related directly to the fundamental energy band-gapEgas

    whereA=13.6 eV,B=3.4 eV,andEgis the lowest band gap.

    The calculated refractive indices of studied compounds are investigated in Table 5.Note that our calculatednagrees well with the semi-empirical formul method,and also meet the ruleε≈n2,mentioned in literature.48In addition,a good agreement between the predicted value(2.717)and experimental49value(2.71)ofnfor ZnTe should confirm that our calculation method is reliable.

    Fig.5(e)shows the results of the reflectivity functionR(ω)for the ZnTe and MgTe.The maximum reflectivity occurs in the energy regions of[10.9 eV,13.4 eV]and[10.0 eV,12.8 eV]for MgTe and ZnTe,respectively,and these are in the ultraviolet region.Therefore,the present results suggest that the two structures of MTe(M=Zn/Mg)materials can serve in optical devices such as shields for ultraviolet radiation.The electron energy loss functionL(ω)is an important factor describing the energy loss of a fast electron traversing in a material.Prominent peaks inL(ω)spectra represent the characteristics associated with the plasma oscillations and the corresponding frequencies are the so-called bulk plasma frequenciesω(p),which occurs whereε2<1 andε1reaches zero point50.Obviously,one may note from the Fig.5(f)that the peaks ofL(ω)are located at about 13.58 and 16.04 eV for MgTe and ZnTe,respectively,which correspond to the abrupt reduction ofR(ω).

    4 Conclusions

    In summary,we have systematically studied the structural,elastic,electronic,and optical properties of the binary ZnTe and MgTe compounds in the zinc-blende phase using the first principles calculations based on a density functional PP-PW method with the GGA approximation.The choice of compounds was warranted by a great deal of attention given to these II-VI binaries because of their large field of applications.Some brief essential concluding remarks can be drawn below.

    (1)The ground state properties such as lattice parameters,bulk modulus,and elastic constants were computed and compared with the experimental results which show good agreement.Both the investigated compounds are mechanically stable.

    (2)TheB/Gvalues of MTe compounds show that both materials behave as ductile.The Debye temperatures for the investigated compounds are also reported for the first time.

    (3)The bonding charge density calculations and the Mulliken population analysis reveal that the covalency of Zn-Te bonds are stronger than Mg-Te bonds and the chemical bonding in MgTe may be covalent-ionic.

    (4)The electronic structure calculations show that MTe compounds in zinc-blende structure are direct band gap semiconductor materials.Compared to sX-LDA,B3LYP functional provides more accurate description for the electronic band structures of MTe.

    (5)The imaginary and real parts of the dielectric function,the refractive index,reflectivity,and electron energy loss spectra are calculated.The static dielectric constantsεand refractive indexnhave been given.

    (1) Kalpana,G.;Pari,G.;Bhattacharyya,A.K.Int.J.Mod.Phys.B1998,12,1975.doi:10.1142/S0217979298001149

    (2) Triboulet,R.;Aulombard,R.L.;Mullin,J.B.Wide Gap II-VI Semiconductors:Proceedings of the E-MRSAdvanced Research Workshop;Adam Hilger:Montpellier,1991.

    (3) Soykan,C.;Kart,S.O.J.Alloy.Compd.2012,529,148.doi:10.1016/j.jallcom.2012.02.170

    (4) Drief,F.;Tadjer,A.;Mesri,D.;Aourag,H.Catal.Today2004,89,343.doi:10.1016/j.cattod.2003.12.013

    (5) Joshi,K.B.;Pandya,R.K.;Kothari,R.K.;Sharma,B.K.Phys.Status Solidi B2009,246,1268.doi:10.1002/pssb.v246:6

    (6) Kanoun,M.B.;Merad,A.E.;Aourag,H.;Cibert,J.;Merad,G.Solid State Sci.2003,5,1211.doi:10.1016/S1293-2558(03)00154-7

    (7) Duan,H.;Chen,X.S.;Sun,L.Z.;Zhou,X.H.;Lu,W.Acta Phys.Sin.2005,54,5293.[段 鶴,陳效雙,孫立忠,周孝好,陸 衛(wèi).物理學(xué)報(bào),2005,54,5293.]

    (8) Khenata,R.;Bouhemadou,A.;Sahnoun,M.;Reshak,A.H.;Baltache,H.;Rabah,M.Comput.Mat.Sci.2006,38,29.doi:10.1016/j.commatsci.2006.01.013

    (9) Palomino-Rojas,L.A.;Cocoletzi,G.H.;de Coss,R.;Takeuchi,N.Solid State Sci.2009,11,1451.doi:10.1016/j.solidstatesciences.2009.04.030

    (10) Chaudhuri,C.B.;Pari,G.;Mookerjee,A.;Bhattacharyya,A.K.Phys.Rev.B1999,60,11846.doi:10.1103/PhysRevB.60.11846(11) Varshney,D.;Kaurav,N.;Sharma,U.;Singh,R.K.J.Phys.Chem.Solids2008,69,60.doi:10.1016/j.jpcs.2007.07.121

    (12) Franco,R.;Mori-Sánchez,P.;Recio,J.M.;Pandey,R.Phys.Rev.B2003,68,195208.doi:10.1103/PhysRevB.68.195208

    (13) Gupta,S.K.;Kumar,S.;Auluck,S.Physica B2009,404,3789.doi:10.1016/j.physb.2009.06.149

    (15)Kohn,W.;Sham,L.J.Phys.Rev.1965,140,1133.

    (16) Payne,M.C.;Teter,M.P.;Allan,D.C.;Arias,T.A.;Joannopoulos,J.D.Rev.Mod.Phys.1992,64,1045.doi:10.1103/RevModPhys.64.1045

    (17) Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.Lett.1996,77,3865.doi:10.1103/PhysRevLett.77.3865

    (18) Vanderbilt,D.Phys.Rev.B1990,41,7892.doi:10.1103/PhysRevB.41.7892

    (19) Fischer,T.H.;Almlf,J.J.Phys.Chem.1992,96,9768.doi:10.1021/j100203a036

    (20)Lee,B.;Wang,L.W.;Spataru,C.D.;Louie,S.G.Phys.Rev.B2007,76,245114.doi:10.1103/PhysRevB.76.245114

    (21) Stephens,P.J.;Devlin,F.J.;Chabalowski,C.F.;Frisch,M.J.J.Phys.Chem.1994,98,11623.doi:10.1021/j100096a001

    (23) Zhang,Z.Y.;Yang,D.L.;Liu,Y.H.;Cao,H.B.;Shao,J.X.;Jing,Q.Acta Phys.-Chim.Sin.2009,25,1731.[張子英,楊德林,劉云虎,曹海濱,邵建新,井 群.物理化學(xué)學(xué)報(bào),2009,25,1731.]doi:10.3866/PKU.WHXB20090819

    (24) Jiao,Z.Y.;Ma,S.H.;Yang,J.F.Solid State Sci.2001,13,331.

    (25) O'Donnell,M.;Jaynes,E.T.;Miller,J.G.J.Acoust.Soc.Am.1981,69,696.doi:10.1121/1.385566

    (26) Birch,F.Phys.Rev.1947,71,809.doi:10.1103/PhysRev.71.809

    (27) Ley,L.;Pollak,R.A.;Mcfeely,F.R.;Kowalczy,S.P.;Shirley,D.A.Phys.Rev.B1974,9,600.doi:10.1103/PhysRevB.9.600

    (28) Hartmann,J.M.;Cibert,J.;Kany,F.;Mariette,H.;Charleux,M.;Alleysson,P.;Langer,R.;Feuillet,G.J.Appl.Phys.1996,80,6257.doi:10.1063/1.363714

    (29) Cohen,M.L.Phys.Rev.B1985,32,7988.doi:10.1103/PhysRevB.32.7988

    (30) Zubov,V.I.;Tretiakov,N.P.;Rabelo J.N.T.;Ortiz,J.F.S.Phys.Lett.A1994,194,223.doi:10.1016/0375-9601(94)91288-2

    (31) Korozlu,N.;Colakoglu,K.;Deligoz,E.;Aydin,S.J.Alloy.Compd.2013,546,157.doi:10.1016/j.jallcom.2012.08.062

    (32) Lee,B.H.J.Appl.Phys.1970,41,2988.doi:10.1063/1.1659350

    (33) Push,S.F.Philos.Mag.1954,45,823.

    (34) Nye,J.F.Physical Properties of Crystals;Oxford University Press:Oxford,1985;Vol.2.

    (35) Christman,J.R.Fundamentals of Solid State Physics;John Wiley&Sons:New York,1988.

    (36)Anderson,O.L.J.Phys.Chem.Solids1963,24,909.

    (37)Varshney,D.;Shriya,S.;Khenata,R.Mater.Chem.Phys.2012,135,365.doi:10.1016/j.matchemphys.2012.04.060

    (38) Lee,G.D.;Lee,M.H.;Ihm,J.Phys.Rev.B1995,52,1459.doi:10.1103/PhysRevB.52.1459

    (39) Merad,A.E.;Kanoun,M.B.;Merad,G.;Cibert,J.;Aourag,H.Mater.Chem.Phys.2005,92,333.doi:10.1016/j.matchemphys.2004.10.031

    (40)Maksimoy,O.;Tamargo,M.C.Appl.Phys.Lett.2001,79,782.doi:10.1063/1.1390327

    (41) Parker,S.G.;Reinberg,A.R.;Pinnell,J.E.;Holton,W.C.J.Electrochem.Soc.1971,118,979.doi:10.1149/1.2408236

    (42) Fleszar,A.Phys.Rev.B2001,64,245204.doi:10.1103/PhysRevB.64.245204

    (43)Rashkeev,S.N.;Lambrecht,W.R.L.Phys.Rev.B2001,63,165212.doi:10.1103/PhysRevB.63.165212

    (44)Wang,Y.F.;Gao,J.K.;Lee,M.H.;He,W.;Xu,X.;Hao,L.Y.;Chen,J.H.Chin.J.Chem.Phys.2012,25,398.doi:10.1088/1674-0068/25/04/398-402

    (45)Bang,C.Y.;Lee,M.S.;Kim,T.J.;Kim,Y.D.Aspnes,D.E.;Yu,Y.M.;O,B.S.;Choi,Y.D.J.Korean Phys.Soc.2001,39,462.

    (46) Lee,D.;Johnson,A.M.;Zucker,J.E.;Burrus,C.A.;Feldman,R.D.;Austin,R.F.IEEE Photonics Technol.Lett.1992,4,949.doi:10.1109/68.157111

    (47) Hervé,P.J.L.;Vandamme,L.K.J.J.Appl.Phys.1995,77,5476.doi:10.1063/1.359248

    (48) Samara,G.A.Phys.Rev.B1983,27,3494.doi:10.1103/PhysRevB.27.3494

    (49) Marple,D.T.F.J.Appl.Phys.1964,35,539.doi:10.1063/1.1713411

    (50) deAlmeida,J.S.;Ahuja,R.Phys.Rev.B2006,73,165102.doi:10.1103/PhysRevB.73.165102

    猜你喜歡
    德林海濱物理化學(xué)
    張德林書法作品選
    程德林:一個(gè)海外游子的圓夢之旅
    夏日海濱
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    臺(tái)灣桃園德林寺
    Chemical Concepts from Density Functional Theory
    海濱書簡
    散文詩(2017年17期)2018-01-31 02:34:19
    海濱1
    整形外科學(xué)專欄策劃顧問夏德林教授簡介
    av播播在线观看一区| 欧美日韩综合久久久久久| 嘟嘟电影网在线观看| 一本大道久久a久久精品| 一级毛片电影观看| 久久久久精品久久久久真实原创| 成人亚洲精品一区在线观看| 亚洲三级黄色毛片| 欧美成人午夜免费资源| 乱系列少妇在线播放| 少妇猛男粗大的猛烈进出视频| xxx大片免费视频| 中文欧美无线码| 日韩人妻高清精品专区| 99精国产麻豆久久婷婷| 九草在线视频观看| 赤兔流量卡办理| 久久久国产欧美日韩av| 国产深夜福利视频在线观看| 三级国产精品片| 国产亚洲精品久久久com| 久久韩国三级中文字幕| 免费观看性生交大片5| 男女边吃奶边做爰视频| 少妇人妻 视频| 国产免费一级a男人的天堂| 人体艺术视频欧美日本| 黄色日韩在线| 岛国毛片在线播放| 大又大粗又爽又黄少妇毛片口| 三上悠亚av全集在线观看 | h日本视频在线播放| 国产成人freesex在线| 麻豆成人av视频| 人人妻人人爽人人添夜夜欢视频 | 免费观看av网站的网址| 成人亚洲欧美一区二区av| 夜夜看夜夜爽夜夜摸| 色网站视频免费| 看免费成人av毛片| 十八禁网站网址无遮挡 | 亚洲精品国产色婷婷电影| 一本色道久久久久久精品综合| 最近最新中文字幕免费大全7| 精品国产乱码久久久久久小说| 亚洲精品久久久久久婷婷小说| 成人毛片a级毛片在线播放| 人体艺术视频欧美日本| 国产高清不卡午夜福利| 波野结衣二区三区在线| 成人免费观看视频高清| 久久女婷五月综合色啪小说| www.av在线官网国产| 蜜桃在线观看..| a级片在线免费高清观看视频| av视频免费观看在线观看| 另类亚洲欧美激情| 在线观看一区二区三区激情| tube8黄色片| 日韩电影二区| 中国美白少妇内射xxxbb| 亚洲国产日韩一区二区| 久久久久久久久久人人人人人人| 日本免费在线观看一区| 边亲边吃奶的免费视频| 亚洲天堂av无毛| 国产精品国产三级专区第一集| 欧美日韩在线观看h| 国产一区二区在线观看av| 精品一区在线观看国产| av福利片在线| 成人亚洲精品一区在线观看| 午夜老司机福利剧场| 美女国产视频在线观看| 国内揄拍国产精品人妻在线| 欧美日韩视频精品一区| 日日啪夜夜撸| 日本色播在线视频| 成人国产麻豆网| 国产一区二区在线观看av| 极品人妻少妇av视频| 国产精品国产三级国产av玫瑰| 精品久久国产蜜桃| 一级毛片电影观看| 欧美少妇被猛烈插入视频| 在线观看美女被高潮喷水网站| 在线观看美女被高潮喷水网站| 性色avwww在线观看| 亚洲欧美一区二区三区国产| 特大巨黑吊av在线直播| 高清毛片免费看| 建设人人有责人人尽责人人享有的| 韩国av在线不卡| 人妻系列 视频| 韩国高清视频一区二区三区| 亚洲精品国产av蜜桃| 99久久人妻综合| videos熟女内射| videos熟女内射| 日韩电影二区| 97超碰精品成人国产| 久久毛片免费看一区二区三区| 日本欧美视频一区| 午夜免费观看性视频| 国产成人午夜福利电影在线观看| 色5月婷婷丁香| 久久久久久久久久人人人人人人| av.在线天堂| 亚洲精品乱码久久久久久按摩| 男的添女的下面高潮视频| 在线观看av片永久免费下载| 只有这里有精品99| 免费观看av网站的网址| av福利片在线观看| 国产av码专区亚洲av| 国产女主播在线喷水免费视频网站| 中文欧美无线码| 如日韩欧美国产精品一区二区三区 | 国产伦精品一区二区三区四那| 国产午夜精品一二区理论片| 国产探花极品一区二区| 日本免费在线观看一区| 91午夜精品亚洲一区二区三区| 国产一区二区三区av在线| 亚洲精品自拍成人| 日韩不卡一区二区三区视频在线| xxx大片免费视频| 精品卡一卡二卡四卡免费| 精品人妻熟女av久视频| 三上悠亚av全集在线观看 | 国产伦精品一区二区三区视频9| 夫妻午夜视频| 成人18禁高潮啪啪吃奶动态图 | 天天躁夜夜躁狠狠久久av| 只有这里有精品99| 国产极品粉嫩免费观看在线 | 久久国产精品大桥未久av | 国内揄拍国产精品人妻在线| 熟女av电影| 中文在线观看免费www的网站| 亚洲自偷自拍三级| 蜜桃在线观看..| 日韩精品免费视频一区二区三区 | 精品人妻熟女毛片av久久网站| 精品酒店卫生间| 欧美日韩一区二区视频在线观看视频在线| 久久免费观看电影| av免费观看日本| 国产极品粉嫩免费观看在线 | 亚洲成色77777| 亚洲第一区二区三区不卡| 国产女主播在线喷水免费视频网站| 久久免费观看电影| 草草在线视频免费看| a级毛片免费高清观看在线播放| 中国国产av一级| 日韩亚洲欧美综合| 国产精品伦人一区二区| 亚洲美女搞黄在线观看| 男人添女人高潮全过程视频| 熟女av电影| 欧美最新免费一区二区三区| 交换朋友夫妻互换小说| 久久人妻熟女aⅴ| 最近中文字幕2019免费版| 交换朋友夫妻互换小说| 美女主播在线视频| √禁漫天堂资源中文www| 91久久精品国产一区二区成人| 亚洲国产最新在线播放| 亚洲不卡免费看| 亚洲经典国产精华液单| 国产极品天堂在线| 一级毛片 在线播放| 日日摸夜夜添夜夜爱| 国产精品一区www在线观看| 美女视频免费永久观看网站| 夜夜爽夜夜爽视频| 伦理电影大哥的女人| a级毛片在线看网站| 视频区图区小说| 综合色丁香网| 亚洲人与动物交配视频| 亚洲丝袜综合中文字幕| 99视频精品全部免费 在线| 又大又黄又爽视频免费| 久久久久人妻精品一区果冻| 国产黄片视频在线免费观看| 久久99热6这里只有精品| 国产日韩欧美在线精品| 亚洲中文av在线| 看非洲黑人一级黄片| 国产精品一区二区在线不卡| 亚洲国产最新在线播放| 妹子高潮喷水视频| 成人美女网站在线观看视频| 麻豆成人av视频| 欧美+日韩+精品| 天堂中文最新版在线下载| 又大又黄又爽视频免费| 在线观看国产h片| av不卡在线播放| 午夜精品国产一区二区电影| 亚洲丝袜综合中文字幕| 欧美xxⅹ黑人| 国产成人91sexporn| 久久99热这里只频精品6学生| 国产亚洲精品久久久com| 日本91视频免费播放| 亚洲成色77777| 又大又黄又爽视频免费| 成人漫画全彩无遮挡| av不卡在线播放| 99久久人妻综合| 伦精品一区二区三区| 亚洲一区二区三区欧美精品| 久久久久视频综合| 人妻人人澡人人爽人人| 久久精品国产a三级三级三级| 人人妻人人爽人人添夜夜欢视频 | 亚洲综合色惰| 啦啦啦视频在线资源免费观看| 性色av一级| 日韩视频在线欧美| 免费观看在线日韩| 少妇人妻 视频| 久久 成人 亚洲| 成人二区视频| a级片在线免费高清观看视频| 日本-黄色视频高清免费观看| 在线观看av片永久免费下载| 午夜激情久久久久久久| 一本大道久久a久久精品| 男人添女人高潮全过程视频| 久久人妻熟女aⅴ| 极品人妻少妇av视频| 精品国产国语对白av| 高清在线视频一区二区三区| 国产成人精品福利久久| 最黄视频免费看| 亚洲精品久久午夜乱码| 99热全是精品| 99久久精品一区二区三区| 国产av码专区亚洲av| 久久精品久久久久久噜噜老黄| 久久人人爽av亚洲精品天堂| 亚洲精品第二区| a级一级毛片免费在线观看| 永久网站在线| 亚洲综合色惰| 欧美日韩国产mv在线观看视频| 99久久人妻综合| 免费av不卡在线播放| 97超视频在线观看视频| 成人无遮挡网站| 麻豆精品久久久久久蜜桃| 赤兔流量卡办理| 精品人妻偷拍中文字幕| 国产精品一区二区在线不卡| 久久精品国产亚洲网站| 国产毛片在线视频| 欧美日韩精品成人综合77777| 久久综合国产亚洲精品| 人妻系列 视频| kizo精华| 国产极品天堂在线| 亚洲国产精品一区三区| 亚洲精品成人av观看孕妇| 精品久久久噜噜| 精品国产露脸久久av麻豆| 日本vs欧美在线观看视频 | 人人妻人人爽人人添夜夜欢视频 | 狂野欧美激情性xxxx在线观看| 熟女人妻精品中文字幕| 日韩精品免费视频一区二区三区 | 欧美另类一区| 老司机影院成人| 成人综合一区亚洲| 插逼视频在线观看| 少妇丰满av| 嫩草影院新地址| 国产又色又爽无遮挡免| 十八禁网站网址无遮挡 | 黄色怎么调成土黄色| 亚洲人与动物交配视频| 免费少妇av软件| av.在线天堂| 女人精品久久久久毛片| 91久久精品国产一区二区成人| 国产精品蜜桃在线观看| 欧美人与善性xxx| 边亲边吃奶的免费视频| 亚洲内射少妇av| 大香蕉97超碰在线| 久久精品国产鲁丝片午夜精品| 女性生殖器流出的白浆| 成人黄色视频免费在线看| 18禁在线播放成人免费| 黄色视频在线播放观看不卡| 国产免费又黄又爽又色| 美女脱内裤让男人舔精品视频| 国产成人91sexporn| 毛片一级片免费看久久久久| 国产日韩欧美亚洲二区| av有码第一页| 黄片无遮挡物在线观看| 国产精品欧美亚洲77777| 乱系列少妇在线播放| 国产淫语在线视频| 天堂中文最新版在线下载| 亚洲av福利一区| 午夜老司机福利剧场| 中文字幕免费在线视频6| 中文资源天堂在线| 国产精品福利在线免费观看| 黄色怎么调成土黄色| 亚洲精品国产av成人精品| 精品亚洲成国产av| 国产免费福利视频在线观看| 国产精品免费大片| 在现免费观看毛片| 亚洲av在线观看美女高潮| 亚洲成人av在线免费| 少妇丰满av| 亚洲,一卡二卡三卡| 亚洲美女搞黄在线观看| 色94色欧美一区二区| 最近最新中文字幕免费大全7| 毛片一级片免费看久久久久| 亚洲国产精品国产精品| .国产精品久久| 免费久久久久久久精品成人欧美视频 | 99视频精品全部免费 在线| 人人妻人人澡人人看| 日日爽夜夜爽网站| 99热全是精品| 熟女av电影| 黄片无遮挡物在线观看| 亚洲国产精品一区三区| 性色av一级| 欧美日本中文国产一区发布| 一区在线观看完整版| 天美传媒精品一区二区| 香蕉精品网在线| 久久av网站| 国产极品天堂在线| av在线播放精品| 亚洲精品一区蜜桃| 日本-黄色视频高清免费观看| 亚洲av福利一区| 日韩一区二区三区影片| av有码第一页| 国产欧美另类精品又又久久亚洲欧美| 亚洲四区av| 国产精品不卡视频一区二区| 午夜av观看不卡| 国模一区二区三区四区视频| 精品一区二区三卡| 中文欧美无线码| 一级毛片我不卡| 国产精品国产av在线观看| 99热国产这里只有精品6| 美女cb高潮喷水在线观看| kizo精华| 美女主播在线视频| 日韩免费高清中文字幕av| 欧美变态另类bdsm刘玥| 欧美精品一区二区免费开放| 国产成人免费无遮挡视频| 少妇被粗大的猛进出69影院 | 一本久久精品| 成人午夜精彩视频在线观看| 成人黄色视频免费在线看| 日本爱情动作片www.在线观看| 国产 精品1| 波野结衣二区三区在线| 国产视频首页在线观看| 老女人水多毛片| 国产熟女午夜一区二区三区 | 狂野欧美白嫩少妇大欣赏| 岛国毛片在线播放| 自拍欧美九色日韩亚洲蝌蚪91 | 国产成人精品久久久久久| 校园人妻丝袜中文字幕| 国产色爽女视频免费观看| 婷婷色麻豆天堂久久| 国模一区二区三区四区视频| 国产午夜精品一二区理论片| 国产 一区精品| 婷婷色综合www| 91精品一卡2卡3卡4卡| 国产伦精品一区二区三区视频9| 中文字幕精品免费在线观看视频 | 色视频在线一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 一级,二级,三级黄色视频| 性色avwww在线观看| 97超碰精品成人国产| av免费在线看不卡| 麻豆成人午夜福利视频| 伦精品一区二区三区| 精品午夜福利在线看| 啦啦啦啦在线视频资源| 午夜福利在线观看免费完整高清在| 久久综合国产亚洲精品| 亚洲av成人精品一区久久| 国产亚洲5aaaaa淫片| 性色avwww在线观看| 蜜桃在线观看..| 日日撸夜夜添| 性色avwww在线观看| 欧美一级a爱片免费观看看| 日韩av不卡免费在线播放| 成人特级av手机在线观看| 亚洲av不卡在线观看| 91久久精品电影网| 热re99久久国产66热| 另类亚洲欧美激情| 国产伦精品一区二区三区视频9| 精品一区二区三区视频在线| 五月开心婷婷网| 黑人猛操日本美女一级片| 十八禁高潮呻吟视频 | 一本大道久久a久久精品| 国产精品99久久久久久久久| 一级毛片 在线播放| 99热6这里只有精品| 国产精品.久久久| 日本猛色少妇xxxxx猛交久久| 国产欧美日韩一区二区三区在线 | 人妻夜夜爽99麻豆av| 王馨瑶露胸无遮挡在线观看| 久久毛片免费看一区二区三区| 成人国产麻豆网| 性色av一级| 亚洲av欧美aⅴ国产| 免费观看无遮挡的男女| 人妻 亚洲 视频| 亚洲美女视频黄频| a级毛色黄片| 波野结衣二区三区在线| 中国国产av一级| 久久这里有精品视频免费| 色婷婷av一区二区三区视频| 热re99久久精品国产66热6| 插逼视频在线观看| 嫩草影院新地址| h视频一区二区三区| www.色视频.com| 亚洲精品456在线播放app| 精品人妻偷拍中文字幕| 亚洲va在线va天堂va国产| 久久亚洲国产成人精品v| av免费在线看不卡| 高清毛片免费看| 在线观看免费日韩欧美大片 | 亚洲欧美日韩另类电影网站| 一级毛片黄色毛片免费观看视频| 成人18禁高潮啪啪吃奶动态图 | 好男人视频免费观看在线| 欧美激情国产日韩精品一区| 欧美另类一区| 观看免费一级毛片| 又大又黄又爽视频免费| 妹子高潮喷水视频| 久久久亚洲精品成人影院| 最近手机中文字幕大全| 精品国产一区二区三区久久久樱花| 精品一区在线观看国产| 成年av动漫网址| 欧美日韩精品成人综合77777| 秋霞在线观看毛片| 日韩欧美 国产精品| 一本一本综合久久| 欧美区成人在线视频| 一区二区三区四区激情视频| 18+在线观看网站| 国产一区二区在线观看av| 国产一级毛片在线| 久久久久久久久久久久大奶| 王馨瑶露胸无遮挡在线观看| 99re6热这里在线精品视频| 爱豆传媒免费全集在线观看| 精品人妻一区二区三区麻豆| 国内少妇人妻偷人精品xxx网站| 成年人午夜在线观看视频| 内地一区二区视频在线| 国产 一区精品| 97精品久久久久久久久久精品| 熟女电影av网| 好男人视频免费观看在线| 十八禁网站网址无遮挡 | 亚洲丝袜综合中文字幕| 一级毛片 在线播放| 狠狠精品人妻久久久久久综合| 2022亚洲国产成人精品| 成年人午夜在线观看视频| 欧美日韩一区二区视频在线观看视频在线| 国产精品久久久久久av不卡| 久久av网站| 男女国产视频网站| 精品久久久噜噜| 久久精品国产自在天天线| 精品人妻熟女av久视频| 黄色配什么色好看| 菩萨蛮人人尽说江南好唐韦庄| 欧美xxxx性猛交bbbb| 男女边摸边吃奶| 简卡轻食公司| 中文天堂在线官网| 日韩欧美精品免费久久| 岛国毛片在线播放| av国产精品久久久久影院| 亚洲国产精品999| 我要看日韩黄色一级片| 日韩一区二区视频免费看| 啦啦啦在线观看免费高清www| 日本91视频免费播放| 国产伦精品一区二区三区视频9| 精品99又大又爽又粗少妇毛片| 69精品国产乱码久久久| 三级国产精品片| 国产永久视频网站| 在线 av 中文字幕| 精品熟女少妇av免费看| 插阴视频在线观看视频| 国产精品一区二区在线观看99| 午夜福利视频精品| 亚洲欧美日韩东京热| 精品少妇久久久久久888优播| 久久亚洲国产成人精品v| 黑人猛操日本美女一级片| 成人综合一区亚洲| 亚洲av福利一区| 欧美精品高潮呻吟av久久| 国产一区亚洲一区在线观看| 涩涩av久久男人的天堂| 国产成人91sexporn| 国产亚洲av片在线观看秒播厂| 国产精品秋霞免费鲁丝片| 久久精品国产鲁丝片午夜精品| 搡女人真爽免费视频火全软件| 亚洲精品国产av蜜桃| 免费播放大片免费观看视频在线观看| 日韩一区二区三区影片| 男女边摸边吃奶| 欧美精品亚洲一区二区| 天天躁夜夜躁狠狠久久av| 精品人妻熟女av久视频| 亚洲精品自拍成人| 一级黄片播放器| 精品人妻偷拍中文字幕| 国产黄色视频一区二区在线观看| 成人毛片a级毛片在线播放| 欧美性感艳星| 久久精品国产亚洲av涩爱| 2018国产大陆天天弄谢| h视频一区二区三区| 在线观看三级黄色| 国产高清三级在线| 97超视频在线观看视频| 久久国产精品男人的天堂亚洲 | 国产深夜福利视频在线观看| 国产精品秋霞免费鲁丝片| 又爽又黄a免费视频| 亚洲综合色惰| 免费黄频网站在线观看国产| av免费在线看不卡| 精品亚洲成国产av| 黑人高潮一二区| 国产色爽女视频免费观看| 国产成人精品婷婷| 午夜免费男女啪啪视频观看| 国产高清国产精品国产三级| 人人妻人人爽人人添夜夜欢视频 | 麻豆精品久久久久久蜜桃| 只有这里有精品99| 久久久久久久大尺度免费视频| 国产一区二区在线观看日韩| 中文字幕免费在线视频6| 草草在线视频免费看| videos熟女内射| 国产男人的电影天堂91| 精品一品国产午夜福利视频| 国产亚洲最大av| 亚洲无线观看免费| 国产高清有码在线观看视频| 三级经典国产精品| 欧美日韩国产mv在线观看视频| 国产av码专区亚洲av| 男人和女人高潮做爰伦理| 亚洲精品aⅴ在线观看| 国产精品久久久久久精品电影小说| 交换朋友夫妻互换小说| 秋霞在线观看毛片| 亚洲精品自拍成人| 国产无遮挡羞羞视频在线观看| 看非洲黑人一级黄片| 日日啪夜夜爽| 精品久久久久久久久av| 亚洲国产精品999| 久久青草综合色| 免费av不卡在线播放| 成人无遮挡网站| 日韩人妻高清精品专区| 男人和女人高潮做爰伦理| 边亲边吃奶的免费视频| 久久99热6这里只有精品| 26uuu在线亚洲综合色| 涩涩av久久男人的天堂| 2018国产大陆天天弄谢| 赤兔流量卡办理| 天美传媒精品一区二区| 人人妻人人澡人人爽人人夜夜| 插阴视频在线观看视频|