• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular Dynamics Simulation of Heterogeneous Nucleation of Argon Vapor onto a Spherical Solid Particle

    2013-07-25 09:12:14SONGFenHongLIUChaoZHOUXuan
    物理化學學報 2013年4期
    關鍵詞:劉彬元華物理化學

    SONG Fen-Hong LIU Chao,* ZHOU Xuan

    (1Key Laboratory of Low-Grade Energy Utilization Technologies and Systems of Ministry of Education,College of Power Engineering,Chongqing University,Chongqing 400030,P.R.China; 2Department of Mechanical Engineering,University of Michigan-Dearborn,Dearborn,MI 48128,USA)

    1 lntroduction

    Nucleation,which is the first step in a phase transition where clusters form from the supersaturated systems,occurs in numerous natural phenomena and industrial processes,such as condensation,boiling,crystallization and so on.In recent years,a large number of experiments and theoretical studies about melting of solids have greatly enhanced the understanding of the metal nucleation phenomenon.1-5In addition to the cooling and heating rates,6-8the specific surface area,surface roughness,and surface orientation of these nanoparticles have great effect on these condensations and nucleations.9-12The heterogeneous nucleation with already-existent nuclei(foreign material)is much more frequently observed in microelectronics,13nanotechnology,14especially in the atmospheric and geological processes.In the atmosphere,for example,pollutant aerosol particles and dust serve as the cloud condensation nuclei.15,16

    The theory of the heterogeneous nucleation of vapor on a solid surface was first proposed in 1958.17Subsequently,a heterogeneous nucleation of a vapor bubble and a liquid droplet on a solid surface was examined by molecular dynamics(MD)simulation,respectively.18,19Additionally,R?yskoet al.20investigated the nucleation phenomenon of fluids confined in the slit-like pores.In these studies,the bulk surface acts as the heterogeneous nucleation nucleus.Therefore,up to now the general principles of the heterogeneous nucleation on a bulk surface are relatively mature.21While an important characteristic of the atmosphere is the ubiquitous presence of solid particles.When the sulfuric acid or any organic acids condense on one of these solid particles in sufficient quantity,the heterogeneous nucleation will emerge.22However,little is known about the details of how this nucleation process changes when the heterogeneity becomes microscopic scale.Understanding the details of the heterogeneous nucleation is crucial at the micro-level.

    Lazaridiset al.23studied the effect of the surface roughness of the solid atmospheric aerosol particles on their heterogeneous nucleation capability,and found that roughness is important to enhance the wetting and rate of heterogeneous nucleation.An experiment24was conducted about an organic vapor(n-propanol)condensing on small clusters,charged and uncharged nanoparticles.The experimental result shows that nucleation occurs at the supersaturation well below that predicted by classical nucleation theory(CNT).25,26It indicates that small particles are much better for the activation nucleation.Inci and Bowels27studied heterogeneous nucleation by adding heterogeneity seed in the same size with vapor particles.

    In order to examine the heterogeneous nucleation occurring in the atmosphere at the atomic level,we proposed a novel model that the pre-existing heterogeneous nucleus is represented by a solid nanoparticle in size of a few times larger than that of atoms of nucleation substance.28In this work,we are mainly concerned with the different effects of the cooling rate on the homogeneous and heterogeneous nucleation processes based on our proposed model by directly molecular dynamics simulation,which provides a useful tool for the microscopic studies.29-35In particular,we are further interested in recovering the microscopic dynamic properties of the heterogeneous nucleation of a supersaturated vapor onto a solid nanoparticle.

    2 Simulation method

    In this paper,a system(shown in Fig.1)was established to simulate the heterogeneous nucleation,in which a spherical solid nanoparticle consisting of 200 Pt atoms acts as the pre-existing nucleus and 5000 Ar atoms as the condensation vapor.The classical Lennard-Jones(LJ)12-636,37potential function was employed to describe the interaction between vapor atoms as following,

    Fig.1 Schematic plot of the simulation system

    whereφis the potential energy,rijis the interatomic distance,σandεare the length and energy parameters,respectively.

    In order to calculated the potential energy between Ar and Pt atoms,a modified LJ potential function38was used

    here,v represents vapor,s represents solid.σvsandεvsare the mixed length and energy parameters.These values can be determined by using the Lorentz-Berthelot mixing rule,39

    The corresponding potential parameters are listed in Table 1.

    The size of the simulation box is 20.5 nm×20.5 nm×20.5 nm.At the start of the simulation,initial velocities of each atom were randomly assigned according to the system temperature of 155.8 K.At this temperature,the system state was above the bimodal(liquid-vapor coexistence)line.40Periodic boundary conditions were applied in all three directions.Newtown's motion equations were solved by the velocity-verlet algorithm41and the time step was set as 5 fs.The Nose-Hoover thermostat(NHT)method42was used to keep the system at the desired temperature at every time step.100000 time steps were run to achieve an equilibrium state.Then,the system temperature was reduced gradually by removing some heat from the system.This removal heat per unit time is defined as the cooling rate,denoted byq.Thus the scale factor of each atom velocity,η,changes to

    wherekeis the kinetic energy of all atoms within the system.This method is different from the traditional temperature quenching technique,40and Fig.2 gives the time dependence of temperature distribution for these two methods.It can be seen that the heat removal method can dramatically reduce the disturbance of the system.

    Table 1 Potential parameters adopted in the simulation

    Fig.2 Temperature profiles for two cooling methods

    Upon removing heat from the system,data were recorded every 1000 time steps for post-simulation analysis.The total simulation time steps are 1600000.In the work,a cluster during the nucleation process is defined as a interconnecting collection of atoms(at least five atoms)43and whose interatomic distance is less than 1.5σ.Hereσis the length parameter of Ar atom.

    3 Results and discussion

    3.1 Snapshots of the heterogeneous and homogeneous nucleation

    In order to gain a better insight of the heterogeneous nucleation phenomenon,homogeneous nucleation is also investigated with the same initial condition and cooling rate.The evolution of two nucleation processes is depicted in Fig.3 at the cooling rate of 1.50×10-9J·s-1.In the heterogeneous nucleation,argon atoms nucleate on the solid particle to form a larger cluster,and the heterogeneous cluster generated keeps growing(seen in Fig.3(a1,b1)).At the instant of 4000 and 8000 ps,the radii of this cluster are about 2 and 4 nm,respectively.However,in the homogeneous nucleation clusters of various sizes appear and distribute randomly.Some clusters keep growing or disappear or some new clusters form.At 4000 ps four large clusters can survive in the system,and at 8000 ps the largest cluster consists of about 700 atoms as shown in Fig.3(a2,b2).However,the largest cluster is not located in the centre of the simulation box.The reason is that the homogenous nuclei formed by the atoms same as the vapor atoms randomly form and distribute.Additionally,at the instant of 8000 ps the vapor density and the cluster size are almost the same for two systems.It implies that the pre-existing nucleus in the heterogeneous nucleation plays a more important role at the beginning of nucleating(<4000 ps)and then its effect becomes ignorable.The detailed discussion will be given in the following section.

    3.2 Temperature profiles

    Fig.3 Snapshots of the heterogeneous and homogeneous nucleation at t=4000 ps(a)and t=8000 ps(b)for the cooling rate of 1.50×10-9J·s-1

    In this section,we will examine the evolution of the system temperature during the nucleation.It is already known that vapor nucleation is an exothermic process and the latent heat of condensation is released in the form of radiation.44Therefore,how the removal heat balances with the latent heat released will significantly impact on the system temperature.

    Fig.4 Comparison of the temperature variation between the homogeneous and heterogeneous nucleation(a)and relation between the temperature and pressure in homogeneous nucleation(b)

    Fig.4(a)shows the temperature variation during the whole heterogeneous and homogeneous nucleation processes at the cooling rate of 1.50×10-9J·s-1.It is obviously observed that the system temperature sharply decreases,then levels off.The reduction of temperature leads the vapor to the supercooling state.Compared to the heterogeneous nucleation,at the beginning of nucleation the temperature deduce is slightly faster in homogeneous nucleation.That is because there are some atoms nucleating on the prepared solid particle and releasing a little latent heat.After 4000 ps,the system reaches at one steady state,where the rate at which the condensation vapor releases the latent heat almost equals to the heat removal rate and the temperature is the nucleation one.Moreover,the“V”shape emerges in the temperature profile of homogeneous nucleation.At the lower point of the profile,the formation of homogeneous clusters almost stops and then the agglomeration and coalescence among clusters happens,which will release more latent heat and result in the rise of the temperature.Meanwhile,the change of the temperature with the pressure in homogeneous nucleation is given in Fig.4(b).Clearly,during the nucleation,the temperature decreases linearly with the pressure.At the end of the nucleation,this linear relation between the temperature and the pressure is not satisfied.

    Fig.5 Change of the temperature with time during the process of heterogeneous nucleation for the different cooling rates(a)and at the cooling rate of 3.75×10-10J·s-1(b)

    When the cooling rate changes,the system temperature will change in different behaviours(seen in Fig.5(a))during the heterogeneous nucleation process.When the cooling rate is relatively small,it takes more time to perform the nucleation and arrive at a stable temperature.In the case ofq=3.75×10-10J·s-1,about 12000 ps is required to achieved the nucleation temperature as shown in Fig.5(b).If the cooling rate enhances,the higher nucleation temperature yields.When the cooling rate is equal to 0.75×10-9and 1.50×10-9J·s-1,the temperature is about 101.83 and 95.84 K,respectively.Furthermore,when the higher cooling rate is imposed,the“V”shape in the temperature profile can also emerge in the heterogeneous nucleation.It indicates that homogeneous nucleation as well occurs in the heterogeneous nucleation process at the cooling rate of more than 2.25×10-9J·s-1.Moreover,the higher cooling rate(≥2.25×10-9J·s-1),the more dramatic progresses of homogeneous nucleation.Additionally,in the cases of E and F in Fig.5(a),the continuous decrease of temperature is observed,this is because the density of vapor becomes much smaller in the following nucleation process and the latent heat released is not enough to balance the continuous removal heat.

    3.3 Cluster number distribution

    From Fig.3,it is already known that many small clusters are formed and broken repeatedly,only several clusters larger than the critical size will survive,and then those clusters grow up during the homogeneous nucleation.To estimate the critical cluster size,Fig.6 gives the relation between the numbers of cluster larger than a threshold size(nt)and nucleation time in the system with the pre-existing nucleus at the cooling rate of 3.75×10-9J·s-1.It can be observed that the increase of the number of clusters has similar inclination fornt=20-50 while the increase fornt=10 is faster.It suggests that many clusters smaller than 10 are formed in this stage,but only clusters larger than 20 are able to grow.So the critical cluster size is about 20.

    Fig.6 Relation between the numbers of clusters larger than a threshold size(nt)and nucleation time in heterogeneous nucleation at the cooling rate of 3.75×10-9J·s-1including the cluster formed on the pre-existing nucleus

    Fig.7 Change of the number of clusters(cluster size is larger than 20)with time during the heterogeneous nucleation for the different cooling rates(in J·s-1)of 3.75×10-10(a),0.75×10-9(b),1.50×10-9(c),2.25×10-9(d),3.00×10-9(e),3.75×10-9(f),and the homogeneous nucleation(g)as well comparison between two nucleation processes at the cooling rate of 1.50×10-9J·s-1(h)including the cluster formed on the pre-existing nucleus

    During the nucleation process,vapor atoms do not only nucleate onto the pre-existing nucleus,other homogenous nuclei can be generated in the system.The time dependence of the numbers in clusters for the different cooling rates is given in Fig.7(a-f).When the cooling rate is relatively low,such as 3.75×10-10,0.75×10-9,and 1.50×10-9J·s-1,one cluster with the solid nanoparticle as the nucleus stably exists in the system.In fact,one or two clusters with the homogeneous nucleus can be formed occasionally,but due to molecule collision,these homogenous clusters are broken or absorbed by the heterogeneous cluster.With the cooling rate increasing,except for the heterogeneous cluster more homogeneous clusters can generate,and even 15 clusters form at the cooling rate of 3.75×10-9J·s-1.This indicates that the cooling rate plays an important role in the dynamic behaviour of the heterogeneous nucleation.Additionally,from Fig.7,we can clearly see that the nucleation process can be divided into two stages:one is the cluster formation,and the other is the cluster growth.Finally,all clusters form a liquid droplet.For comparison purpose,the homogeneous nucleation process and the corresponding comparison are shown in Fig.7(g,h)at the cooling rate of 1.50×10-9J·s-1.At the same cooling rate,there are more clusters forming in the system without pre-existing nuclei at the stage of the cluster formation.However for the heterogeneous nucleation,the clusters aggregate on the surface of the solid nanoparticle,only a few clusters form in other positions of the system.

    In addition,from Fig.7 it can be clearly seen that one critical cooling rate exists at which the homogeneous clusters generated and the critical cooling rate value is between 1.50×10-9and 2.25×10-9J·s-1.Together with another two cases,in which the time dependence of the number of cluster is shown in Fig.8 at the cooling rates of 1.80×10-9and 1.875×10-9J·s-1,the critical cooling rate can be estimated to be 1.80×10-9J·s-1.

    3.4 Number of atoms in cluster

    Fig.8 Variation of the number of clusters(cluster size is larger than 20)with time in the heterogeneous nucleation at the cooling rates of 1.80×10-9J·s-1(a)and 1.875×10-9J·s-1(b)

    Fig.9 Change of the number of atoms in the largest cluster with time during two nucleation processes at the cooling rate of 1.50×10-9J·s-1(a)and the heterogeneous nucleation at different cooling rates(b)

    In order to further understand two nucleation processes,we counte the numbers of atoms in the largest cluster,and the results are shown in Fig.9.At the beginning of nucleation,the largest cluster in the heterogeneous nucleation grows faster than the one in the homogeneous nucleation,because the presence of the solid particle acting as the nucleus results in more vapor atoms nucleating onto the surface of the particle.At 4250 ps,an obvious combination among clusters is observed in homogeneous nucleation process.After then,the numbers of atoms in largest clusters are almost same in two systems.Furthermore,Fig.9(b)gives the evolution of the largest cluster during the heterogeneous nucleation for the different cooling rates.The growth speed of the largest cluster increases with the increase of the cooling rate.When the cooling rate equals to 3.75×10-9J·s-1,a clear jump appears,because some homogeneous clusters generated aggregate with the heterogeneous cluster.Actually,there also exists the jump at the cooling rate of 2.25×10-9and 3.00×10-9J·s-1,but it is not too obvious to be seen.

    We further examined the time dependence of the total number of atoms in all the clusters and the result is plotted in Fig.10.By contrast to Fig.9(b),it can be found that the total number of atoms in all the clusters are almost same as one in the largest cluster at the cooling rates of 3.75×10-10,0.75×10-9,and 1.50×10-9J·s-1.This indicates that when the cooling rate is relatively lower,heterogeneous nucleation dominates during the whole process of nucleation and homogeneous nucleation seldom emerges.When the higher cooling rate is imposed,homogeneous nucleation can happen and coexist with heterogeneous nucleation,but heterogeneous nucleation still dominates in the nucleation process.It can be seen from Fig.11,before 4250 ps much more vapor atoms nucleate onto the heterogeneous nucleus than onto the homogeneous nuclei,and then all the homogeneous clusters are attached to the centre heterogeneous cluster,finally forms a larger liquid droplet.

    Fig.10 Change of the number of the total atoms in clusters with time at different cooling rates

    Additionally,nucleation velocity(νn)is introduced to characterize the nucleation process and defined as the number of atoms nucleating and forming the clusters per unit time per unit volume.

    Fig.11 Change of the number of atoms in clusters with time at the cooling rate of 3.75×10-9J·s-1in the system with the pre-existing nucleus

    Fig.12 Change of the averaged and largest nucleation velocity with cooling rate

    According to the evolution of the total atoms in clusters,we can determine the largest and average nucleation velocity for the different cooling rates(shown in Fig.12).In which,the larg-est nucleation velocity is calculated during the period from 1000 to 2000 ps,because the density of argon vapor is bigger and nucleation actives during this period.And the average nucleation velocity is obtained from 1000 to 6000 ps.From the figure,it is seen that as the cooling rate increases the largest nucleation velocity increases sharply and the average one changes linearly.

    4 Conclusions

    In this paper,the mechanism of heterogeneous nucleation of argon vapor on a spherical solid particle was studied by using molecular dynamics simulation.For the different cooling rates,the different nucleation temperature can be achieved for the heterogeneous nucleation.When the LJ vapor is in the superheated state of 155.8 K,this nucleation temperature is 101.83 and 95.84 K at the cooling rates of 0.75×10-9and 1.50×10-9J·s-1,respectively.According to the cluster distribution,we can find that the heterogeneous nucleation dominates at the cooling rate of lower than 2.25×10-9J·s-1,the homogeneous nucleation appeares at the critical cooling rate of 1.80×10-9J·s-1and becomes stronger as the cooling rate increases.Additionally,with the increase of the cooling rate,the largest nucleation velocity increases sharply,but the average nucleation velocity changes linearly.

    In the heterogeneous nucleation,the supercooling vapor atoms are prone to nucleate onto the pre-existing nucleus to form a cluster and keep growing,not rather than form the homogenous nucleus.But on the certain condition,homogeneous nucleation emerges during the heterogeneous nucleation,so the formation,disappearance and growth of these homogenous nuclei are of importance for the system with the already existent nucleus,and the corresponding mechanism will be further investigated.

    (1) Liu,X.;Meng,C.G.;Liu,C.H.Phase Transit.2006,79,249.doi:10.1080/01411590600689021

    (2) Mei,Q.S.;Lu,K.Prog.Mater.Sci.2007,52(8),1175.doi:10.1016/j.pmatsci.2007.01.001

    (3) Jian,Z.Y.;Li,N.;Zhu,M.;Chen,J.;Chang,F.G.;Jie,W.Q.Acta Mater.2012,60(8),3590.doi:10.1016/j.actamat.2012.02.038

    (4) Sandoval,L.;Urbassek,H.M.Nano Lett.2009,9(6),2290.doi:10.1021/nl9004767

    (5) Luce,F.P.;Kremer,F.;Rebon,S.;Fabrim,Z.E.;Sanchez,D.F.;Zawislak,F.C.;Fichtner,P.F.P.J.Appl.Phys.2011,109(1),014320.doi:10.1063/1.3530844

    (6) Zhang,A.L.;Liu,R.S.;Liang,J.;Zheng,C.X.Acta Phys.-Chim.Sin.2005,21(4),347.[張愛龍,劉讓蘇,梁 佳,鄭采星.物理化學學報,2005,21(4),347.]doi:10.3866/PKU.WHXB20050402

    (7) Gao,T.H.;Liu,R.S.;Zhou,L.L.;Tian,Z.A.;Xie,Q.ActaPhys.-Chim.Sin.2009,25(10),2093.[高廷紅,劉讓蘇,周麗麗,田澤安,謝 泉.物理化學學報,2009,25(10),2093.]doi:10.3866/PKU.WHXB20090928

    (8) Liu,X.;Meng,C.G.;Liu,C.H.Acta Phys.-Chim.Sin.2004,20(3),280.[劉 新,孟長功,劉長厚.物理化學學報,2004,20(3),280.]doi:10.3866/PKU.WHXB20040313

    (9) Steer,B.;Gorbunov,B.;Rowles,J.;Green,D.J.Chem.Phys.2012,136,054704.doi:10.1063/1.3681400

    (10) Tien,L.C.;Chen,Y.J.Appl.Surf.Sci.2012,258,3584.doi:10.1016/j.apsusc.2011.11.120

    (11) Wind,R.W.;Fabreguette,F.H.;Sechrist,Z.A.;George,S.M.J.Appl.Phys.2009,105,074309.doi:10.1063/1.3103254

    (12) Jung,D.S.;Venart,J.E.S.;Sousa,A.C.M.Int.J.Heat Mass Transf.1987,30(12),2627.doi:10.1016/0017-9310(87)90144-X

    (13) Minemawari,H.;Yamada,T.;Matsui,H.;Tsutsumi,J.;Haas,S.;Chiba,R.;Kumai,R.;Hasegawa,T.Nature2011,475,364.doi:10.1038/nature10313

    (14)Maynard,A.D.;Baron,P.A.;Foley,M.;Shvedova,A.A.;Kisin,E.R.;Castranova,V.J.Toxicol.Environ.Health2004,67,87.doi:10.1080/15287390490253688

    (15) Kulmala,M.;Pirjola,L.;Makela,J.M.Nature2000,404,66.doi:10.1038/35003550

    (16)Kulmala,M.;Kerminen,V.M.Atmos.Res.2008,90,132.doi:10.1016/j.atmosres.2008.01.005

    (17) Fletcher,N.H.J.Chem.Phys.1958,29,572.doi:10.1063/1.1744540

    (18) Kimura,T.;Maruyama,S.Microsacle Thermophys.Eng.2002,6,3.doi:10.1080/108939502753428202

    (19)Maruyama,S;Kimura,T.A.Molecular Dynamics Simulation of a Bubble Nucleation on Solid Surface.Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference,March 15-19,San Diego,California.1999,AJTE99-6511.

    (20) Rz˙ysko,W.;Patrykiejew,A.;Sokotowski,S.Phys.Rev.E2008,77,061602.

    (21) Kashchiev,D.Nucleation:Basic Theory with Applications;Butterworth Heinemann:Oxford,2000.

    (22)Hegg,D.A.;Baker,M.B.Rep.Prog.Phys.2009,72,056801.doi:10.1088/0034-4885/72/5/056801

    (23) Lazaridis,M.;Hov,?.;Eleftheriadis,K.Atmos.Res.2000,55,103.doi:10.1016/S0169-8095(00)00059-4

    (24) Winkler,P.M.;Steiner,G.;Vrtala,A.;Vehkam?ki,H.;Noppel,M.;Lehtinen,K.E.J.;Reischl,G.P.;Wagner,P.E.;Kulmala,M.Science2008,319,1374.doi:10.1126/science.1149034

    (25) Frenkel,J.Kinetic Theory of Liquids;Clarendon Press:Oxford,1946.

    (26) Chaikin,P.M.;Lubensky,T.C.Principles of Condensed Matter Physics;Cambridge University Press:Cambridge,1995.

    (27) Inci,L.;Bowels,R.K.J.Chem.Phys.2011,134,114505.doi:10.1063/1.3565479

    (28) Song,F.H.;Liu,C.;Xie,H.J.Eng.Thermophys.2011,32,1099.[宋粉紅,劉 朝,解 輝.工程熱物理學報,2011,32,1099.]

    (29) Xie,H.;Liu,C.;Liu,B.W.Acta Phys.-Chim.Sin.2009,25(5),994.[解 輝,劉 朝,劉彬武.物理化學學報,2009,25(5),994.]doi:10.3866/PKU.WHXB20090404

    (30) Cao,B.Y.;Chen,M.;Guo,Z.Y.Phys.Rev.E2006,74,066311.doi:10.1103/PhysRevE.74.066311

    (31) Maroo,S.C.;Chung,J.N.J.Colloid Interface Sci.2008,328,134.doi:10.1016/j.jcis.2008.09.018

    (32) Yi,P.;Poulikakos,D.;Walther,J.;Yadigaroglu,G.Int.J.Heat Mass Tranf.2002,45,2087.doi:10.1016/S0017-9310(01)00310-6

    (33)Zhou,J.;Zhu,Y.;Wang,W.C.;Lu,X.H.;Wang,Y.R.;Shi,J.Acta Phys.-Chim.Sin.2002,18(3),207.[周 健,朱 宇,汪文川,陸小華,王延儒,時 鈞.物理化學學報,2002,18(3),207.]doi:10.3866/PKU.WHXB20020304

    (34) Luo,F.;Gao,J.;Cheng,Y.H.;Cui,W.;Ji,M.J.Acta Phys.-Chim.Sin.2012,28(9),2191.[羅 芳,高 劍,成元華,崔 巍,計明娟.物理化學學報,2012,28(9),2191.]doi:10.3866/PKU.WHXB201207063

    (35)Liao,R.J.;Zhu,M.Y.;Zhou,X.;Yang,L.J.;Yan,J.M.;Sun,C.X.Acta Phys.-Chim.Sin.2011,27(4),815.[廖瑞金,朱孟兆,周 欣,楊麗君,嚴家明,孫才新.物理化學學報,2011,27(4),815.]doi:10.3866/PKU.WHXB20110341

    (36) Lennard-Jones,J.E.Proc.R.Soc.Lond.A1924,106(738),441.

    (37) Lennard-Jones,J.E.Proc.R.Soc.Lond.A1924,106(738),463.

    (38) Cosgrove,J.A.;Buick,J.K.;Tonge,S.J.J.Phys.A-Math.Theor.2003,36(10),2609.doi:10.1088/0305-4470/36/10/320

    (39) Allen,M.P.;Tildesley,D.J.Computer Simulation of Liquids;Oxford University Press:Oxford,1989.

    (40)Yasuoka,K.;Matsumoto,M.J.Chem.Phys.1998,109,8451.doi:10.1063/1.477509

    (41)Swope,W.C.;Andersen,H.C.;Berens,P.H.;Wilson,K.R.J.Chem.Phys.1982,76(1),637.doi:10.1063/1.442716

    (42) Hunenberger,P.H.Adv.Polymer.Sci.2005,173,105.doi:10.1007/b98052

    (43) Napari,I.;Julin,J.;Vehkam?ki,H.J.Chem.Phys.2009,131,244511.doi:10.1063/1.3279127

    (44) Buyevich,Y.A.;Natalukha,I.A.Int.J.Heat Mass Transf.1996,39,2363.doi:10.1016/0017-9310(95)00170-0

    猜你喜歡
    劉彬元華物理化學
    珍貴樹種黃檀栽培技術
    Strong near-field couplings of anapole modes and formation of higher-order electromagnetic modes in stacked all-dielectric nanodisks
    提高物理化學實驗技能的探討
    云南化工(2021年11期)2022-01-12 06:06:56
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    劉彬濠創(chuàng)作最新歌曲《星》正式上線
    青年歌聲(2019年12期)2019-12-17 06:32:58
    詩書畫苑
    晚晴(2019年7期)2019-08-26 01:33:53
    Chemical Concepts from Density Functional Theory
    讓詩詞插上音樂的翅膀——中華詩詞學會顧問李元華訪談錄
    中華詩詞(2016年11期)2016-07-21 14:56:16
    衛(wèi)星線速度、周期、加速度的大小比較
    超碰成人久久| 国产精品久久久av美女十八| 午夜福利在线免费观看网站| 欧美成狂野欧美在线观看| 高清av免费在线| 人人澡人人妻人| 国产精品1区2区在线观看.| 在线视频色国产色| 成人亚洲精品一区在线观看| 午夜精品在线福利| 国产日韩一区二区三区精品不卡| 九色亚洲精品在线播放| 午夜福利一区二区在线看| 日本a在线网址| 久99久视频精品免费| 我的亚洲天堂| 亚洲 欧美 日韩 在线 免费| 人人妻人人爽人人添夜夜欢视频| 欧美成狂野欧美在线观看| 最新美女视频免费是黄的| 国产乱人伦免费视频| 国产一区在线观看成人免费| 国产伦人伦偷精品视频| 亚洲欧美激情综合另类| 91精品国产国语对白视频| 999精品在线视频| 91字幕亚洲| 18禁国产床啪视频网站| 亚洲人成77777在线视频| 国产成人精品久久二区二区91| 亚洲人成伊人成综合网2020| 美女福利国产在线| 热99国产精品久久久久久7| 三上悠亚av全集在线观看| 亚洲av成人不卡在线观看播放网| 黄片小视频在线播放| 久久天躁狠狠躁夜夜2o2o| 色综合欧美亚洲国产小说| 午夜福利影视在线免费观看| 日本欧美视频一区| 国产精品久久久久久人妻精品电影| 亚洲人成伊人成综合网2020| 不卡av一区二区三区| 无遮挡黄片免费观看| 久久中文字幕人妻熟女| 久久久久国产一级毛片高清牌| 国产熟女xx| 午夜免费成人在线视频| 亚洲国产精品一区二区三区在线| 精品午夜福利视频在线观看一区| 色老头精品视频在线观看| 亚洲国产精品sss在线观看 | 热99re8久久精品国产| 日韩大尺度精品在线看网址 | 岛国视频午夜一区免费看| 亚洲一区二区三区欧美精品| 久久人人爽av亚洲精品天堂| 日韩免费av在线播放| 久久香蕉国产精品| 亚洲欧美激情综合另类| 757午夜福利合集在线观看| 国产在线观看jvid| 最近最新免费中文字幕在线| 久久久久精品国产欧美久久久| 国产精品99久久99久久久不卡| 国产精品香港三级国产av潘金莲| 国产精品久久久久久人妻精品电影| av网站在线播放免费| 老司机亚洲免费影院| 亚洲国产毛片av蜜桃av| 亚洲一码二码三码区别大吗| 亚洲欧洲精品一区二区精品久久久| 亚洲精品一卡2卡三卡4卡5卡| 一区福利在线观看| 欧美成狂野欧美在线观看| 怎么达到女性高潮| 91字幕亚洲| 一个人免费在线观看的高清视频| 首页视频小说图片口味搜索| 97人妻天天添夜夜摸| 日韩欧美一区视频在线观看| 国产精华一区二区三区| 国产99久久九九免费精品| 老汉色∧v一级毛片| 一二三四社区在线视频社区8| 久久午夜亚洲精品久久| 91在线观看av| 久久精品aⅴ一区二区三区四区| 老鸭窝网址在线观看| 午夜成年电影在线免费观看| 在线观看免费视频日本深夜| 国产黄a三级三级三级人| 免费在线观看黄色视频的| 国产1区2区3区精品| 999久久久国产精品视频| 亚洲成av片中文字幕在线观看| 色尼玛亚洲综合影院| 又紧又爽又黄一区二区| 黄色视频不卡| 久久久精品国产亚洲av高清涩受| 一边摸一边抽搐一进一出视频| 欧美黑人精品巨大| 后天国语完整版免费观看| 精品国产乱子伦一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 俄罗斯特黄特色一大片| 久久草成人影院| 国产精品国产高清国产av| 亚洲精品久久成人aⅴ小说| 一级片免费观看大全| 天堂影院成人在线观看| 丰满饥渴人妻一区二区三| 日本精品一区二区三区蜜桃| 亚洲欧美激情综合另类| 侵犯人妻中文字幕一二三四区| 1024香蕉在线观看| x7x7x7水蜜桃| 九色亚洲精品在线播放| 亚洲中文av在线| 日本vs欧美在线观看视频| 成人永久免费在线观看视频| 国产主播在线观看一区二区| 在线观看免费日韩欧美大片| netflix在线观看网站| 村上凉子中文字幕在线| 国产黄色免费在线视频| 成人精品一区二区免费| 国产主播在线观看一区二区| 日本一区二区免费在线视频| 国产乱人伦免费视频| 99热只有精品国产| 国产亚洲欧美98| 激情在线观看视频在线高清| 久久中文看片网| 久久久国产成人免费| 99久久99久久久精品蜜桃| 波多野结衣av一区二区av| 母亲3免费完整高清在线观看| 正在播放国产对白刺激| 97碰自拍视频| 中亚洲国语对白在线视频| 国产精品一区二区免费欧美| 久久国产乱子伦精品免费另类| 国产精品久久久久久人妻精品电影| 最新美女视频免费是黄的| 日韩免费av在线播放| 中文字幕人妻丝袜制服| 欧美久久黑人一区二区| 村上凉子中文字幕在线| 如日韩欧美国产精品一区二区三区| 国产激情欧美一区二区| 欧美在线黄色| 亚洲人成电影免费在线| 欧美日韩精品网址| 99精品欧美一区二区三区四区| 电影成人av| 久久午夜综合久久蜜桃| 韩国精品一区二区三区| 亚洲七黄色美女视频| 国产片内射在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲欧美一区二区三区黑人| 成人影院久久| 大型黄色视频在线免费观看| 天堂中文最新版在线下载| 男女高潮啪啪啪动态图| av中文乱码字幕在线| 免费人成视频x8x8入口观看| 日日爽夜夜爽网站| 他把我摸到了高潮在线观看| 亚洲免费av在线视频| 国产精品一区二区精品视频观看| 亚洲精品美女久久久久99蜜臀| 精品久久久久久电影网| 丰满饥渴人妻一区二区三| 淫秽高清视频在线观看| 亚洲avbb在线观看| 好男人电影高清在线观看| 18禁美女被吸乳视频| 久久午夜综合久久蜜桃| 一级a爱片免费观看的视频| 1024视频免费在线观看| 精品久久久精品久久久| 日韩欧美三级三区| 自拍欧美九色日韩亚洲蝌蚪91| 午夜两性在线视频| 亚洲精品中文字幕一二三四区| 91大片在线观看| 伊人久久大香线蕉亚洲五| 日本a在线网址| 最近最新中文字幕大全电影3 | 黄色毛片三级朝国网站| 精品国产一区二区三区四区第35| av福利片在线| 欧美日韩av久久| 19禁男女啪啪无遮挡网站| 91麻豆av在线| 日韩精品青青久久久久久| 欧美在线一区亚洲| 亚洲欧美一区二区三区久久| 欧美黑人欧美精品刺激| 国产精品亚洲av一区麻豆| 亚洲欧美日韩另类电影网站| 精品国产乱码久久久久久男人| 欧美大码av| 99久久人妻综合| 一级片免费观看大全| 黄色毛片三级朝国网站| 免费在线观看完整版高清| 色婷婷av一区二区三区视频| 色哟哟哟哟哟哟| 黄频高清免费视频| 麻豆一二三区av精品| 日韩精品免费视频一区二区三区| 免费不卡黄色视频| 黑人巨大精品欧美一区二区mp4| videosex国产| 夜夜躁狠狠躁天天躁| 无遮挡黄片免费观看| 一区二区三区精品91| av电影中文网址| 欧美黄色片欧美黄色片| 国产激情久久老熟女| 精品电影一区二区在线| 青草久久国产| 亚洲av五月六月丁香网| 久久中文字幕一级| 99国产精品99久久久久| 亚洲熟妇中文字幕五十中出 | 人人妻人人爽人人添夜夜欢视频| 午夜成年电影在线免费观看| 国产精品久久久av美女十八| 国产欧美日韩综合在线一区二区| 一区二区三区激情视频| 免费人成视频x8x8入口观看| 又黄又粗又硬又大视频| 女性生殖器流出的白浆| 在线播放国产精品三级| 国产又色又爽无遮挡免费看| 国产成人影院久久av| 国产精品亚洲一级av第二区| 人人妻,人人澡人人爽秒播| 嫩草影院精品99| 99热国产这里只有精品6| 亚洲精品国产精品久久久不卡| 99在线人妻在线中文字幕| 香蕉国产在线看| 一级毛片高清免费大全| 国产深夜福利视频在线观看| 99热只有精品国产| 男人操女人黄网站| 久久 成人 亚洲| 黑人巨大精品欧美一区二区蜜桃| 99在线人妻在线中文字幕| 嫁个100分男人电影在线观看| 中文字幕最新亚洲高清| 一级黄色大片毛片| 午夜福利一区二区在线看| 电影成人av| 久久人妻av系列| 999久久久精品免费观看国产| videosex国产| 女人被狂操c到高潮| 一本大道久久a久久精品| 波多野结衣av一区二区av| 免费人成视频x8x8入口观看| 伦理电影免费视频| 国产精品98久久久久久宅男小说| 亚洲成人国产一区在线观看| 后天国语完整版免费观看| 久久久久久久久中文| 日本欧美视频一区| 日韩高清综合在线| 美女福利国产在线| 啦啦啦免费观看视频1| 在线观看午夜福利视频| 亚洲精品av麻豆狂野| 国产欧美日韩一区二区三| 性欧美人与动物交配| 纯流量卡能插随身wifi吗| 丝袜人妻中文字幕| 亚洲av五月六月丁香网| 高清黄色对白视频在线免费看| 亚洲国产欧美网| 亚洲av美国av| 制服人妻中文乱码| 国产精品久久久人人做人人爽| 十分钟在线观看高清视频www| 少妇粗大呻吟视频| 欧美人与性动交α欧美精品济南到| 午夜激情av网站| 国产伦人伦偷精品视频| 国产成+人综合+亚洲专区| 女性生殖器流出的白浆| 免费一级毛片在线播放高清视频 | 日韩欧美一区视频在线观看| 久久久国产一区二区| 婷婷精品国产亚洲av在线| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲三区欧美一区| 久久天躁狠狠躁夜夜2o2o| 热99国产精品久久久久久7| 99久久国产精品久久久| 亚洲专区国产一区二区| 久久亚洲真实| 老司机在亚洲福利影院| cao死你这个sao货| 激情在线观看视频在线高清| cao死你这个sao货| 成年版毛片免费区| 国产三级黄色录像| 国产亚洲欧美精品永久| 亚洲成人精品中文字幕电影 | 亚洲欧美激情在线| 一个人观看的视频www高清免费观看 | 亚洲国产精品合色在线| 久久精品国产亚洲av高清一级| 亚洲欧美一区二区三区久久| 黄色视频,在线免费观看| 国产1区2区3区精品| 一二三四社区在线视频社区8| 国产高清国产精品国产三级| 另类亚洲欧美激情| av天堂久久9| 在线观看免费视频网站a站| 两人在一起打扑克的视频| 精品电影一区二区在线| 人人妻人人澡人人看| 女人被躁到高潮嗷嗷叫费观| 欧美日韩福利视频一区二区| 麻豆久久精品国产亚洲av | 人人妻,人人澡人人爽秒播| 欧美日韩一级在线毛片| 91字幕亚洲| 亚洲人成电影免费在线| 男人舔女人的私密视频| 99久久国产精品久久久| av天堂在线播放| 国产国语露脸激情在线看| 老汉色∧v一级毛片| 国产精品成人在线| 精品一区二区三区视频在线观看免费 | 欧美日韩亚洲国产一区二区在线观看| 国产不卡一卡二| 久久久久国产一级毛片高清牌| 午夜影院日韩av| 日本撒尿小便嘘嘘汇集6| 久久欧美精品欧美久久欧美| 桃色一区二区三区在线观看| 亚洲国产毛片av蜜桃av| av网站在线播放免费| 欧美在线黄色| √禁漫天堂资源中文www| 9热在线视频观看99| 日韩欧美一区二区三区在线观看| 国产精品一区二区在线不卡| 人人妻人人爽人人添夜夜欢视频| 午夜免费鲁丝| 19禁男女啪啪无遮挡网站| 亚洲 欧美一区二区三区| 免费高清视频大片| 麻豆一二三区av精品| 久久久久久久午夜电影 | 日本a在线网址| 欧美 亚洲 国产 日韩一| 国产伦人伦偷精品视频| 美女国产高潮福利片在线看| av超薄肉色丝袜交足视频| 亚洲av五月六月丁香网| 中国美女看黄片| 黑人巨大精品欧美一区二区mp4| 久久精品91无色码中文字幕| 一区二区三区激情视频| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美+亚洲+日韩+国产| 精品国产一区二区久久| 久久久国产欧美日韩av| 国产亚洲欧美精品永久| 丰满的人妻完整版| xxx96com| 欧美激情极品国产一区二区三区| 99国产精品99久久久久| 欧美日韩亚洲综合一区二区三区_| 国产伦一二天堂av在线观看| 欧美成人性av电影在线观看| 亚洲精品一卡2卡三卡4卡5卡| 久久天躁狠狠躁夜夜2o2o| 麻豆成人av在线观看| a在线观看视频网站| 丰满饥渴人妻一区二区三| 欧美乱妇无乱码| 每晚都被弄得嗷嗷叫到高潮| 国产麻豆69| 亚洲av成人不卡在线观看播放网| 首页视频小说图片口味搜索| 久久狼人影院| 国产高清videossex| 免费av毛片视频| 制服人妻中文乱码| 啦啦啦 在线观看视频| 国产精品野战在线观看 | 午夜激情av网站| 18美女黄网站色大片免费观看| 久久香蕉精品热| 在线观看免费日韩欧美大片| 国产精品综合久久久久久久免费 | 校园春色视频在线观看| 亚洲精品一二三| 国产人伦9x9x在线观看| 亚洲成av片中文字幕在线观看| 99精品在免费线老司机午夜| 天天添夜夜摸| 欧美激情久久久久久爽电影 | www.熟女人妻精品国产| 亚洲熟妇中文字幕五十中出 | 男女之事视频高清在线观看| 欧美日韩av久久| 18禁裸乳无遮挡免费网站照片 | 免费观看精品视频网站| 亚洲人成77777在线视频| 久久精品亚洲精品国产色婷小说| 精品福利永久在线观看| 动漫黄色视频在线观看| 国产国语露脸激情在线看| 新久久久久国产一级毛片| 亚洲第一欧美日韩一区二区三区| 国产高清激情床上av| 最新美女视频免费是黄的| 久久精品影院6| 在线国产一区二区在线| 亚洲精品中文字幕一二三四区| 老司机在亚洲福利影院| 欧美成狂野欧美在线观看| 亚洲专区中文字幕在线| av中文乱码字幕在线| 久久亚洲真实| 亚洲精品国产区一区二| 亚洲人成伊人成综合网2020| av在线播放免费不卡| 成人影院久久| 国产三级黄色录像| 超碰成人久久| 99riav亚洲国产免费| 亚洲国产欧美日韩在线播放| 免费在线观看亚洲国产| 亚洲国产精品999在线| 日韩欧美在线二视频| 啦啦啦免费观看视频1| 两人在一起打扑克的视频| 波多野结衣av一区二区av| √禁漫天堂资源中文www| 欧美黑人欧美精品刺激| 欧美日韩国产mv在线观看视频| 高清黄色对白视频在线免费看| 女同久久另类99精品国产91| 成年人黄色毛片网站| 日韩精品青青久久久久久| 可以免费在线观看a视频的电影网站| 久久精品国产亚洲av香蕉五月| 国产成人av激情在线播放| 女生性感内裤真人,穿戴方法视频| 精品国产国语对白av| 久久久久久久精品吃奶| 999久久久精品免费观看国产| 三级毛片av免费| 啦啦啦免费观看视频1| 久久午夜综合久久蜜桃| 午夜福利免费观看在线| 欧美日韩av久久| tocl精华| 久久热在线av| 五月开心婷婷网| 咕卡用的链子| 亚洲一区二区三区欧美精品| ponron亚洲| 可以免费在线观看a视频的电影网站| 黄色女人牲交| 真人做人爱边吃奶动态| 国产成人精品久久二区二区91| 黄网站色视频无遮挡免费观看| 操出白浆在线播放| 国产xxxxx性猛交| 国产日韩一区二区三区精品不卡| 国产成人精品在线电影| 九色亚洲精品在线播放| 操出白浆在线播放| 久久狼人影院| 99精品在免费线老司机午夜| 亚洲七黄色美女视频| 激情视频va一区二区三区| 亚洲人成伊人成综合网2020| 久久精品国产亚洲av香蕉五月| 免费观看精品视频网站| 男女之事视频高清在线观看| 久久精品91蜜桃| 精品久久久久久电影网| 国产精品久久久人人做人人爽| 啦啦啦在线免费观看视频4| 51午夜福利影视在线观看| 久久香蕉精品热| 久久这里只有精品19| 久久国产精品男人的天堂亚洲| 黑人欧美特级aaaaaa片| 国产精品自产拍在线观看55亚洲| 777久久人妻少妇嫩草av网站| 国产精品成人在线| 亚洲精品在线观看二区| 国产av一区在线观看免费| 色综合站精品国产| 9热在线视频观看99| 一级作爱视频免费观看| 国产又色又爽无遮挡免费看| 欧美最黄视频在线播放免费 | 色播在线永久视频| 一级,二级,三级黄色视频| 12—13女人毛片做爰片一| 精品久久蜜臀av无| 亚洲男人天堂网一区| 91九色精品人成在线观看| 18美女黄网站色大片免费观看| 好男人电影高清在线观看| 亚洲国产中文字幕在线视频| 成人免费观看视频高清| 黄色成人免费大全| 极品人妻少妇av视频| 精品人妻在线不人妻| 在线观看免费高清a一片| 精品福利永久在线观看| 亚洲 国产 在线| 日本三级黄在线观看| 视频区欧美日本亚洲| 九色亚洲精品在线播放| 日本wwww免费看| 国产高清激情床上av| 美女福利国产在线| 1024视频免费在线观看| 日本五十路高清| 亚洲欧洲精品一区二区精品久久久| 欧美日韩中文字幕国产精品一区二区三区 | 在线观看免费高清a一片| 母亲3免费完整高清在线观看| 国产高清视频在线播放一区| 免费久久久久久久精品成人欧美视频| 国产亚洲欧美在线一区二区| 变态另类成人亚洲欧美熟女 | 亚洲午夜理论影院| 十八禁人妻一区二区| 亚洲美女黄片视频| 黑人欧美特级aaaaaa片| 日本a在线网址| 成人av一区二区三区在线看| 亚洲国产中文字幕在线视频| 90打野战视频偷拍视频| 久久香蕉精品热| 首页视频小说图片口味搜索| 十八禁网站免费在线| 欧美性长视频在线观看| 精品熟女少妇八av免费久了| 亚洲精品久久成人aⅴ小说| 热re99久久国产66热| 丝袜人妻中文字幕| 无遮挡黄片免费观看| 黄色怎么调成土黄色| 久久久久久久精品吃奶| 日韩精品青青久久久久久| 搡老乐熟女国产| 久久中文字幕人妻熟女| 身体一侧抽搐| 亚洲国产中文字幕在线视频| 精品久久久久久久毛片微露脸| 中文亚洲av片在线观看爽| 少妇的丰满在线观看| 在线天堂中文资源库| 欧美日韩精品网址| 精品无人区乱码1区二区| 1024香蕉在线观看| 亚洲va日本ⅴa欧美va伊人久久| 精品熟女少妇八av免费久了| av视频免费观看在线观看| 亚洲欧美一区二区三区久久| 欧美乱妇无乱码| 男人舔女人下体高潮全视频| 色播在线永久视频| 两性夫妻黄色片| 男女下面进入的视频免费午夜 | 久久久久久亚洲精品国产蜜桃av| 欧美黑人欧美精品刺激| 欧美不卡视频在线免费观看 | 国产欧美日韩一区二区三| 一本大道久久a久久精品| 别揉我奶头~嗯~啊~动态视频| 80岁老熟妇乱子伦牲交| 日韩免费高清中文字幕av| 国产av又大| 久热这里只有精品99| 美国免费a级毛片| 一级作爱视频免费观看| 国产欧美日韩一区二区三| 欧美 亚洲 国产 日韩一| 一进一出抽搐动态| 搡老乐熟女国产| 国产欧美日韩精品亚洲av| 老熟妇乱子伦视频在线观看| 很黄的视频免费| 男女床上黄色一级片免费看| 欧美日韩精品网址| 久久久久久亚洲精品国产蜜桃av| 黄色女人牲交| 一本大道久久a久久精品| 欧美日韩福利视频一区二区| 国产一卡二卡三卡精品| 老司机亚洲免费影院| 亚洲人成伊人成综合网2020| 天堂动漫精品| 亚洲专区国产一区二区|