• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Modeling, Simulation and Optimization Approach of Crude Oil Cold Stripping Process

    2013-07-25 10:07:30KavehHezavehHesarmaskanHabibAleEbrahim
    中國煉油與石油化工 2013年1期

    Kaveh Hezaveh Hesarmaskan; Habib Ale Ebrahim

    (Amirkabir University of Technology (Tehran Polytechnic), Department of Chemical Engineering, Tehran, Iran)

    A Novel Modeling, Simulation and Optimization Approach of Crude Oil Cold Stripping Process

    Kaveh Hezaveh Hesarmaskan; Habib Ale Ebrahim

    (Amirkabir University of Technology (Tehran Polytechnic), Department of Chemical Engineering, Tehran, Iran)

    Cold stripping is the most common process for crude oil sweetening in oilfields particularly at offshore installations because of its low price and relatively easy operating conditions in comparison with other sweetening processes. In this paper the cold stripping process in tray column has been modeled mathematically in static and dynamic modes, and solved with the MATLAB software. This process has been used in the existing treatment facilities of an offshore oil production complex for verifying the model results. With the help of HYSYS software the effective parameters on the process have been discussed and the optimized conditions finalized after some plant modifications for improving the performance of stripper columns have been proposed.

    modeling, simulation, optimization, sour crude oil, cold stripping

    1 Introduction

    Crude oil generally contains a definite amount of sulfur compounds, and the crude that contains especially hydrogen sulfide (H2S) in excess of 5.1×10-3kg/m3is called a sour one. The main focus is aimed at removal of hydrogen sulfide, because other sulfur compounds are far less toxic and not so aggressively corrosive. The presence of brine exacerbates the equipment corrosion as does CO2[1]. Personnel safety and equipment protection require that H2S and other sulfur compounds be removed as far as possible.

    The most important source of H2S production in oil reservoirs is propped up by the activity of sulfate reduction bacteria (Desulfovibrio,Desolfotomaculum,Desolfococcus,DesolfonemaandDesolfosarcina) at injected water contact zone with existing water in formation[2]. Regardless of the source, the remaining H2S content in crude should be decreased to 2.1×10-5kg/m3to protect personnel, mitigate corrosion and meet sales specification. Crude oil can be sweetened by many of the same chemicals used to remove acid gases from sour natural gas. Amines, caustic, zinc salts and other bases and/or oxidizing agents have been considered but because crude oil usually contains far more contaminants, the liquid/liquid chemical processes are seldom used[3]. Removal of H2S is usually accomplished by stripping with cold or hot natural gas that are cheaper than other alternative processes[4-6].

    Although there are many models and simulation works for gas sweetening including especially those based on alkanolamines method[7-8], the exclusive models for crude stripping by natural gas must be considered for this process.

    In this work the non-equilibrium method has been chosen for modeling the process in static and dynamic modes[9]. In static mode the number of trays can be calculated and in order to obtain the mole fraction on each tray the dynamic mode has been applied to study the changes at the column inlet. Mass transfer equations have been obtained on the basis of film theory because it has been assumed that the resistance against mass transfer is only in the phases and not in the fluid interface[10].

    To verify the model results, an offshore oil production complex in Persian Gulf with its stripping facilities consisting of two consecutive tray columns has been assigned as the candidate of the pilot unit. To determine the effect of the modification over H2S expulsion and crude oil quality at our case plant, a sensitivity analysis has been carried out and finally the optimized process parameters have been proposed.

    2 Model Definition

    2.1 Static mode

    In static mode, fluids in the column with counter-current flow pattern have constant conditions without any changes. The model calculates the number of trays and mole fraction across the column. The pressure and temperature profiles through trays can be considered as final results. However, because of nature of the process, the temperature profile is not included in our scope of work.

    2.1.1 Total mass balance equation

    Assumptions for total mass balance equation are as follows:

    1) Mass transfer is in a steady-state condition;

    2) Direction of mass transfer should be from crude oil to stripping gas; and

    3) Crude and gas leave each tray with inlet conditions defined as:

    in whichxandyare mole fractions of H2S in bulk of crude oil and sweet gas, andqlandqgare flow rates of crude and gas.

    2.1.2 Mass balance in crude phase

    The assumptions for mole fraction calculations are considered as follows:

    1) Movement of each gas bubble has no effect on other bubbles; and

    2) Gas flow speed into the crude is stable.

    So it can be written as follows:

    in whichKxis total mass transfer coefficient,Cis total concentration andm″is slope of the equilibrium curve.

    Figure 1 The schematic of bottom of the column

    The mass transfer is a liquid-controlled one andm″is quite large, so Equation (1) can be simplified as shown below:

    in whichMWis molecular weight,Ais mass transfer area andmlis total molar flow rate of crude oil. In these equations, two unknown parameters,ynandxn-1are calculated and the number of trays in the column can be obtained.

    2.2 Dynamic model

    The inlet crude changes fromLintoL2insuddenly. Because of this change, the volume of crude on each tray increases and reaches an equilibrium after some specified time by decreasing the height of liquid on the tray to weir height[11]. The liquid volume on the tray changes exponentially so the following equation can be written for the response time:

    With the following equations it is possible to calculate the mole fractions on each tray:

    Crude volume change on each tray and flow rate of discharged fluids for each tray can be calculated by means of the volume balance as shown below[12]:

    3 Results and Discussion

    3.1 Pilot plant data

    The total renovation project in the Bahregansar field wascompleted in 2007 and a new complex was installed near old facilities and put on production to replace them in 2008. Sour crude oil from the three-phase separators flows to the top tray of the first stage stripper and sweet gas from the sweet separator (with crude of formations containing very low concentration of H2S flowing to this three-phase separator) splits up into two parts. A part of sweet gas flows to the bottom of the first stage stripper column, whereas the crude flows downwards inside the column. In the second stripper column the remaining hydrogen sulfide is flashed off. The H2S content of treated crude is finally lower than 5.5×10-5kg/m3. The schematic of process flow diagram is given in Figure 2.

    The composition of sour crude, sweet crude and sweet gas is listed in Table 1.

    Figure 2 The schematic of plant PFD

    Table 1 Fluids composition

    The inlet crude comes from sour separators at 55 ℃and 0.68 MPa and flows to the first column at 0.42 MPa. The temperature of stripping sweet gas is 40 ℃. Each column with 15 bubble cap trays is counted from top to bottom; and the internal differential pressure between trays is 14 kPa.

    3.2 Modeling results

    Sour crude oil with a flow rate of 3.5 m3/s enters the first stage stripper column. The sweet gas injection rate is: 78 m3/s in the first stage column and 49 m3/s in the second one. Pressure in these columns is set at 0.4 MPa and 0.2 MPa, respectively. The differential pressure at the top and bottom of trays must be maintained at 14 kPa. Modeling has been done in static mode and the H2S mole fraction across the column is shown in Figure 3. To achieve a specified level of H2S concentration to meet the market requirements and standards, it can be clearly seen from Figure 3 that 27 trays must be used in one stripper column.

    Figure 4 shows the comparison between model results and experimental data.

    Pressure profile across the columns is shown in Figure 5. It is obvious that the profile is linear and the summation of pressure drop of trays is equal to the total column pressure drop. When the inlet flow of crude increases suddenly, the volume of liquid on each tray becomes a function of time;therefore the mass transfer coefficient is time-dependent. Change in inlet flow leads to change in the thickness of liquid on weir (Figure 6). The overflow thickness (L0w) can be calculated using theFrancisformula as presented below[13-14]:

    Figure 3 H2S mole fraction of crude oil on trays

    Figure 4 H2S mole fraction of crude oil (model and plant data)

    in whichWmis effective weir length obtained from diagrams that have been designed for this purpose and depends on weir length and ratio ofL0wto column diameter[15].

    Figure 5 Pressure profile across the column trays

    Figure 6 Overflow thickness on weir

    Figure 7 Response time at different L

    The dynamic model calculates the time it takes to return to a steady state. It can be seen from Equation 10 that the ratio of overflow thickness before and after inlet flow change(L=L0w/ L1w)depends on the changing flow, but this relationship is not linear because the ratio ofW/Wmchanges withL0w/d. Figure 7 shows the response time trend at differentL.It has been clearly shown in Figure 7 that bigger change has greater effect on response time, in other words whilst the inlet crude flow is increasing, the response time for getting back to steady state on each tray is growing up, and in some conditions ifLis a very small amount, it is not possible for the system to adapt the trays and columns to be restored to stable condition.

    3.2.1The Effect of gas flow rates and columns pressure on H2S and specific gravity of crude

    The sensitivity analysis has been carried out by means of experimental, modeling and simulation data coupled with the following inputs: The sweet gas flow rate changes from 39 m3/s to 78 m3/s in the first stage column, and from 20 m3/s to 59 m3/s in the second one, with the sour crude oil flow rate equating to 3.5 m3/s. The results are plotted in Figure 8. As shown in Figure 8, it is obvious that increasing the flow of sweet gas in the second stage column to more than 39 m3/s has a slight effect on the final concentration of H2S.

    Figure 8 Effect of sweet gas on H2S content of crude

    The curves of specific gravity of crude oil versus sweet gas flow rate are presented in Figure 9. The specific gravity of crude increases with an increasing amount of sweet gas injected into the second stage column. When the injection rate is greater than 39 m3/s, the curve shows a fairly steep slope.

    Figure 10 and Figure 11 have been obtained with the following conditions: The pressure in the first stage column is changed from 0.55 MPa to 0.35 MPa at a sweet gas injection rate of 55 m3/s; and the pressure in the second stage column is changed from 0.35 MPa to 0.15 MPa at a sweet gas injection rate of 35.5 m3/s, with the crude oil flow rate equating to 3.5 m3/s.

    Figure 9 Effect of sweet gas rate on specific gravity of crude

    Figure 10 Effect of columns pressure on H2S content of crude

    Figure 11 Effect of columns pressure on specific gravity of crude

    The actual points are experimental data that are obtained from sampling at the plant and have been improved with the simulation software (HYSYS) and compared with results of main software (MATLAB) outputs. Since theplant is too sensitive to changes, it is not allowed to change the system at any wanted point for each analysis. Other points have been obtained using the HYSYS software in compliance with trays efficiency regulations so that the human errors arising from laboratory work have been reduced. In the MATLAB software, trays have been considered as ideal with no efficiency defined and the difference between the simulation results and actual ones is related with this fact, but the trends of behavior coincide with the reality.

    3.2.2 Stripper columns optimization

    Upon analyzing the processing parameters, it is possible to produce oil with higher quality by optimizing the sweet gas injection rates and pressures in stripping columns. The results are demonstrated in Table 2.

    Table 2 Results of optimized columns of BAHREGANSAR

    The data listed in Table 2 have revealed that the content of H2S can reach an optimal value of 5.85×10-5kg/m3under the following conditions: a first stage column pressure of 0.42 MPa coupled with a sweet gas injection rate of 55 m3/s, and a second stage column pressure of 0.22 MPa coupled with a sweet gas injection rate of 35.5 m3/s.

    3.2.3 Process and control system modification

    With a relatively simple extra-work on process technology and instrumentation, it is possible to divert a part of sweet crude through a 4-inch pipeline and a flow control valve to the main inlet of sour crude separator. The flow control valve enables the operators to regulate the sweet crude flow rate to meet different processing and production needs.

    Figure 12 shows the effect of sweet crude injection rate on final H2S content in the product. The gradual increase of sweet crude flow has been implemented at optimum processing conditions as referred to in Section 3.2.2.

    Figure 12 Effect of sweet crude on H2S content of product crude

    As shown in Figure 12, the H2S content in the product crude has been decreased finally. It is possible to add more sweet crude to the sour crude inlet by this approach in case of some processing challenges such as carry-over in columns and booster pump operating troubles. Under the same condition the H2S content can be further decreased to 4.1×10-5kg/m3as a reasonable finding of this modification.

    Figure 13 Effect of sweet crude on specific gravity of product crude

    Figure 13 verifies the effect of sweet crude oil blending on the quality of final product. The specific gravity of crude oil has been decreased from 0.882 to 0.871 and flow rate at the outlet of the second stage stripper column has been increased from the previous level of 3 m3/s to 3.3 m3/s.

    4 Conclusions

    1) Modeling in static state helps us to estimate the num-ber of trays needed for cold stripping column as a rule of thumb to determine the economic and technical aspects of design.

    2) By increasing the overflow ratio, the response time to achieve the new stable state increases and in some conditions returning to the stable state is impossible.

    3) The H2S content of crude oil decreases with an increase of sweet gas rate injected into columns but the quality of crude decreases vice versa. The H2S content of crude increases and its quality improves with an increasing columns pressure.

    4) In the case study, it has been established that the optimum sweet gas injection rate should be 55 m3/s for the first stage column and 35.5 m3/s for the second one, with 3.5 m3/s of sour crude oil flowing to the first stage stripper. The optimum pressure is 0.42 MPa for the first stage stripper and 0.22 MPa for the second stage stripper. These conditions can result in the treated sour crude with a specific gravity of 0.882 and a H2S content of 5.85×10-5kg/m3which is routed to onshore facilities for further processing.

    5) The sweet crude oil injection at the separator inlet is a very interesting modification to achieve transmission of more treated crude oil with premium quality. This approach is simple, functional and effective and has no serious side effects on the downstream processes. It is possible for operators to control the plant at emergency cases which need to increase the pressure of columns or to decrease the stripping gas without any significant changes on quality of the target product.

    Nomenclature

    A—Mass transfer area;

    C—Total concentration;

    m—Slope of equilibrium curve;

    V—Volume of liquid equilibrium;

    W—Weir length;

    x—Mole fraction in liquid bulk;

    y—Mole fraction in gas bulk;

    r—Density;

    τ— Response time.

    [1] Manning F S, Thompson Richard E. Oilfield Processing, Volume One: Natural Gas[M]. Pennwell Publishing Co., 1991

    [2] Rabbani A R. Hydrogen Sulfide and Sour Oil and Gas Fields[M]. Amirkabir University of Technology Publication, 2010

    [3] Manning F S, Thompson Richard E. Oilfield Processing, Volume Two: Crude Oil. Pennwell Publishing Co., 1995

    [4] Shipster T R. Partial removal of H2S from crude oil by stripping with natural gas[R]. IP Review 1965, 393

    [5] Clanton C W, Gipson R E. Sweetening of sour crude using gas stripping process [R]. SPE, 1969, 2599

    [6] Allen R F, Smith S J, Walker G J. Offshore crude sweetening by gas stripping [R]. SPE, 1987, 16533/1-11

    [7] Lakashmanan C C, Potter O E. Dynamic simulation of packed and tray- type absorbers [J]. Ind Eng Chem Res, 1989, 28: 1397-1405

    [8] van Loo S, van ElK E P, Versteeg G F. The removal of solutions of methyl–diethanol-amine [J]. Journal of Petroleum Science and Engineering, 2007, 55: 135-145.

    [9] Seader J D. The rate-based approach for modeling staged separation [J]. Chem Eng Prog, 1989, 85: 41-49

    [10] Skelland A H P. Diffusional Mass Transfer[M]. John Wiley & Sons, 1974

    [11] Handerton F M. Open Channel Flow[M]. New York: Macmillan, 1966,

    [12] Pourkarimi S, Hallajisani A, Majidian N, et al. A novel dynamic model and simulation of gas sweetening in tray beds [J]. International Journal of Modeling and Optimization, 2011, 4(1): 269-274

    [13] American Institute of Chemical Engineers. Bubble-tray Design Manual[M]. New York, 1958

    [14] Bolles W L. Design of Equilibrium Stage Processes[M]. McGraw-Hill Book Companies, 1963

    [15] Treybal R E. Mass Transfer Operations[M], 3rdedition. McGraw-Hill Book Companies, 1980

    Recieved date: 2012-11-14; Accepted date: 2012-12-26.

    Kaveh Hezaveh Hesarmaskan, E-mail: k.hezaveh@aut.ac.ir.

    xxx大片免费视频| 在线观看三级黄色| 亚洲四区av| 久久久久久久国产电影| 精品少妇黑人巨大在线播放| 免费高清在线观看视频在线观看| 黑人猛操日本美女一级片| 亚洲国产最新在线播放| 老熟女久久久| 你懂的网址亚洲精品在线观看| 观看av在线不卡| 免费久久久久久久精品成人欧美视频 | 三上悠亚av全集在线观看 | 99久久综合免费| 美女视频免费永久观看网站| 高清视频免费观看一区二区| 日本午夜av视频| 97在线视频观看| 久久久久网色| 80岁老熟妇乱子伦牲交| 91午夜精品亚洲一区二区三区| 在线观看三级黄色| 国产美女午夜福利| 熟女av电影| 亚洲精品日韩在线中文字幕| 9色porny在线观看| 国产精品久久久久久久久免| 国产黄片美女视频| 亚洲国产精品专区欧美| 少妇被粗大的猛进出69影院 | 婷婷色麻豆天堂久久| av免费观看日本| 亚洲av男天堂| 国产在线一区二区三区精| 亚洲熟女精品中文字幕| 亚洲人成网站在线播| 欧美少妇被猛烈插入视频| 精品一品国产午夜福利视频| 天堂8中文在线网| 三级经典国产精品| 日韩 亚洲 欧美在线| 26uuu在线亚洲综合色| 欧美成人午夜免费资源| 亚洲欧洲精品一区二区精品久久久 | 一区二区三区精品91| 性色avwww在线观看| 人妻夜夜爽99麻豆av| 香蕉精品网在线| 亚州av有码| 国产探花极品一区二区| 中文字幕精品免费在线观看视频 | 99精国产麻豆久久婷婷| 欧美3d第一页| 日韩中字成人| 欧美97在线视频| 天美传媒精品一区二区| 一级毛片黄色毛片免费观看视频| 亚洲国产成人一精品久久久| 高清av免费在线| 久久国产精品男人的天堂亚洲 | 精品久久久久久久久av| 免费av不卡在线播放| 国产精品久久久久久精品电影小说| 少妇人妻久久综合中文| 少妇被粗大的猛进出69影院 | 亚洲欧美清纯卡通| 亚洲精品aⅴ在线观看| 精品亚洲乱码少妇综合久久| 有码 亚洲区| 伦理电影大哥的女人| 一本大道久久a久久精品| 在线观看免费日韩欧美大片 | 免费黄网站久久成人精品| 麻豆成人午夜福利视频| 观看美女的网站| 亚洲av福利一区| 国产午夜精品久久久久久一区二区三区| 插逼视频在线观看| 国产探花极品一区二区| 赤兔流量卡办理| 免费看av在线观看网站| 一本一本综合久久| 国产黄片视频在线免费观看| 五月伊人婷婷丁香| 一级,二级,三级黄色视频| 久久久久国产网址| tube8黄色片| 久久精品国产亚洲av天美| 我要看黄色一级片免费的| 国产视频首页在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品,欧美精品| 午夜日本视频在线| 日韩av在线免费看完整版不卡| 丁香六月天网| 日日撸夜夜添| 成年美女黄网站色视频大全免费 | 国产中年淑女户外野战色| 丰满少妇做爰视频| 大片电影免费在线观看免费| 精品久久久久久电影网| 国产精品偷伦视频观看了| av天堂中文字幕网| 精品人妻熟女毛片av久久网站| 日韩电影二区| 免费看日本二区| 一级黄片播放器| 美女cb高潮喷水在线观看| 在线观看免费高清a一片| 国产精品免费大片| 九九久久精品国产亚洲av麻豆| 免费高清在线观看视频在线观看| 成人亚洲欧美一区二区av| 欧美老熟妇乱子伦牲交| 黄色欧美视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 少妇熟女欧美另类| 成人无遮挡网站| 精品国产国语对白av| 在线观看美女被高潮喷水网站| 激情五月婷婷亚洲| 中文精品一卡2卡3卡4更新| 国产精品秋霞免费鲁丝片| 久久久久精品久久久久真实原创| 26uuu在线亚洲综合色| 五月伊人婷婷丁香| 少妇人妻一区二区三区视频| 国产亚洲5aaaaa淫片| 国产极品天堂在线| 永久网站在线| 亚洲国产精品一区二区三区在线| 成人亚洲欧美一区二区av| 女性生殖器流出的白浆| 麻豆成人av视频| 色5月婷婷丁香| 国产成人午夜福利电影在线观看| 久久亚洲国产成人精品v| 97超碰精品成人国产| 国产av一区二区精品久久| 精品人妻一区二区三区麻豆| 中文在线观看免费www的网站| 中文字幕人妻熟人妻熟丝袜美| 免费少妇av软件| 国产日韩欧美在线精品| 乱人伦中国视频| 亚洲精品中文字幕在线视频 | 午夜精品国产一区二区电影| 99热全是精品| 午夜激情福利司机影院| 国产精品一二三区在线看| 99热全是精品| 超碰97精品在线观看| 三级国产精品片| 欧美丝袜亚洲另类| 在线观看www视频免费| 免费黄色在线免费观看| 女性被躁到高潮视频| 偷拍熟女少妇极品色| 国产视频首页在线观看| 中国国产av一级| 久久精品久久精品一区二区三区| 色视频在线一区二区三区| 亚洲内射少妇av| 亚洲一级一片aⅴ在线观看| 高清av免费在线| 高清不卡的av网站| 男人和女人高潮做爰伦理| av女优亚洲男人天堂| 人妻系列 视频| 免费黄频网站在线观看国产| 国产精品国产av在线观看| 男女无遮挡免费网站观看| 在线观看免费视频网站a站| 久久狼人影院| 人人妻人人爽人人添夜夜欢视频 | 内射极品少妇av片p| 日本黄色日本黄色录像| 亚洲经典国产精华液单| 肉色欧美久久久久久久蜜桃| 精品人妻偷拍中文字幕| 国产午夜精品久久久久久一区二区三区| 亚洲av男天堂| 九色成人免费人妻av| 中国国产av一级| 91在线精品国自产拍蜜月| 欧美日韩国产mv在线观看视频| 人妻少妇偷人精品九色| 婷婷色av中文字幕| 国产高清三级在线| 久久这里有精品视频免费| 成年女人在线观看亚洲视频| 午夜影院在线不卡| 中文字幕人妻熟人妻熟丝袜美| 久久毛片免费看一区二区三区| 精品酒店卫生间| 欧美xxⅹ黑人| 午夜福利网站1000一区二区三区| 91aial.com中文字幕在线观看| 精品久久久久久久久亚洲| xxx大片免费视频| 丰满迷人的少妇在线观看| 美女内射精品一级片tv| 久久久久精品性色| 国产欧美日韩一区二区三区在线 | 一本一本综合久久| 国产亚洲一区二区精品| 国产高清三级在线| 国产成人精品福利久久| 在线观看av片永久免费下载| 国产亚洲欧美精品永久| 伦理电影免费视频| 99久久综合免费| 久热久热在线精品观看| 99热这里只有是精品50| 国产黄片美女视频| 久久国产乱子免费精品| av一本久久久久| 国内精品宾馆在线| 成人二区视频| 中国美白少妇内射xxxbb| 美女大奶头黄色视频| 国产一区亚洲一区在线观看| 美女福利国产在线| 晚上一个人看的免费电影| 蜜桃在线观看..| 国产精品一区二区性色av| 日日撸夜夜添| 国产免费视频播放在线视频| 天堂俺去俺来也www色官网| 亚洲丝袜综合中文字幕| 欧美日韩一区二区视频在线观看视频在线| 国产欧美日韩综合在线一区二区 | 免费黄色在线免费观看| 精品一品国产午夜福利视频| 制服丝袜香蕉在线| 女人精品久久久久毛片| 久久国产亚洲av麻豆专区| 国产精品久久久久久久久免| 欧美激情国产日韩精品一区| 在线观看av片永久免费下载| 各种免费的搞黄视频| 亚洲国产最新在线播放| 亚洲精品中文字幕在线视频 | 我的老师免费观看完整版| 色吧在线观看| 日韩欧美精品免费久久| 久久精品国产鲁丝片午夜精品| 国产黄片美女视频| 一区二区av电影网| 能在线免费看毛片的网站| 亚洲国产精品国产精品| 久久久国产精品麻豆| 婷婷色综合大香蕉| 青青草视频在线视频观看| 久久精品国产亚洲网站| h视频一区二区三区| 在线看a的网站| 一本色道久久久久久精品综合| 国语对白做爰xxxⅹ性视频网站| 99久久人妻综合| av有码第一页| 搡女人真爽免费视频火全软件| 91久久精品国产一区二区成人| 在线亚洲精品国产二区图片欧美 | 高清视频免费观看一区二区| 国产精品国产三级专区第一集| 亚洲欧洲精品一区二区精品久久久 | 婷婷色综合www| 久久久久久久久久久丰满| 欧美激情极品国产一区二区三区 | 热re99久久精品国产66热6| 久久久精品免费免费高清| 免费高清在线观看视频在线观看| 一级毛片 在线播放| 久久6这里有精品| 国产精品久久久久久久久免| 亚洲精华国产精华液的使用体验| 亚洲一区二区三区欧美精品| 2018国产大陆天天弄谢| 亚洲国产最新在线播放| av线在线观看网站| av有码第一页| 日韩伦理黄色片| 美女内射精品一级片tv| 亚洲国产精品国产精品| 色网站视频免费| 亚洲一级一片aⅴ在线观看| 毛片一级片免费看久久久久| 熟妇人妻不卡中文字幕| 成年人免费黄色播放视频 | 久久影院123| 亚洲精品第二区| 人人妻人人爽人人添夜夜欢视频 | 国产日韩一区二区三区精品不卡 | 又粗又硬又长又爽又黄的视频| videossex国产| 高清在线视频一区二区三区| 高清午夜精品一区二区三区| 少妇被粗大猛烈的视频| 在线观看三级黄色| 久久精品国产a三级三级三级| 久久精品夜色国产| 青春草视频在线免费观看| 一级毛片黄色毛片免费观看视频| 国产精品人妻久久久影院| 在线 av 中文字幕| 国产淫语在线视频| 蜜臀久久99精品久久宅男| 美女中出高潮动态图| 97超碰精品成人国产| 亚洲精品自拍成人| av天堂久久9| 三级国产精品片| 日韩在线高清观看一区二区三区| 亚洲精品亚洲一区二区| 丰满迷人的少妇在线观看| 欧美日韩亚洲高清精品| 国产白丝娇喘喷水9色精品| 精品国产一区二区久久| 王馨瑶露胸无遮挡在线观看| 极品少妇高潮喷水抽搐| 免费观看av网站的网址| 日韩av免费高清视频| 国产中年淑女户外野战色| 国产伦在线观看视频一区| 免费观看a级毛片全部| 亚洲,一卡二卡三卡| 丝瓜视频免费看黄片| 波野结衣二区三区在线| av又黄又爽大尺度在线免费看| 国产亚洲精品久久久com| 80岁老熟妇乱子伦牲交| 亚洲精品,欧美精品| 18禁在线无遮挡免费观看视频| 精品人妻熟女av久视频| 亚洲国产精品一区三区| 国产一区有黄有色的免费视频| 国产精品一区二区三区四区免费观看| 男女国产视频网站| 一级毛片黄色毛片免费观看视频| 三级国产精品欧美在线观看| 草草在线视频免费看| 日日摸夜夜添夜夜爱| av在线app专区| 精品熟女少妇av免费看| 国产精品三级大全| 国产日韩欧美视频二区| 国产精品99久久久久久久久| 午夜av观看不卡| 久久久久久久精品精品| 久久久久久人妻| 久久人妻熟女aⅴ| 久久午夜综合久久蜜桃| 久久久久久久大尺度免费视频| 亚洲成人av在线免费| 一本—道久久a久久精品蜜桃钙片| 亚洲国产精品成人久久小说| 日韩在线高清观看一区二区三区| 国产真实伦视频高清在线观看| 国产高清国产精品国产三级| 简卡轻食公司| 成人美女网站在线观看视频| 中文天堂在线官网| 一级二级三级毛片免费看| 亚洲精品国产av蜜桃| 精品国产露脸久久av麻豆| 少妇的逼好多水| 妹子高潮喷水视频| 五月开心婷婷网| 丰满人妻一区二区三区视频av| 成年人午夜在线观看视频| 久久久精品免费免费高清| 亚洲av国产av综合av卡| 一级毛片久久久久久久久女| 亚洲国产成人一精品久久久| 美女脱内裤让男人舔精品视频| 国产国拍精品亚洲av在线观看| 久久精品久久久久久久性| 国产伦理片在线播放av一区| 亚洲精品日韩av片在线观看| 亚洲成人手机| 久久精品熟女亚洲av麻豆精品| 亚洲国产精品一区二区三区在线| 成人特级av手机在线观看| 亚洲人成网站在线播| 亚洲成人av在线免费| 啦啦啦在线观看免费高清www| 亚洲成人一二三区av| 免费观看av网站的网址| av天堂久久9| 久久精品国产a三级三级三级| 在线看a的网站| av国产精品久久久久影院| 涩涩av久久男人的天堂| av在线观看视频网站免费| 亚洲国产最新在线播放| 国产午夜精品一二区理论片| 又大又黄又爽视频免费| 99九九在线精品视频 | a级毛片在线看网站| av天堂久久9| 99久久人妻综合| 亚洲av日韩在线播放| a级毛片免费高清观看在线播放| 亚洲国产欧美日韩在线播放 | 欧美性感艳星| 观看免费一级毛片| 日本av免费视频播放| 国产精品久久久久成人av| 欧美一级a爱片免费观看看| 在线观看免费日韩欧美大片 | 99九九线精品视频在线观看视频| 18禁动态无遮挡网站| 黑丝袜美女国产一区| 国产亚洲欧美精品永久| 亚洲精品成人av观看孕妇| 性高湖久久久久久久久免费观看| 啦啦啦在线观看免费高清www| 香蕉精品网在线| 全区人妻精品视频| 久久久久人妻精品一区果冻| 中文字幕制服av| 国产高清不卡午夜福利| 一级片'在线观看视频| 亚洲av不卡在线观看| 国内少妇人妻偷人精品xxx网站| 亚洲婷婷狠狠爱综合网| av专区在线播放| 国产 一区精品| 人妻人人澡人人爽人人| 在线观看www视频免费| 国产欧美亚洲国产| www.色视频.com| 免费在线观看成人毛片| 久久国产精品大桥未久av | 夜夜爽夜夜爽视频| 3wmmmm亚洲av在线观看| 男人爽女人下面视频在线观看| 性高湖久久久久久久久免费观看| xxx大片免费视频| 啦啦啦啦在线视频资源| 国产高清不卡午夜福利| 欧美少妇被猛烈插入视频| 久久精品国产亚洲av天美| 91久久精品电影网| 亚洲精品久久午夜乱码| 男女无遮挡免费网站观看| 又大又黄又爽视频免费| 97精品久久久久久久久久精品| 岛国毛片在线播放| tube8黄色片| 欧美97在线视频| 日日啪夜夜撸| 精品久久久精品久久久| 国产又色又爽无遮挡免| 七月丁香在线播放| 性色av一级| 久久久久久久久久久久大奶| 美女福利国产在线| 91精品一卡2卡3卡4卡| 十分钟在线观看高清视频www | 国产av一区二区精品久久| 99久久精品热视频| 成人二区视频| 欧美精品一区二区大全| 亚洲国产精品一区三区| 中文字幕久久专区| 精品一区二区免费观看| 国产精品一二三区在线看| 亚洲第一区二区三区不卡| 日本av手机在线免费观看| 少妇被粗大的猛进出69影院 | 精品人妻熟女av久视频| 黄色一级大片看看| 久久人人爽人人爽人人片va| 亚洲精品一区蜜桃| 2022亚洲国产成人精品| 99九九在线精品视频 | 精品久久国产蜜桃| 国产在线一区二区三区精| 日产精品乱码卡一卡2卡三| 日本欧美国产在线视频| 欧美激情国产日韩精品一区| 精品午夜福利在线看| 久久精品国产亚洲av天美| av在线观看视频网站免费| 在线 av 中文字幕| 国产黄片美女视频| 久久综合国产亚洲精品| av专区在线播放| 日韩伦理黄色片| 亚洲成人一二三区av| 国产永久视频网站| 丰满少妇做爰视频| 欧美变态另类bdsm刘玥| 午夜激情久久久久久久| 亚洲精品一区蜜桃| 又大又黄又爽视频免费| 超碰97精品在线观看| 久久久午夜欧美精品| 日韩免费高清中文字幕av| 日韩,欧美,国产一区二区三区| 国产视频首页在线观看| 日韩电影二区| 一级毛片 在线播放| 国产精品久久久久久精品古装| 婷婷色麻豆天堂久久| 狂野欧美激情性bbbbbb| 日本免费在线观看一区| 久久韩国三级中文字幕| 99re6热这里在线精品视频| 久久久精品94久久精品| 一级毛片aaaaaa免费看小| 日韩三级伦理在线观看| 亚洲av在线观看美女高潮| 人人妻人人澡人人看| 久热久热在线精品观看| 汤姆久久久久久久影院中文字幕| 在线 av 中文字幕| 九九在线视频观看精品| 一区二区三区四区激情视频| 99re6热这里在线精品视频| 久久ye,这里只有精品| 国产午夜精品一二区理论片| 亚洲国产欧美在线一区| 中文在线观看免费www的网站| 精品国产乱码久久久久久小说| 欧美成人精品欧美一级黄| 自拍偷自拍亚洲精品老妇| 久久久久国产精品人妻一区二区| 纵有疾风起免费观看全集完整版| 日韩免费高清中文字幕av| 欧美最新免费一区二区三区| 国产免费视频播放在线视频| 国产白丝娇喘喷水9色精品| 久久青草综合色| 五月开心婷婷网| 免费观看无遮挡的男女| 日本黄色日本黄色录像| 人人澡人人妻人| 欧美+日韩+精品| 午夜免费鲁丝| 亚洲,欧美,日韩| 国产精品女同一区二区软件| 中文资源天堂在线| 国产精品一区二区在线不卡| 人妻 亚洲 视频| 午夜激情久久久久久久| 日韩精品免费视频一区二区三区 | 狂野欧美激情性bbbbbb| 精品人妻偷拍中文字幕| 韩国av在线不卡| 只有这里有精品99| 丰满饥渴人妻一区二区三| 亚洲av日韩在线播放| 丝袜脚勾引网站| 男的添女的下面高潮视频| 国产美女午夜福利| 亚洲精品乱码久久久久久按摩| 免费在线观看成人毛片| 街头女战士在线观看网站| 建设人人有责人人尽责人人享有的| 在线观看免费日韩欧美大片 | 久久久久久久国产电影| 99久久精品热视频| 久久久久久久亚洲中文字幕| 99久久中文字幕三级久久日本| 精品亚洲乱码少妇综合久久| 各种免费的搞黄视频| 大又大粗又爽又黄少妇毛片口| 国产精品国产三级国产av玫瑰| 国产精品一区www在线观看| 久久免费观看电影| 韩国av在线不卡| 街头女战士在线观看网站| 极品教师在线视频| 欧美bdsm另类| 久久精品国产a三级三级三级| 亚洲av.av天堂| 国产日韩欧美在线精品| 国产成人精品婷婷| 午夜视频国产福利| 美女xxoo啪啪120秒动态图| 高清视频免费观看一区二区| 国精品久久久久久国模美| 国产黄片美女视频| 亚洲综合精品二区| 在线天堂最新版资源| 国语对白做爰xxxⅹ性视频网站| 寂寞人妻少妇视频99o| 狂野欧美激情性bbbbbb| 高清黄色对白视频在线免费看 | 国产有黄有色有爽视频| 国产精品嫩草影院av在线观看| 日韩人妻高清精品专区| 免费在线观看成人毛片| 哪个播放器可以免费观看大片| 高清毛片免费看| 亚洲精品乱久久久久久| 亚洲第一av免费看| 久久久国产一区二区| 日韩成人伦理影院| 国产高清有码在线观看视频| 国产白丝娇喘喷水9色精品| 亚洲精品国产av成人精品| 国产永久视频网站| 另类精品久久| 久久精品久久久久久噜噜老黄| 丝瓜视频免费看黄片| 亚洲av福利一区| 亚洲精华国产精华液的使用体验| 丰满迷人的少妇在线观看| 免费看光身美女| 人妻人人澡人人爽人人| a级毛片在线看网站|