• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Fracture Behaviors of Selected Aluminum Alloys Under Three-point Bending

    2013-07-25 11:26:29MingzhiXINGYonggangWANGZhaoxiuJIANG
    Defence Technology 2013年4期

    Ming-zhi XING,Yong-gang WANG*,Zhao-xiu JIANG

    Dynamic Fracture Behaviors of Selected Aluminum Alloys Under Three-point Bending

    Ming-zhi XING,Yong-gang WANG*,Zhao-xiu JIANG

    Mechanics and Materials Science Research Center,Ningbo University,Ningbo 315211,China

    The dynamic fracture behaviors of the extruded 2024-T4 and 7075-T6 aluminum alloys are investigated by using an instrumented drop tower machine.The specimens are made from a 25 mm diameter extruded circular rod.The dynamic three-point bending tests of each alloy are carried out at different impact velocities.The initiation fracture toughness and average propagation fracture toughness of 2024-T4 and 7075-T6 are determined at different loading rates.The results show that both the initiation toughness and the propagation toughness increase with the loading rate.Further,the difference between the fracture toughness behaviors of 2024-T4 and 7075-T6 is found to be dependent on the variation of fracture mechanism.The comprehensive fractographic investigations of the fracture surfaces clearly demonstrate that the fracture mode of 2024-T4 is predominantly transgranular fracture with high density small-sized dimples,and the fracture mode of 7075-T6 is mainly intergranular fracture with many intermetallic particles in the bottom of voids located in the fracture surface.

    Copyright?2013,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    Fracture toughness;Three-point bending test;Aluminum alloy;Transgranular fracture;Intergranular fracture

    1.Introduction

    Aluminum alloys have been the most widely used structural materials in aerospace industry on account of their high stiffness/weight ratio and strength/weight ratio for several decades[1,2].Two types of alloys,2000 series(Al-Cu-Mg) and 7000 series(Al-Zn-Mg-Cu)alloys are age-hardened aluminum alloys(artif i cial aging)with high strength.Many experimentshavebeenconductedtoinvestigatethe compressive or tensile stress-strain behavior of aluminum alloy under the static and dynamic loading[3-6].However,in some applications,the aluminum alloy structures are easily fractured due to impact loading,such as the impact of debris during take-off or landing of a plane.Therefore,it is of major importance to understand and predict the dynamic fracture behaviors of high-strength aluminum alloys for actual engineering application.

    A comprehensive characterization of the fracture behaviors of aluminum alloy under quasi-static and dynamic loading has prompted numerous investigations into its fracture behaviors in recentyears.Pedersenetal.[7]studiedthefracturemechanisms of AA7075-T651 aluminum alloy under various loading conditions,and discussed the inf l uence of stress triaxiality on its fracture behavior through the introduction of a notch in the tensile specimen.Mostafavi et al.[8]made a series of uniaxial, biaxialandtriaxialtestsforAA2024-T361,andinvestigatedthe effectofstressstateonthefractureofAA2024-T361.Chenetal. [9]explored the dynamic fracture behavior of extruded aluminum alloy by using an instrumented Charpy test machine and V-notch specimens.It was found that the dissipated energy is practically invariant to specimen orientation and notch direction for the recrystallized alloy.For the extruded alloys,thedissipated energy is lower when the longitudinal direction of specimen is at a 90°angle to the extrusion direction. Dumont et al.[10]studied the relationship among microstructure,strength and toughness of 7000 series aluminum alloy. They examined the inf l uences of quenching rate and aging treatment on the precipitate microstructure and the associated compromise between yield strength and fracture toughness. Hanetal.[11]studiedtheeffectsofthepre-stretchingandaging on the strength and fracture toughness of 7050 aluminum alloy. The results show that the peak-aged 7050 aluminum alloy possesses a higher strength,but its fracture toughness is poor. Recently,B?rvik et al.[12]investigated the quasi-brittle fractureofAA7075-T651aluminumalloyplateinplateimpacttest.

    In fact,the fracture behaviors of aluminum alloys are different from those of materials processed by rolling, extruding and heat treatment due to their complex and inhomogeneous microstructures[13].How the microstructure affects the fracture toughness and crack propagation is of special interest[14].Even though the aforementioned authors studied the fracture behavior of aluminum alloy plate,they did not paid enough attention to the fracture behavior of extruded aluminum alloy rod,especially under impact loading.

    The aim of this paper is to study the dynamic fractures of age-hardened 2024-T4 and 7075-T6 aluminum alloys.A series of dynamic three-point bending tests of the notched specimen were carried out by using Instron Ceast 9350-HV drop tower. Specif i cally,the effects of loading rate(expressed as the time rate of change of the stress intensity factor[15])on the initiation fracture toughness and propagation fracture toughness were investigated.The metallurgical investigations of fracture surfaces by using optical microscopy(Keyence VHX-E1000) and desk-top scanning electron microscopy(Phenom-World BV Phenom G2 Pro)are presented below.

    2.Materials

    Fig.1.Tri-planar optical micrographs of the microstructures of 2024-T4 and 7075-T6.

    Table 1Main chemical compositions of investigated alloys(mass%).

    Fig.2.Engineering stress-engineering strain curves of 2024-T4 at different strain rates.

    Two different age-hardened aluminum alloys,2024-T4 temper and 7075-T6 temper,are investigated in this research. The alloys are provided as extruded rods with 25 mm in diameter produced by Aluminium Company of America (ALCOA).Their chemical compositions are listed in Table 1. The polished and etched microstructures of 2024-T4 and 7075-T6 aluminum alloys are shown in Fig.1(a)and(b), which are the tri-planar optical micrographs of the extruded rods along the three orthogonal directions,respectively.For 2024-T4,many coherent CuMgAl2precipitate phases and Al-Cu-Mn dispersions in the grain interiors are presented,as shown in Fig.1(a).The coarse recrystallized grains with elongated irregular shape along the extrusion direction are observed in the longitudinal section,while the nearly equiaxed and evenly distributed grains are observed in the transverse section.For 7075-T6,seen from Fig.1(b),many hardening phase η'(coherent MgZn2)in the grain interiors and precipitates η(noncoherent MgZn2)at the grain boundaries are elongated along the extrusion direction,too.The precipitatefree zones adjacent to the grain boundaries are formed,as shown in Fig.1(a)and(b).These zones are softer than the matrix so that the trend towards the formation of strain localization appears during deformation.The formation ofgrain boundary precipitates depends on the cooling condition at the solid solution temperature[10,14].

    The tensile properties of the two alloys at a wide range of strain rates have been investigated[16].The tensile tests of the two alloys at low strain rate were performed on a standard tensile test machine.A split-Hopkinson tension bar(SHPT) was used for the tensile test at high strain rate.The typical engineering stress-engineering strain curves of 2024-T4 and 7075-T6 aluminum alloys at four different strain rates are shown in Figs.2 and 3,respectively.By comparing Figs.2 and 3,it is observed that the yield stress of 7075-T6 alloy is higher than that of 2024-T4 alloy.However,2024-T4 alloy exhibits a moderate strain hardening rate and a strain-rate sensitivity, while 7075-T6 alloy exhibits an insignif i cant strain hardening rate and a strain-rate sensitivity.Their fracture properties could be strongly affected by strain hardening rate and yield stress[10].

    Fig.3.Engineering stress-engineering strain curves of 7075-T6 at different strain rates.

    3.Dynamic three-point bending test

    The extruded aluminum alloy rods are machined into rectangular specimens with 15 mm in width,7.5 mm in thickness and 75 mm in length for the dynamic fracture test. The direction of length is consistent with the direction of extrusion deformation.An edge notch with 0.25 mm in width and 4 mm in depth is made at the center of the specimen by using a wire electrical discharge machine.Subsequently,the specimens are fatigued in a three-point bending conf i guration in order to develop a sharp fatigue crack extending from the end of notch.The length of the fatigue crack is typically about 1 mm,resulting in a total initial crack length,a~5 mm,such that a/W~0.33.

    A dynamic three-point bending test set-up is shown in Fig.4,which consists of a drop tower for impact loading,a notched specimen and two anvils.The 5.08 kg drop tower is equipped with an instrumented hemispherical tup.The specimen is placed on two anvils which have a span of 60 mm between them.The impact load prof i le of specimen is measured by using a dynamic force measurement transducer with the frequency response of 8 kHz.The initial impact velocity is measured by an electro-optical device.For each test, the load signals are recorded as a function of time.Then the displacement,xdis,of drop tower can be estimated using Newton’s second law by successive integration of load signal

    Fig.4.Schematic diagram of dynamic three-point bending test set-up for test of notched specimen.

    where v0is the measured initial impact velocity,m is the mass of drop tower(m=5.08 kg),and F(τ)is the impact load measured at the tup.Finally,the absorbed energy can be calculated by successive integration of force-displacement curve.

    4.Experimental results and discussions

    Fig.5.Representative force-time curves of 2024-T4 and 7075-T6.

    4.1.Calculation of initiation fracture toughness

    In all experiments,the load forces are recorded up to the completefracturesofspecimens.Therepresentative load-time graph is shown in Fig.5,with impact velocity of 2.44 m/s.It can be seen from Fig.5 that the load-time curve of 2024-T4 is almost linear up to a peak point where an abrupt crack growth takes place with a sudden drop in load,indicating that the dynamic fracture of 2024-T4 is brittle. However,the load-time curve of 7075-T6 displays an initial linearity and noticeable successive oscillations with nonlinear characteristic,and the decrease in load after passing the peak load is slow,indicating that the dynamic fracture of 7075-T6 is ductile.It is worthwhile to note that the initial slopes of the load-time curves of 2024-T4 and 7075-T6 are the same, which may be attributed to the same initiation f l exural stiffness of the specimens.

    For the quasi-static three-point bend specimen,the plane strain stress intensity factor(SIF)of Mode I fracture can be calculated from the expression given as[17]

    Fig.6.The variation of KIdwith time for 2024-T4 and 7075-T6 in dynamic three-point bending test.

    where P(t)is the load force history.The loading rate,KdI,is calculated using a least squares f i t to the linear portion of the loading curve;and the initiation fracture toughness.

    Fig.7.Load force and total absorbed energy vs.displacement in dynamic three-point bending test.

    Fig.8.Dynamic SIF-time curves at different impact velocities for 2024-T4.

    Fig.9.Dynamic SIF-time curves at different impact velocities for 7075-T6.

    Fig.10.Force-displacement curves at different impact velocities for 2024-T4.

    In Fig.6,there is a region of approximate linear variation of KdIwith time.The slope of this region is determined from a least squares f i t,and is shown as a dashed line in Fig.6.The values of KdIcfor 2024-T4 and 7075-T6 are indicated on the experimental curve at a point of intersection with the dotted line having a slope of 0.95˙KdIfor the values of 48 MPa m1/2and 32 MPa m1/2,respectively.KdIcof 2024-T4 is higher than that of 7075-T6,which indicates that 2024-T4 has better crack initiation tolerance.The overall difference between the fracture behaviors of 2024-T4 and 7075-T6 may be attributed to the different mechanisms of crack nucleation and growth, which is discussed in Section 6.

    4.2.Calculation of propagation fracture toughness

    Initiation fracture toughness is commonly called as fracture toughness.However,a propagation fracture toughness is used to characterize the resistance to a propagating crack of dynamic fracture.The propagation fracture toughness is directly related to the energy dissipation in failure process.An energetic method is used to calculate the propagation fracture toughness.

    Fig.11.Force-displacement curves at different impact velocities for 2024-T4.

    Fig.12.Initiation and average propagation toughnesses at different loading rates.

    Fig.13.3D optical micrographs of fracture surfaces from three-point bending tests.

    The absorbed energy,W1,at maximum force,the absorbed energy,W2,after passing the maximum force and the total absorbed energy,W=W1+W2,can be calculated by successive integration of the force-displacement curve during impact,as shown in Fig.7.In fact,new crack surfaces are created by part of the total absorbed energy.Here,W2is assumed to represent the dissipated energy during crack propagation[9].The average propagation fracture energy per unitareaisdef i nedasGc=W2/Ac,whereAc(10 mm×7.5 mm)is the area of the crack surfaces created.Atthe plane strain state,the average dynamic propagation fracture toughness is expressed as[18]

    Fig.14.Optical micrograph of crack tip region of 2024-T4.

    where E and v are Young’s modulus and Poisson’s ratio of specimen, respectively, and KdP Ic is the dynamic propagation fracture toughness. The dynamic propagation fracture toughnesses of 2024-T4 and 7075-T6 are determined as 35 MPa m1/ 2 and 85 MPa m1/2, respectively, according to Eq. (3) and the calculated W2 in Fig. 7.

    4.3.Effect of loading rate

    The loading rate is an important factor which inf l uences the fracture toughness of material.In our experiment,the impact velocity of the drop tower is varied from 2 m/s to 4 m/s to adjust the loading rate.Figs.8 and 9 show the dynamic SIF-time curves of 2024-T4 and 7075-T6 at the different impact velocities,respectively.As shown in Figs.8 and 9,the experiments were achieved at four different loading rates,and the corresponding initiation fracture toughnesses of 2024-T4 and 7075-T6 were determined.Figs.10 and 11 show the displacement-load force curves of 2024-T4 and 7075-T6 at the different impact velocities,respectively.The approach described in Section 5.2 is used to calculate the propagation fracture toughness.Fig.12 shows that both the initiation and propagation fracture toughnesses almost increase linearly with the loading rate.It can be seen from Fig.12 that 2024-T4 has better crack initiation tolerance,while 7075-T6 has better crack growth tolerance.The differences may be attributed to the effect of microstructure on the fracture behaviors of two selected 2000 and 7000 series aluminum alloys,which is discussed in detail in the next section.

    Fig.15.Optical micrograph of crack tip region of 7075-T6.

    5.Fractography

    Fig.16.Backscattered electron micrographs of fracture surfaces of 2024-T4 specimen.

    A comprehensive fractographic investigation of the fracture surface is carried out by using Keyence VHX-1000E optical digital microscope with low magnif i cation and Phenom G2 Pro scanning electron microscope with high magnif i cation. The overall 3D fracture surface feature is observed by Keyence VHX-1000E,while more details are observed by Phenom G2 Pro,revealing how the microstructure affects the fracture mechanisms.

    Fig.17.Backscattered electron micrographs of fracture surfaces of 7075-T6 specimen.

    5.1.Optical microscopy

    The 3D optical micrographs of the fracture surface were obtained by using the feature of depth composition of Keyence VHX-1000E in the three-point bending tests of 2024-T4 and 7075-T6,as shown in Fig.13(a)and(b).It can be seen from Fig.13 that the fracture surface consists of two regions.One is in the center of fracture zone of specimen characterized by typical tensile fracture,and another is in the boundary of fracture zone characterized by typical shear fracture,which is at a 45°angle with respect to the main fracture surface.The shear fracture is caused by the larger shear stress on the central axis of bending specimen.The fracture surface of 7075-T6 is rougher than that of 2024-T4,which implies that more energy is absorbed in the process of crack propagation.

    In order to further investigate the crack front propagation process,thespecimensarebended atverysmallimpactvelocity such that the pre-crack is extended at a short distance,but does notleadtoacatastrophicfailure.Theregionaroundthecracktip of the specimen is cut out,and its plane normal to the plane of crackpropagation ispolished.Theoptical micrographsofcrack tipregionsin2024-T4 and7075-T6 aluminumalloys areshown in Figs.14 and 15,respectively.For 2024-T4 from Fig.14,the slender crack propagates mainly through matrices containing the f i ne the fracture mode is predominantly transgranular and the crack path occasionally follows the grain boundary.For 7075-T6(Fig.15),two interesting observations are obtained. First,a mixed fracture mode consisting of intergranular and transgranularfacetsisobserved.Thegrainboundaryprecipitate density of 7075-T6 is higher than that of 2024-T4.This promotes an intergranular ductile fracture,which is a prominent fracture mode in high strength metallurgical state(e.g.,T6-treated material).Second,many voids nucleated at grain boundary precipitates are observed.Through voids growth and linking each other,the macro-voids and macro-cracks are formed,which is associated with the higher fracture energy absorbed by 7075-T6,as shown in Fig.7.

    5.2.Scanning electron microscopy

    The microstructure of aluminum alloy,including grain boundaries,grain boundary precipitates,precipitation free zones,and coarse intermetallic particles,is important to investigate the fracture behavior.The effect of microstructure on the fracture mechanism was further investigated by using the scanning electron microscope.All microscopic examinations are done on the fracture surface in the middle of the specimen thickness.The typical backscattered electron micrographs[low magnif i cation(2000×)and high magnif i cation(10,000×)]of fracture surfaces of 2024-T4 and 7075-T6 specimens are shown in Figs.16 and 17(a)and(b),respectively,revealing the dimple structures and the distribution of particles on fracture surfaces. Two classes of dimples are observed,namely the large-sized dimples caused by the coarse intermetallic particles or the grain boundary precipitates,and the high density small-sized dimples nucleated in the grain interiors.It is easily observed from Figs.16 and 17 that the characteristic feature of fracture surface of 2024-T4 is markedly different from that of 7075-T6. The fracture surfaces of 2024-T4 are decorated with few small intermetallic particles and high density small-sized dimples.It indicates that the crack growth is mainly transgranular by forming thevoids around f i ne but densely distributed dispersoid particles,andseldomintergranularalongthegrainboundariesor precipitation free zones,as shown in Fig.16(a)and(b).This can be also seen from the optical micrographs in Fig.14.However, for 7075-T6,the primary intermetallic particles in the bottom of void are presented on the fracture surface(Fig.17(a)),and an area with high density dimples is seldom observed from Fig.17(b).It indicates that the crack growth is mainly intergranular along the grain boundaries or precipitate free zones. Sincetheseparticlezonesaresofterthanthematrixandareprone to strain localization during deformation,many voids are easilynucleated at the locations of these particles.This may be used to explain why 7075-T6 has higher yield stress but lower initiation fracture toughness compared with 2024-T4.The initiation fracture toughness is strongly dependent on the fracture mode.The observed fractographs reveal that the initiation fracture toughness of 7075-T6 with intergranular fracture is lower than that of 2024-T4 with transgranular fracture.

    6.Conclusions

    A notched specimen was used to investigate the dynamic fracture behaviors of the extruded 2024-T4 and 7075-T6 aluminum alloys under three-point bending.The initiation dynamic fracture toughness was determined at different loading rates in terms of the time rate of change of the stress intensity factor.In addition,the average propagation fracture toughness was calculated by using an energetic method.The initiation and averagepropagationfracturetoughnessesof2024-T4and7075-T6 are dependent on loading rate.For selected typical 2000 and 7000 series aluminum alloys,2024-T4 has better crack initiation tolerance,whereas 7075-T6 has better crack growth tolerance,which are associated with their different fracture modes.

    The comprehensive investigation of fracture surfaces was carried out by using the optical digital microscopy and the scanning electron microscopy.The fracture mode of 2024-T4 is predominantly transgranular fracture with high density small-sized dimples.However,the fracture mode of 7075-T6 is mainly intergranular fracture with many intermetallic particles in the bottom of void located in the fracture surface.

    Acknowledgments

    This research was supported by the NatiS100onal Science Foundation of China under Grant No.11072119,the Defense Industrial Technology Development Program under Grant No. B1520110003,the K.C.Wong Magna Foundation of Ningbo University,China,andagrantfromtheDepartmentofEducation of Zhejiang Province through the Impact and Safety of Costal Engineering Initiative,a COE Program at Ningbo University.

    [1]Heinz A,Haszler A,Keidel C,Moldenhauer S,Benedictus R,Miller WS. Recent development in aluminium alloys for aerospace applications. Mater Sci Eng 2000;A280(1):102-7.

    [2]Immarigeon J-P,Holt RT,Koul AK,Zhao L,Wallace W,Beddoes JC. Lightweightmaterialsforaircraftapplications.MaterCharact 1995;35(1):41-67.

    [3]Pedersen KO,Roven HJ,Lademo OG,Hopperstad OS.Strength and ductilityaluminumalloyAA7030.MaterSciEng 2008;A473(1-2):81-9.

    [4]Hu LX,Liu ZY,Wang ED.Microstructure and mechanical properties of 2040 aluminum alloy consolidated from rapidly solidif i ed alloy powders. Mater Sci Eng 2002;A323(2):213-7.

    [5]Luo L,Li MQ,Wu B.The correlation between f l ow behavior and microstructural evolution of 7050 aluminum alloy.Mater Sci Eng 2011;A530:559-64.

    [6]Wang YG,Jiang ZX.Dynamic compressive behavior of selected aluminum alloy at low temperature.Mater Sci Eng 2012;A553:176-80.

    [7]Pedersen KO,Borvik T,Hopperstad OS.Fracture mechanisms of aluminium alloy AA7075-T651 under various loading conditions.Mater Des 2011;32(1):97-107.

    [8]Mostafavi M,Smith DJ,Pavier MJ.Fracture of aluminium alloy 2024 under biaxial and triaxial loading.Eng Fract Mech 2011;78(8):1705-16.

    [9]Chen Y,Pedersen KO,Clausen AH,Hopperstad OS.An experimental study on the dynamic fracture of extruded AA6×××and AA7××× aluminium alloys.Mater Sci Eng 2009;A523(1-2):253-62.

    [10]Dumont D,Deschamps A,Brechet Y.On the relationship between microstructure,strength and toughness in AA7050 aluminum alloy. Mater Sci Eng 2003;A356(2):326-36.

    [11]Han NM,Zhang XM,Liu SD,Ke B,Xin X.Effects of pre-stretching and aging on the strength and fracture toughness of aluminium alloy 7050. Mater Sci Eng 2011;A528(10-11):3714-21.

    [12]B?rvik T,Hopperstad OS,Pedersen KO.Quasi-brittle fracture during structural impact of AA7075-T651 aluminium plates.Int J Impact Eng 2010;37(5):537-51.

    [13]Jata KV,Vasudevan AK.Effect of fabrication and microstructure on the fracture initiation and growth toughness of aluminium alloys.Mater Sci Eng 1998;A241(1-2):104-13.

    [14]Dumont D,Deschamps A,Brechet Y.A model for predicting fracture mode and toughness in 7000 series aluminium alloy.Acta Mater 2004;52(9):2529-40.

    [15]Owen DM,Zhuang S,Rosakis AJ,Ravichandran G.Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminum sheets.Int J Fract 1998;90(1-2):153-74.

    [16]Wang YG,Jiang ZX,Wang LL.Dynamic tensile fracture behaviors of selected aluminum alloys under various loading conditions.Strain 2013;49:335-47.

    [17]Anderson TL.Fracture mechanics.Boston:CRC Press;1991.

    [18]Huang S,Luo SN,Xia KW.Dynamic fracture initiation toughness and propagation toughness of PMMA.Proc SEM Annu Conf,Society for Experimental Mechanics Inc.Albuquerque:Nex Mexico USA;2009. p.1-9.

    1 February 2013;revised 28 May 2013;accepted 11 October 2013 Available online 6 December 2013

    *Corresponding author.

    E-mail address:wangyonggang@nbu.edu.cn(Y.G.WANG). Peer review under responsibility of China Ordnance Society

    Production and hosting by Elsevier

    2214-9147/$-see front matter Copyright?2013,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved. http://dx.doi.org/10.1016/j.dt.2013.11.002

    免费av中文字幕在线| 一级毛片久久久久久久久女| 91午夜精品亚洲一区二区三区| 久久久久久久久久人人人人人人| 日韩,欧美,国产一区二区三区| 91精品一卡2卡3卡4卡| 久久亚洲国产成人精品v| 人妻一区二区av| 国产精品不卡视频一区二区| 欧美+日韩+精品| 国产成人午夜福利电影在线观看| a级片在线免费高清观看视频| 另类亚洲欧美激情| kizo精华| 在线观看免费视频网站a站| 午夜免费男女啪啪视频观看| 久久婷婷青草| 少妇的逼水好多| 午夜视频国产福利| 精品一品国产午夜福利视频| 久久久a久久爽久久v久久| 黑人巨大精品欧美一区二区蜜桃 | 久久99精品国语久久久| 国产极品天堂在线| 男女边摸边吃奶| 久久热精品热| 日日啪夜夜撸| 国产黄频视频在线观看| 欧美日韩在线观看h| 中文欧美无线码| 国产一区二区三区av在线| 亚洲精品日韩av片在线观看| 亚洲欧美成人综合另类久久久| 日韩中字成人| 日日撸夜夜添| 国内揄拍国产精品人妻在线| 精品久久久久久电影网| 亚洲国产欧美在线一区| 国产精品欧美亚洲77777| 亚洲欧洲精品一区二区精品久久久 | av网站免费在线观看视频| 亚洲精品日韩在线中文字幕| 中文欧美无线码| 菩萨蛮人人尽说江南好唐韦庄| 日日撸夜夜添| 男女边吃奶边做爰视频| 一级二级三级毛片免费看| 视频中文字幕在线观看| 国产成人a∨麻豆精品| 成人无遮挡网站| 亚洲精品日本国产第一区| 亚洲人与动物交配视频| 香蕉精品网在线| 久久精品国产亚洲av天美| 青春草视频在线免费观看| 久久这里有精品视频免费| 秋霞伦理黄片| 蜜桃在线观看..| 日韩成人伦理影院| 少妇高潮的动态图| 99视频精品全部免费 在线| 男的添女的下面高潮视频| 亚洲精品亚洲一区二区| 少妇被粗大猛烈的视频| 久久99热6这里只有精品| 免费观看无遮挡的男女| 男男h啪啪无遮挡| 91在线精品国自产拍蜜月| 久久 成人 亚洲| 一本大道久久a久久精品| av不卡在线播放| 51国产日韩欧美| 下体分泌物呈黄色| 久久99热6这里只有精品| 亚洲图色成人| 日韩一区二区视频免费看| 久久亚洲国产成人精品v| 日本黄色日本黄色录像| 国产av码专区亚洲av| 你懂的网址亚洲精品在线观看| 久久久久久久久久久久大奶| 国产极品天堂在线| 日日撸夜夜添| 免费av中文字幕在线| 啦啦啦视频在线资源免费观看| 亚洲精品国产av成人精品| 麻豆成人午夜福利视频| 国产一级毛片在线| 大又大粗又爽又黄少妇毛片口| 97超碰精品成人国产| 日韩在线高清观看一区二区三区| videos熟女内射| 美女中出高潮动态图| 久久久久久久久久成人| av有码第一页| av.在线天堂| 国产午夜精品久久久久久一区二区三区| 女人精品久久久久毛片| 97在线视频观看| 一二三四中文在线观看免费高清| 性色avwww在线观看| 免费黄色在线免费观看| 亚洲精品中文字幕在线视频 | 岛国毛片在线播放| 中文字幕人妻丝袜制服| 国产亚洲5aaaaa淫片| 亚洲一级一片aⅴ在线观看| 色哟哟·www| 欧美性感艳星| 亚洲综合精品二区| 天堂俺去俺来也www色官网| 国产亚洲av片在线观看秒播厂| 在线播放无遮挡| 九九在线视频观看精品| 日韩av在线免费看完整版不卡| 日韩不卡一区二区三区视频在线| 少妇的逼好多水| 美女xxoo啪啪120秒动态图| 91久久精品国产一区二区成人| 欧美日韩av久久| 亚洲精品456在线播放app| 又黄又爽又刺激的免费视频.| 欧美+日韩+精品| 久久国产精品大桥未久av | 春色校园在线视频观看| 日韩 亚洲 欧美在线| 久久久久久久国产电影| 日韩欧美一区视频在线观看 | 高清不卡的av网站| 午夜91福利影院| 亚洲欧美日韩另类电影网站| 熟妇人妻不卡中文字幕| 日韩电影二区| 成人亚洲精品一区在线观看| 国产女主播在线喷水免费视频网站| 亚洲熟女精品中文字幕| 日韩不卡一区二区三区视频在线| 黑人高潮一二区| 91久久精品国产一区二区三区| 一区二区三区免费毛片| 最近2019中文字幕mv第一页| 99久久人妻综合| 日韩在线高清观看一区二区三区| 久久鲁丝午夜福利片| 黑丝袜美女国产一区| 91久久精品电影网| 日韩伦理黄色片| 亚洲欧洲日产国产| 久久午夜福利片| 久久精品久久久久久久性| 国产日韩欧美在线精品| 黄色一级大片看看| 亚洲激情五月婷婷啪啪| 国产精品国产三级国产av玫瑰| 少妇裸体淫交视频免费看高清| 在线 av 中文字幕| 高清毛片免费看| 一个人看视频在线观看www免费| 久久人妻熟女aⅴ| 观看av在线不卡| 亚洲内射少妇av| 久久午夜福利片| 热re99久久精品国产66热6| 国产色爽女视频免费观看| 看免费成人av毛片| 免费人妻精品一区二区三区视频| 中国三级夫妇交换| 天美传媒精品一区二区| 久久久久精品性色| 丝瓜视频免费看黄片| 国产伦精品一区二区三区四那| 精品国产露脸久久av麻豆| 午夜日本视频在线| 亚洲经典国产精华液单| 中文字幕人妻丝袜制服| 五月伊人婷婷丁香| 国产亚洲午夜精品一区二区久久| 亚洲国产最新在线播放| 91精品国产九色| 亚洲av成人精品一区久久| 麻豆成人av视频| 精品国产一区二区三区久久久樱花| 国产午夜精品久久久久久一区二区三区| 最近最新中文字幕免费大全7| 日韩成人av中文字幕在线观看| 国产 精品1| 国产乱人偷精品视频| 看免费成人av毛片| 男人舔奶头视频| 国产精品国产三级国产av玫瑰| 久久久久久久精品精品| 亚洲欧美一区二区三区国产| 免费黄频网站在线观看国产| 精品酒店卫生间| 亚洲精品乱码久久久久久按摩| 亚洲国产欧美在线一区| 一区二区三区乱码不卡18| 久久精品久久久久久久性| av专区在线播放| 九九在线视频观看精品| 欧美日韩精品成人综合77777| 多毛熟女@视频| 免费观看的影片在线观看| 国产乱人偷精品视频| 亚洲精品一二三| 国产成人精品无人区| 少妇人妻 视频| 久久97久久精品| 亚洲精品中文字幕在线视频 | 亚洲精品自拍成人| 国产精品人妻久久久影院| videossex国产| 乱码一卡2卡4卡精品| h日本视频在线播放| 观看av在线不卡| 综合色丁香网| 99热全是精品| 国产成人午夜福利电影在线观看| 久久久午夜欧美精品| 少妇的逼好多水| 亚洲av免费高清在线观看| 亚洲图色成人| 看十八女毛片水多多多| 欧美日韩视频精品一区| 有码 亚洲区| 久久久久网色| 老熟女久久久| 亚洲成色77777| 欧美日韩在线观看h| 在线观看国产h片| 国产乱来视频区| 99久久精品一区二区三区| 国产av码专区亚洲av| 久久久久视频综合| 我要看黄色一级片免费的| 乱码一卡2卡4卡精品| 黄色日韩在线| 亚洲怡红院男人天堂| 久久 成人 亚洲| 国产精品久久久久久久久免| 国产伦理片在线播放av一区| 蜜臀久久99精品久久宅男| 又粗又硬又长又爽又黄的视频| 高清欧美精品videossex| 国产日韩欧美亚洲二区| av有码第一页| 亚洲熟女精品中文字幕| 午夜免费鲁丝| 建设人人有责人人尽责人人享有的| 丝袜喷水一区| 久久av网站| 九九在线视频观看精品| 亚洲国产精品专区欧美| 一二三四中文在线观看免费高清| 久久午夜福利片| 妹子高潮喷水视频| 亚洲精品一区蜜桃| 成人午夜精彩视频在线观看| 高清黄色对白视频在线免费看 | 91精品国产九色| 久久婷婷青草| 日韩欧美 国产精品| 免费不卡的大黄色大毛片视频在线观看| 美女内射精品一级片tv| 成年av动漫网址| av有码第一页| 国产伦精品一区二区三区视频9| av国产久精品久网站免费入址| 久久精品国产亚洲av天美| 成人亚洲欧美一区二区av| 草草在线视频免费看| 王馨瑶露胸无遮挡在线观看| 又爽又黄a免费视频| 全区人妻精品视频| 亚洲怡红院男人天堂| 亚洲va在线va天堂va国产| 亚洲国产毛片av蜜桃av| 日本黄大片高清| 亚洲欧洲日产国产| 水蜜桃什么品种好| 80岁老熟妇乱子伦牲交| 亚洲精品自拍成人| 国产日韩一区二区三区精品不卡 | 一级二级三级毛片免费看| 久久99热6这里只有精品| 人人妻人人爽人人添夜夜欢视频 | 久久97久久精品| av线在线观看网站| 美女脱内裤让男人舔精品视频| 日韩中文字幕视频在线看片| 麻豆成人午夜福利视频| 精品一区二区三卡| 久久久亚洲精品成人影院| 国产亚洲最大av| 亚洲精品第二区| tube8黄色片| 国产 精品1| 免费人成在线观看视频色| 日本黄大片高清| 一级a做视频免费观看| 韩国av在线不卡| 国产在线视频一区二区| 国产极品粉嫩免费观看在线 | 26uuu在线亚洲综合色| 亚洲欧美清纯卡通| 亚洲国产毛片av蜜桃av| 中文天堂在线官网| 日韩强制内射视频| 在线观看www视频免费| 久久久久久久久久成人| 久久精品久久久久久噜噜老黄| 亚洲国产最新在线播放| 国产色婷婷99| 22中文网久久字幕| 丰满乱子伦码专区| 久久精品夜色国产| 亚洲国产精品999| 看非洲黑人一级黄片| 亚洲婷婷狠狠爱综合网| 新久久久久国产一级毛片| 免费观看在线日韩| 有码 亚洲区| 久久精品久久久久久久性| 成人免费观看视频高清| 各种免费的搞黄视频| 97精品久久久久久久久久精品| 国产伦精品一区二区三区四那| 亚洲欧美精品专区久久| 日日摸夜夜添夜夜爱| 日本91视频免费播放| 中文天堂在线官网| 亚洲精品国产成人久久av| 99热6这里只有精品| 九草在线视频观看| 七月丁香在线播放| 久久精品夜色国产| 国产在线视频一区二区| 黑人高潮一二区| 国产视频内射| 精品酒店卫生间| 夫妻午夜视频| 晚上一个人看的免费电影| 全区人妻精品视频| 国产精品三级大全| 夜夜爽夜夜爽视频| 一二三四中文在线观看免费高清| 丝袜脚勾引网站| 欧美成人午夜免费资源| 亚洲性久久影院| 日韩欧美 国产精品| 色哟哟·www| 三级国产精品片| 日韩电影二区| 亚洲电影在线观看av| 大片电影免费在线观看免费| 女性被躁到高潮视频| 精品视频人人做人人爽| 成人毛片a级毛片在线播放| 精品午夜福利在线看| 欧美日韩国产mv在线观看视频| 伊人久久国产一区二区| 熟女电影av网| 日韩不卡一区二区三区视频在线| 校园人妻丝袜中文字幕| 欧美成人午夜免费资源| 人妻制服诱惑在线中文字幕| 精品久久久久久电影网| 精品国产国语对白av| 精品99又大又爽又粗少妇毛片| 人妻制服诱惑在线中文字幕| 观看av在线不卡| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品久久午夜乱码| 国产视频内射| 国产成人一区二区在线| 五月伊人婷婷丁香| 国产黄片视频在线免费观看| 亚洲国产欧美日韩在线播放 | 久久人人爽人人爽人人片va| 老司机亚洲免费影院| 精品久久久噜噜| 国产成人精品久久久久久| av免费在线看不卡| 美女cb高潮喷水在线观看| 丝袜喷水一区| 亚洲精品乱码久久久久久按摩| 日本猛色少妇xxxxx猛交久久| 欧美日韩av久久| 久久精品国产a三级三级三级| 黄色日韩在线| 菩萨蛮人人尽说江南好唐韦庄| 久久精品久久精品一区二区三区| 妹子高潮喷水视频| 女人久久www免费人成看片| 精品久久久久久电影网| 日本欧美国产在线视频| 欧美成人午夜免费资源| 国产熟女欧美一区二区| 国产精品人妻久久久影院| 亚洲精品国产av成人精品| 丝袜喷水一区| av播播在线观看一区| 久久精品久久精品一区二区三区| 国产深夜福利视频在线观看| 国产男女超爽视频在线观看| 亚洲av男天堂| 一级毛片我不卡| 少妇精品久久久久久久| 国产免费一级a男人的天堂| 我要看日韩黄色一级片| 国产爽快片一区二区三区| 精品国产一区二区三区久久久樱花| 色吧在线观看| 中文字幕精品免费在线观看视频 | 亚洲美女视频黄频| 插阴视频在线观看视频| 精品一品国产午夜福利视频| 亚洲一区二区三区欧美精品| 在线观看美女被高潮喷水网站| 建设人人有责人人尽责人人享有的| 在线精品无人区一区二区三| 如日韩欧美国产精品一区二区三区 | 成年女人在线观看亚洲视频| 这个男人来自地球电影免费观看 | 国产午夜精品一二区理论片| 69精品国产乱码久久久| 亚洲成人手机| 少妇精品久久久久久久| 精品人妻偷拍中文字幕| 在线观看国产h片| 欧美成人午夜免费资源| 久久人妻熟女aⅴ| 久久久精品94久久精品| 欧美3d第一页| av天堂中文字幕网| 欧美国产精品一级二级三级 | 欧美日韩一区二区视频在线观看视频在线| 一边亲一边摸免费视频| 色视频www国产| 色94色欧美一区二区| 一边亲一边摸免费视频| 免费看av在线观看网站| 精品酒店卫生间| 99久久中文字幕三级久久日本| 下体分泌物呈黄色| 黄色配什么色好看| 一级片'在线观看视频| 国产精品伦人一区二区| 大话2 男鬼变身卡| 9色porny在线观看| 老熟女久久久| 久久久久久久久久久久大奶| 91精品国产国语对白视频| 日韩视频在线欧美| 欧美精品一区二区免费开放| 日韩欧美精品免费久久| 久久久欧美国产精品| 五月伊人婷婷丁香| 亚洲四区av| 伦精品一区二区三区| 99久久精品热视频| av不卡在线播放| 内射极品少妇av片p| 国产成人91sexporn| 少妇 在线观看| 久久国产精品大桥未久av | 一级爰片在线观看| 国产精品无大码| 国产精品久久久久成人av| 国产又色又爽无遮挡免| 极品人妻少妇av视频| 最近的中文字幕免费完整| 久久久久久久久久久免费av| 多毛熟女@视频| 观看美女的网站| 国产深夜福利视频在线观看| 男人舔奶头视频| 99九九线精品视频在线观看视频| 中文字幕人妻熟人妻熟丝袜美| 只有这里有精品99| 看免费成人av毛片| 国产精品偷伦视频观看了| 一本久久精品| 国产成人一区二区在线| 高清av免费在线| 伊人久久国产一区二区| 少妇人妻一区二区三区视频| a 毛片基地| 国产精品久久久久久久电影| 嫩草影院新地址| av视频免费观看在线观看| 国产一区亚洲一区在线观看| 久久久久久人妻| 少妇人妻一区二区三区视频| 国产黄色视频一区二区在线观看| 国产有黄有色有爽视频| 国产成人免费无遮挡视频| 亚洲性久久影院| 多毛熟女@视频| 美女中出高潮动态图| 99久久中文字幕三级久久日本| av女优亚洲男人天堂| 永久网站在线| 亚洲婷婷狠狠爱综合网| 伦精品一区二区三区| 一级毛片电影观看| 99热这里只有是精品50| 草草在线视频免费看| 亚洲国产欧美日韩在线播放 | 日韩 亚洲 欧美在线| 伊人亚洲综合成人网| 曰老女人黄片| 全区人妻精品视频| 高清不卡的av网站| 在线精品无人区一区二区三| 激情五月婷婷亚洲| 国产免费又黄又爽又色| 18禁裸乳无遮挡动漫免费视频| 亚洲人成网站在线播| 国产 一区精品| 韩国av在线不卡| 日韩av在线免费看完整版不卡| 美女cb高潮喷水在线观看| 波野结衣二区三区在线| 免费大片18禁| 赤兔流量卡办理| 国产精品免费大片| 一级爰片在线观看| 一本—道久久a久久精品蜜桃钙片| 内地一区二区视频在线| 成人黄色视频免费在线看| 国产精品一二三区在线看| 亚洲精品日韩在线中文字幕| a级毛色黄片| 在线观看免费日韩欧美大片 | 国产成人aa在线观看| 亚洲av欧美aⅴ国产| 最后的刺客免费高清国语| av有码第一页| 亚洲,一卡二卡三卡| 不卡视频在线观看欧美| 成人漫画全彩无遮挡| 日韩欧美一区视频在线观看 | 久久精品国产鲁丝片午夜精品| 免费播放大片免费观看视频在线观看| 丝袜在线中文字幕| 欧美亚洲 丝袜 人妻 在线| 国产黄色视频一区二区在线观看| 国产有黄有色有爽视频| 美女内射精品一级片tv| 伦理电影大哥的女人| 欧美国产精品一级二级三级 | av播播在线观看一区| 久久久久精品性色| 国产免费一级a男人的天堂| 99久久精品国产国产毛片| av专区在线播放| 欧美bdsm另类| 嘟嘟电影网在线观看| 在线看a的网站| 国产综合精华液| 蜜桃在线观看..| 久久久久人妻精品一区果冻| 在线播放无遮挡| 国产精品一区二区在线不卡| 国产午夜精品一二区理论片| 一级a做视频免费观看| 久久婷婷青草| 男女国产视频网站| 两个人免费观看高清视频 | 涩涩av久久男人的天堂| 国产一区亚洲一区在线观看| 欧美97在线视频| 色哟哟·www| 国产在线男女| av一本久久久久| 亚洲精品一二三| 日本爱情动作片www.在线观看| 免费大片黄手机在线观看| 国精品久久久久久国模美| 国产成人freesex在线| 久久青草综合色| 黄色一级大片看看| 一区二区三区免费毛片| 欧美区成人在线视频| 2021少妇久久久久久久久久久| 我的老师免费观看完整版| 国产黄色视频一区二区在线观看| 国产黄频视频在线观看| 狠狠精品人妻久久久久久综合| 色婷婷av一区二区三区视频| 在线观看人妻少妇| 日韩三级伦理在线观看| 久久婷婷青草| 在线观看美女被高潮喷水网站| 国产在线免费精品| 一区二区三区免费毛片| 国产免费福利视频在线观看| 欧美精品亚洲一区二区| 日本与韩国留学比较| 久久久久久人妻| 免费不卡的大黄色大毛片视频在线观看| 精品一区二区三卡| 久久ye,这里只有精品| 亚洲无线观看免费| 在线观看免费高清a一片| 肉色欧美久久久久久久蜜桃| 午夜激情福利司机影院| 亚洲美女黄色视频免费看| 高清毛片免费看| 国产精品国产三级国产av玫瑰| 日韩精品免费视频一区二区三区 | 亚洲成人一二三区av| 美女主播在线视频| 日日啪夜夜爽|