• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rough Sets Probabilistic Data Association Algorithm and its Application in Multi-target Tracking

    2013-07-25 11:26:29LongqingNISheshengGAOPengchengFENGKiZHAO
    Defence Technology 2013年4期

    Long-qing NI*,She-sheng GAOPeng-cheng FENGKi ZHAO

    Rough Sets Probabilistic Data Association Algorithm and its Application in Multi-target Tracking

    Long-qiang NIa,*,She-sheng GAOa,Peng-cheng FENGa,Kai ZHAOb

    aDepartment of Automatic Control,Northwestern Polytechnical University,Xi’an 710072,ChinabNorthwest Institute of Mechanical&Electrical Engineering,Xianyang 721099,China

    A rough set probabilistic data association(RS-PDA)algorithm is proposed for reducing the complexity and time consumption of data association and enhancing the accuracy of tracking results in multi-target tracking application.In this new algorithm,the measurements lying in the intersection of two or more validation regions are allocated to the corresponding targets through rough set theory,and the multi-target tracking problem is transformed into a single target tracking after the classif i cation of measurements lying in the intersection region.Several typical multi-target tracking applications are given.The simulation results show that the algorithm can not only reduce the complexity and time consumption but also enhance the accuracy and stability of the tracking results.

    Copyright?2013,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    Rough set;Target tracking;Data association;Data fusion

    1.Introduction

    In multi-target tracking(MTT)application,people want to estimate the states of several targets according to the measurements from some kinds of sensors(such as radar,infrared sensor and sonar).If the relationship between a tracked target and measurements lying in the validation regions is known beforehand,the target states could be estimated through standard fi ltering algorithms[1-5](Kalman fi lter,extended Kalman fi lter andsample-based fi lteringmethods).Butinpracticalapplication, this situation may not exist:some of the measurements may be originated from clutter or false alarms(returns from nearby objects like building,water tower,mountain,rain or ECM).So it is the most important to determine the corresponding relationships betweentargetsandmeasurementslyingintheintersectionoftwo or more validation regions in multi-target tracking[6].Two methods can be used to solve the data association problem:a) unique-neighbor data association[7,8],such as global nearest neighbor standard f i lter(GNNSF)and multi-hypothesis tracking (MHT),whichisusedtoassociateallthemeasurements(oroneof themeasurements)withone ofthe previouslycreatedtracks;and b)all-neighbor data association[6,9,10],such as joint probabilistic data association(JPDA),which is used to update all tracks by using all the measurements lying in the validation region. GNNSF only considers the most likely hypothesis for track update and new track initiation so that it is only used for sparse targets,accurate measurements,and low false alarms in the validation region[8,11].The multiple hypothesis tracker(MHT) is recognized theoretically as the optimum approach in Bayesian sense under idealized modeling assumptions.Unfortunately,the computationalcomplexity ofMHT limitsits practicalrealization even using the fastest computers available[9,12].In JPDA,a target tracking is updated by a weighted sum of all the measurements in the validation region[13-15].This means that themeasurements may contribute to the update of more than one target tracks.And also JPDA increases the track variance matrix of Kalman f i lter to account for the association uncertainty,however the increased covariance matrix leads to even more false observations in the validation region[8].In Ref.[9],a new allneighbor fuzzy association approach is used for tracking multitarget in a clutter environment.This method has a lower computationalcomplexityinaclutterenvironmentattheexpense of a lower performance compared to the standard JPDA.

    Inthispaper,theroughsettheoryisusedtodealwiththeecho measurements in the validation regions,and the measurements in the lower approximation,including the measurements originated from target under discussion absolutely,are used to update the target states directly;the measurements,including the measurements which are not originated from target under discussion and may be originated from target under discussion, whichlieintheupperapproximationbutarenotintheboundary region(intersection region)are discarded for target under discussion;the measurements in the boundary region are approximated by the measurements in the lower approximation and upper approximation.In this approach,the measurements in the intersection region are handled discriminatingly,and the validation matrix needs not to be calculated.The approach can eff i ciently reduce the association uncertainty compared with the joint probability data association algorithm.It can reduce the computational complexity to a large degree,and also do not increase the track variance,especially in dense clutter environment.

    2.Rough sets and the conformation of decision table for MTT

    We assume that there are two targets of interest in the f i led of view(FOV),as shown in Fig.1.In the two validation regions,the measurements y1and,y2may be originated from Target 1 or clutter;the measurementsy5,y6and y7may be originated from Target 2 or clutter;y3and y4may be originated form Target 1,Target 2 or clutter(clutters).

    Ifit can be decided that the measurements y3and y4belong to Target 1 or Target 2,the probabilistic data association(PDA) algorithm which can only be used for a single target tracking would be used to deal with the data association in MTT. Unfortunately,the measurements lying in the intersection area are of fuzzy uncertainty for?y1and?y2.Fuzzy uncertainty is always associated with a boundary region of a set[16].For example,if an element does not belong to a special set and also doesnotbelongtoits complementary setindomainofdiscourse, it probably belongs to the boundary region of the two sets.The rough set theory[17-22]is a novel mathematics method which can be used to process the uncertain,imprecise and fuzzy informations.This method is based on a classif i cation mechanism, which is considered as equivalence(indiscernibility)relation in the given space.In MTT,the returns lied in the intersection of validation regions can be considered as the boundary elements, and these measurements are uncertain according with the association rule(relationship between targets and measurements).

    In the rough set theory,the knowledge is often expressed as information table(information system).The values of elements in the information table are often acquired from sensor or given by expert.In the rough set theory,an information system is denoted as a quadruple[22]:(S=U,A,F,Vd), where U and A are the domain of discussion and the attribute set,respectively,which are the non-empty f i nite sets,F is the maping from set U to set A,and Vdis the value of attribute set. If the attribute set A is decomposed into C and D?A,C and D are called conditional attribute and decision attribute, respectively.The information systems are called the decision information systems.The process of data association in MTT is a typical decision information system in which the cumulative set of measurements at time index k can be regarded as the attribute set,and the association relation between target and measurement can be taken as decision attribute,which the measurement associates with which target.measurement,and R(k)is the covariance matrix of measurement error.

    Fig.1.Two targets with common measurements.

    Table 1Decision table for Fig.1.

    3.Rough sets probabilistic data association(RS-PDA)

    Probabilistic data association(PDA)is to use all of the validated measurements with different weights(probabilities) to update the target states[6,10,23].The PDA algorithm is used to calculate the association probability which describes the contribution of each validated measurement to the target of interest in real time.The association probability used in a tracking f i lter accounts for the uncertainty of measurement origin.Since this method does not take into account the measurements in the intersection of two or more validation regions,it can be used only for the tracking of a single target in clutter environment. The association probabilityβi

    k,which describes the probability of a measurement origin in PDA,is calculated as follows.Assume that θikis the association event which expresses whether the i-th measurement is associated with a target at time k,Ykis the set of validated measurements at time k,Ykis the cumulative set of measurements at time k,mkis the number of the validated measurements at time k,Vkis the volume of validation region,PGis the gate probability of that the correct measurement falls in the validation region,and PDis the detection probability of that the true measurement is detected. The association probability is calculated as follows[23]

    It can be known from the calculation process that the association probability is related with the volume of validation region,number of validated measurements,gate probability, detection probability,distribution function of false measurements and measurement residuals.In multi-target tracking,the calculation of association probabilities is quite complicated because a measurement can be originated from more than one target(for example,the measurements lie in the intersection region).Therefore,the probabilistic data association f i lter (PDAF)is not suitable for multi-target tracking problem unless it can be determined which measurements in the intersection region are originated from which target.

    The rough set theory proposed by Pawlak,which is used to deal with the imprecise and uncertain information system with potential knowledge of the information system,is discussed. In the theory,the knowledge is processed and found using equivalence relation or granularity.The equivalence relation and granularity are expressed by two def i nable or observable subsets called lower and upper approximations.The rough set theory has been successfully applied to machine learning, intelligent system,inductive reasoning,pattern recognition, image processing,signal analysis,knowledge discovery,decision analysis,expert system and many other f i elds.In the rough set theory,no prior information beyond the information system to be discussed is needed to accomplish the inference compared with other theory.In multi-target tracking,the measurements lying in the intersection region are uncertain for association application,which makes PDAF unsuitable for MTT.The rough sets theory can be used to deal with the measurements inside the intersection region and approximate these measurements with the measurements certainly associated with some target to be discussed.

    Two operators are def i ned on set X?U,that is

    BNB(X)is called the boundary set of X.

    For example,two targets at time index k have an intersection validation region,and some measurements lie in the intersection of the two validation regions.According to Fig.1, the lower approximation,upper approximation and boundary region of Target 1 are expressed in Fig.2.

    Fig.2.Upper and lower approximations about measurements for validation regions.

    In Fig.2,for Target 1,the measurements in the lower approximation are equivalent,these measurements can be used to update the state of Target 1 directly,and the measurements in the upper approximation but not in the boundary region are discarded,and the measurements in the boundary region are indiscernible for Target 1 or Target 2.Therefore,for a given target,only part of the measurements can be used to update the target states.The key of data association is to f i nd out the property of measurements in the boundary region in MTT application(the corresponding relationship between measurements and targets).

    The approximation quality of rough sets is expressed as follows[17,22]

    1)If αB(X)=1,then X is crisp with respect to B(X is precise with respect to B).That is to say,the boundary set BNB(X)=0,this indicate that no validation intersection about targets of interest exists in multi-target tracking;

    2)If αB(X)<1,then X is rough with respect to B(X is vague with respect to B).This indicates the intersection regions exist between the target of interest and other targets,and also there are some measurements in the intersection regions;

    3)If αB(X)=0,then X is internally B-indef i nable.This means that all the

    measurements of target of interest lie in the validation region of other targets.

    For 1),the single target tracking and data association approach can be used for multi-target tracking;for 2),the association relationship between measurements and targets needs to be found out,and the tracking f i lter and data association approach are used to update the target states,which will be emphatically discussed in this paper;for 3),the group and extended target tracking approaches can be used.

    Approximation quality(Eq.(9))can be used to measure the quality of decision on universe U,so it is proper to use this parameter to approximate the measurements in the boundary regionwiththemeasurementsinthelowerapproximation.Inthe data association,all the measurements in the validation region are approximated with the measurements in the lower approximation by approximation quality.Obviously,if the approximationqualityishigh,themeasurementsintheboundaryregion make more contribution to the target of interest;if the approximationqualityislow,themeasurementsintheboundaryregion make less contribution to the target of interest.Therefore,the measurements in the boundary region can be allotted to the related targets according to this contribution factor.

    For the targets having intersection validation regions,the approximation quality factors are inversely arranged according to the target number.That is

    and the number of boundary region measurements belonging to the associated validation region of target t is After the number of targets associated with related targets is calculated from Eq.(12),the position of the measurements in the boundary region for the target of interest should be determined.To decide this distribution of measurements,here the measurements in the boundary region is considered as a whole,and the relative distance factor is calculated by Eq.(13).

    Where,di2(k)is the distance between the predicted measurement and the considered measurement;ei(k)is the measurement residual;dm2ax,i(k)is the maximum distance on the direction of line connecting between the predicted measurement and the considered measurement in the validation region.

    For Target t,Nitmeasurements are selected from the boundary regiotn randomly,and the value of the relative distance factor d(k)should be kept constant.After the number and position of the measurements in boundary region are determined,the updated states of target can be calculated as follows[6,10,23]

    4.Data simulation and result analysis

    where Ft(k)is the state transition matrix,Gt(k)is the noise matrix,and wt(k)is the process noise which is assumed as white and normal probability distributions,that is

    where v(k)is the measurement noise,which is assumed as white and normal probability distributions,that is

    4.2.Data simulation and analysis

    In practical application,most of the target motion is composed of straight line and turning motions,including uniform speed or uniform acceleration,and the relative space relation of multi-target is composed of cross relation,parallel relation and split relation.For straight line moving target,the dynamics of the target is modeled as a linear discrete Wiener velocity model(DWVM):

    Fig.3.Tracking results of two cross targets simulated with RS-PDAF(detailed view).

    Fig.4.Track errors of two cross targets simulated with RS-PDAF(50 Monte Carlo simulations,and total time consuming:28.326 s).

    Fig.5.Tracking errors of two cross targets simulated with JPDAF(50 Monte Carlo simulations,and total time consuming:35.536 s).

    Here RS-PDAF is used to track two targets.Fig.3 shows the tracking results of two cross targets,Fig.6 shows the tracking results of two parallel targets,and Fig.9 shows the tracking results of two split targets in clutter environment.In Figs.4,5,7,8,10 and 11,the tracking errors for two cross targets,parallel targets and split targets simulated by RS-PDAF and JPDAF are compared,respectively.Here we assume the sampling interval Δt=1 s,the simulation process lasts for 500 s,the clutter density(expected number of false returns per unit volume in the measurement space)λ=103/km2,the measurement noise covariance matrix R=[9 100],the process noise covariance matrix Q=[16 16].

    Fig.6.Tracking results of two parallel targets simulated with RS-PDAF (detailed view).

    Fig.7.Tracking error of two parallel targets simulated with RS-PDAF(50 Monte Carlo simulations,and total time consuming:27.764 s).

    Fig.8.Tracking errors of two parallel targets simulated with JPDAF(50 Monte Carlo simulations,and total time consuming:34.562 s).

    Fig.9.Tracking results of two split targets simulated with RS-PDAF(detailed view).

    Figs.3-11 show the simulation results of cross,parallel and split targets based on RS-PDA and JPDAF,respectively. The tracking errors are listed in Table 2,and the time consuming is listed in Table 3.

    It can be seen from Tables 2 and 3 that the calculating errors ofRS-PDAarelessthanthoseofJPDA,andthetimeconsuming of RS-PDAF is 20%less than that of JPDAF.This is because JPDA makes an indiscriminate advantage of the measurements lyinginthevalidationregion.Thereforethemeasurementslying in the intersection region may be used for the state update of multiple targets,but RS-PDA distinguishes the measurements lying in the intersection of the validation regions for corresponding targets,compared with JPDAF this reduces the uncertainty about the origination of measurements.Because the RS-PDAF does not have to calculate the validation matrix which is time-consuming while JPDA f i lter does,the time consuming of RS-PDAF is less than that of JPDA f i lter.

    Fig.10.Tracking errors of two split targets simulated with RS-PDAF(50 Monte Carlo simulations,and total time consuming:28.403 s).

    Fig.11.Tracking errors of two split targets simulated with JPDAF(50 Monte Carlo simulations,and total time consuming:32.922 s).

    5.Conclusions

    Table 2Tracking error comparison between two methods for three cases.

    In this paper,a new data association method,RS-PDAF, based on rough sets theory is proposed.The method can reduce the uncertainty of the origination of measurements,and also make advantage of the measurements lying in the intersection region more objectively than JPDAF.After the classif i cation of rough sets,the relation between targets and measurements become clear so that the multi-target problem is easily translated into single target tracking.Compared with JPDAF,RS-PDAF reduces the number of measurements lying in the intersection region for a given target,makes data association process simpler and time-saving,and does not add the variance matrix of Kalman f i lter.Some typical datasimulations are proposed to illustrate the eff i ciency of this novel approach.The simulation results show that RS-PDA is more accurate and less time consuming compared with traditional JPDA.

    Table 3Time consuming for 3 cases.

    [1]Ristic B,Arulampalam S,Gordon N.Beyond the Kalman fi lter particle fi lters for tracking application.Artech House;2004.

    [2]Arulampalam MS,Maskell S,Gordon N.A tutorial on particle fi lters for online nonlinear/non-Gaussian Bayesian tracking.IEEE Trans Signal Process 2002;50(2):174-88.

    [3]Kandepu R,Foss B,Imsland L.Applying the unscented Kalman fi lter for nonlinear state estimation.J Proc Contr 2008;18(7):753-68.

    [4]Luo X,Moroz IM.Ensemble Kalman fi lter with the unscented transform. Phys D Nonlinear Phenom 2009;238(5):549-62.

    [5]Musa ZB,Watada J.Motion tracking using particle fi lter.KES 2008:119-26.Part III,LNAI 5179.

    [6]Kirubarajan T,Bar-Shalom Y.Target tracking using probabilistic data association-based techniques with applications to sonar,radar,and EO sensors.In:Handbook of multisensor data fusion:theory and practice. 2ed.CRC Press;2008.

    [7]Vasquez JR,Williams JL.Exploiting correlation effects within multiplehypothesis tracking.Math Comp Model 2006;43:1254-66.

    [8]Blackman SS.Multiple hypothesis tracking for multiple target tracking. IEEE A&E Mag 2004;19:5-8.

    [9]Aziz AM.A novel all-neighbor fuzzy association approach for multitargettrackinginaclutteredenvironment.SignalProcess 2011;91(8):2001-15.

    [10]Kirubarajan T,Bar-shalom Y.Probabilistic data association techniques for target tracking in clutter.Proc IEEE 2004;92(3):536-57.

    [11]Blackman S,Popoli R.Design and analysis of modern tracking systems. Norwood,MA:Artech House;1999.

    [12]Aziz AM.Fuzzy track-to-track association and track fusion approach in distributedmultisensor-multitargetmultiple-attributeenvironment. Signal Process 2007;87(6):1474-92.

    [13]Ba HX,Cao L,He XY,Cheng Q.Modi fi ed joint probabilistic data association with classi fi cation-aided for multitarget tracking.J Syst Eng Electr 2008;19:434-9.

    [14]Han CZ,Zhu HY,Duan ZS.Multi-source information fusion.Beijing: Tsinghua University Press;2006.

    [15]Messaoudi Z,Ouldali A,Oussalah M.Joint multiple target tracking and classi fi cation using controlled based cheap JPDA-multiple model particle fi lter in cluttered environment.In:ICISP 2008.pp.562-9.LNCS 5099.

    [16]PawlakZ,SkowronA.Rudimentsofroughsets.InformSci 2007;77(1):3-27.

    [17]Pawlak Z.Rough sets and intelligent data analysis.Inform Sci 2002;147:1-12.

    [18]Pawlak Z,Grzymala-Busse J,Slowinski R,Ziarko W.Rough sets. Commun ACM 1995;38(11):89-95.

    [19]Pawlak Z,Skowron A.Rough sets:some extensions.Inform Sci 2007;177(1):28-40.

    [20]Skowron A,Swiniarski R.Rough sets and higher order vagueness.Rough sets,fuzzy sets,data mining,and granular computing.In:10th International Conference,Regina,Canada,3641;2005.pp.33-42.

    [21]Yao YY.The superiority of three-way decisions in probabilistic rough set models.Inform Sci 2011;181(6):1080-96.

    [22]Zhang WX,Qiu GF,Duan ZS.Uncertain decision making based on rough sets.Beijing:Tsinghua University Press;2005.

    [23]Bar-Shalom Y.Tracking and data association.Boston:Academic Press; 1988.

    15 May 2013;revised 14 August 2013;accepted 19 August 2013 Available online 6 December 2013

    *Corresponding author.

    E-mail address:shepherdni@163.com(L.Q.NI).

    Peer review under responsibility of China Ordnance Society

    Production and hosting by Elsevier

    2214-9147/$-see front matter Copyright?2013,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.dt.2013.11.004

    亚洲图色成人| 狠狠婷婷综合久久久久久88av| 亚洲av在线观看美女高潮| 丰满饥渴人妻一区二区三| 亚洲精品第二区| 久久精品夜色国产| 另类精品久久| 国产精品人妻久久久久久| 满18在线观看网站| 精品久久蜜臀av无| 美国免费a级毛片| 内地一区二区视频在线| 大香蕉久久网| 日韩制服骚丝袜av| 国产成人免费无遮挡视频| 丰满饥渴人妻一区二区三| 国产精品国产av在线观看| 国产有黄有色有爽视频| 日韩大片免费观看网站| 色婷婷久久久亚洲欧美| 乱码一卡2卡4卡精品| 女人久久www免费人成看片| 亚洲熟女精品中文字幕| 观看美女的网站| 亚洲五月色婷婷综合| 免费少妇av软件| 99精国产麻豆久久婷婷| 日韩中文字幕视频在线看片| 久久久久精品性色| 久久久欧美国产精品| 亚洲av欧美aⅴ国产| 精品久久蜜臀av无| 亚洲欧美中文字幕日韩二区| 亚洲欧美成人精品一区二区| 免费人妻精品一区二区三区视频| 黄片播放在线免费| 国产乱来视频区| 久久久精品免费免费高清| 日本黄大片高清| 亚洲一级一片aⅴ在线观看| 亚洲综合精品二区| 日韩电影二区| 亚洲av中文av极速乱| 黑人猛操日本美女一级片| 曰老女人黄片| 宅男免费午夜| 国产一区二区在线观看日韩| 久久99热这里只频精品6学生| 久久精品久久久久久久性| 久久亚洲国产成人精品v| 1024视频免费在线观看| 日本av手机在线免费观看| 超碰97精品在线观看| 亚洲精品一二三| 日韩一本色道免费dvd| 成人国产麻豆网| 大码成人一级视频| 高清不卡的av网站| 在现免费观看毛片| 国产欧美日韩一区二区三区在线| 国产伦理片在线播放av一区| 大陆偷拍与自拍| 亚洲国产精品一区二区三区在线| 波多野结衣一区麻豆| 久久久久久伊人网av| www.熟女人妻精品国产 | 天堂俺去俺来也www色官网| 99久久人妻综合| 18+在线观看网站| 国产免费福利视频在线观看| 久久精品久久久久久噜噜老黄| 成人漫画全彩无遮挡| 在现免费观看毛片| 丝瓜视频免费看黄片| 午夜免费男女啪啪视频观看| videosex国产| 视频在线观看一区二区三区| 久久久久视频综合| 91在线精品国自产拍蜜月| 午夜激情av网站| 中文字幕制服av| 中文字幕制服av| 97超碰精品成人国产| av有码第一页| 大香蕉久久网| 肉色欧美久久久久久久蜜桃| 大片电影免费在线观看免费| 午夜免费鲁丝| 美女国产高潮福利片在线看| 伊人久久国产一区二区| 看免费成人av毛片| 日韩av不卡免费在线播放| 最新中文字幕久久久久| 久久久久视频综合| 精品少妇久久久久久888优播| 欧美人与性动交α欧美软件 | 中国美白少妇内射xxxbb| 亚洲性久久影院| 欧美日韩一区二区视频在线观看视频在线| 亚洲av欧美aⅴ国产| 亚洲熟女精品中文字幕| 精品国产乱码久久久久久小说| 99热网站在线观看| 啦啦啦在线观看免费高清www| 国产激情久久老熟女| 免费大片18禁| 久久97久久精品| 国产精品久久久久久精品电影小说| 免费看av在线观看网站| 女的被弄到高潮叫床怎么办| 乱码一卡2卡4卡精品| 蜜桃在线观看..| 国产免费现黄频在线看| 亚洲av欧美aⅴ国产| 国产欧美日韩综合在线一区二区| 2018国产大陆天天弄谢| 精品少妇久久久久久888优播| 美女国产高潮福利片在线看| 国产爽快片一区二区三区| 久久久欧美国产精品| 伦精品一区二区三区| 成人毛片a级毛片在线播放| 在线观看免费日韩欧美大片| 亚洲国产精品专区欧美| 亚洲精品色激情综合| 好男人视频免费观看在线| 曰老女人黄片| 成年av动漫网址| 乱人伦中国视频| 久久婷婷青草| 中文欧美无线码| 卡戴珊不雅视频在线播放| 日日啪夜夜爽| 丝袜人妻中文字幕| 视频中文字幕在线观看| 亚洲第一av免费看| 国产一区二区三区av在线| 免费观看无遮挡的男女| 伊人久久国产一区二区| 高清黄色对白视频在线免费看| 欧美少妇被猛烈插入视频| 免费看av在线观看网站| videosex国产| av一本久久久久| 丝袜在线中文字幕| 满18在线观看网站| 日日爽夜夜爽网站| 在线观看免费视频网站a站| 最新的欧美精品一区二区| 久久99热这里只频精品6学生| 亚洲少妇的诱惑av| 纵有疾风起免费观看全集完整版| 亚洲 欧美一区二区三区| 丁香六月天网| 免费人妻精品一区二区三区视频| 国产在视频线精品| 久热这里只有精品99| 亚洲精品,欧美精品| 久久韩国三级中文字幕| h视频一区二区三区| 91aial.com中文字幕在线观看| 国产免费一区二区三区四区乱码| 国产精品不卡视频一区二区| 一级毛片 在线播放| 欧美xxxx性猛交bbbb| 黄色一级大片看看| 最近最新中文字幕免费大全7| 97人妻天天添夜夜摸| 高清视频免费观看一区二区| 视频在线观看一区二区三区| 黑人猛操日本美女一级片| 最近的中文字幕免费完整| 亚洲丝袜综合中文字幕| 国产精品一区二区在线观看99| 日韩不卡一区二区三区视频在线| videossex国产| 精品人妻一区二区三区麻豆| 亚洲经典国产精华液单| 婷婷色综合大香蕉| 国产成人av激情在线播放| 国产免费一区二区三区四区乱码| 欧美丝袜亚洲另类| 亚洲性久久影院| 成人黄色视频免费在线看| 久久人人爽av亚洲精品天堂| 热re99久久精品国产66热6| 人妻 亚洲 视频| 亚洲精品aⅴ在线观看| 国产片内射在线| 自线自在国产av| 边亲边吃奶的免费视频| 人人澡人人妻人| 免费黄频网站在线观看国产| 欧美人与性动交α欧美精品济南到 | 日本欧美视频一区| 国产精品无大码| 丰满少妇做爰视频| 成年动漫av网址| 五月伊人婷婷丁香| 色婷婷久久久亚洲欧美| 亚洲精品美女久久久久99蜜臀 | 久久久欧美国产精品| 亚洲av成人精品一二三区| 国产老妇伦熟女老妇高清| 亚洲成av片中文字幕在线观看 | 亚洲欧洲精品一区二区精品久久久 | 久久久国产一区二区| 国产成人欧美| 日韩av不卡免费在线播放| 五月开心婷婷网| 菩萨蛮人人尽说江南好唐韦庄| 熟女人妻精品中文字幕| 久久久久久久久久久免费av| 青春草亚洲视频在线观看| 亚洲精品一区蜜桃| 男女啪啪激烈高潮av片| 黄色怎么调成土黄色| 少妇精品久久久久久久| 亚洲熟女精品中文字幕| 国产精品熟女久久久久浪| 久久久久精品人妻al黑| 国产一区亚洲一区在线观看| 欧美成人午夜免费资源| 久久久久久久久久久久大奶| av电影中文网址| 国产毛片在线视频| 久久久久视频综合| 国产一级毛片在线| 亚洲欧美一区二区三区黑人 | 欧美 日韩 精品 国产| 天天操日日干夜夜撸| 综合色丁香网| 国产午夜精品一二区理论片| 黄片无遮挡物在线观看| 中文精品一卡2卡3卡4更新| 交换朋友夫妻互换小说| 国产精品免费大片| 亚洲欧美清纯卡通| 欧美精品高潮呻吟av久久| 视频在线观看一区二区三区| 校园人妻丝袜中文字幕| 国产无遮挡羞羞视频在线观看| 人妻一区二区av| 免费高清在线观看视频在线观看| 夫妻午夜视频| www日本在线高清视频| 亚洲少妇的诱惑av| 免费观看在线日韩| 精品国产一区二区久久| 高清不卡的av网站| 久久久久国产精品人妻一区二区| 久久这里有精品视频免费| 最近中文字幕2019免费版| 亚洲国产av影院在线观看| 日韩免费高清中文字幕av| 久久精品国产亚洲av天美| 精品酒店卫生间| 亚洲美女黄色视频免费看| 精品第一国产精品| 97人妻天天添夜夜摸| 午夜免费男女啪啪视频观看| 国产 一区精品| 卡戴珊不雅视频在线播放| 免费看不卡的av| 18禁裸乳无遮挡动漫免费视频| 18禁动态无遮挡网站| 视频在线观看一区二区三区| 午夜激情av网站| 精品国产露脸久久av麻豆| 看免费av毛片| 亚洲性久久影院| 午夜久久久在线观看| 伊人久久国产一区二区| 男人操女人黄网站| 欧美精品亚洲一区二区| 香蕉丝袜av| 一区二区三区四区激情视频| 久久久久久久久久成人| 国国产精品蜜臀av免费| 国产高清三级在线| 免费在线观看黄色视频的| 99热这里只有是精品在线观看| 寂寞人妻少妇视频99o| 亚洲婷婷狠狠爱综合网| 十八禁网站网址无遮挡| 伦理电影免费视频| 国产免费又黄又爽又色| 亚洲国产精品专区欧美| 欧美 日韩 精品 国产| 2022亚洲国产成人精品| 老司机亚洲免费影院| 国产免费现黄频在线看| 天美传媒精品一区二区| 赤兔流量卡办理| 777米奇影视久久| 精品人妻一区二区三区麻豆| 极品人妻少妇av视频| 婷婷成人精品国产| 婷婷色麻豆天堂久久| 在线 av 中文字幕| 国产有黄有色有爽视频| 精品少妇内射三级| 精品少妇黑人巨大在线播放| 黑人欧美特级aaaaaa片| 一区二区日韩欧美中文字幕 | 一级毛片我不卡| 国产一区二区三区综合在线观看 | 久久久久久久久久久免费av| 91精品国产国语对白视频| 欧美激情国产日韩精品一区| 9色porny在线观看| 免费看不卡的av| 色哟哟·www| 91成人精品电影| 成人国产麻豆网| 如何舔出高潮| 亚洲天堂av无毛| 三级国产精品片| 男女啪啪激烈高潮av片| 亚洲国产色片| 男的添女的下面高潮视频| 国内精品宾馆在线| 你懂的网址亚洲精品在线观看| 精品卡一卡二卡四卡免费| 捣出白浆h1v1| 久久精品久久精品一区二区三区| 久久鲁丝午夜福利片| 青春草亚洲视频在线观看| 两个人免费观看高清视频| 2018国产大陆天天弄谢| 国产又爽黄色视频| 亚洲精品乱久久久久久| 中文字幕免费在线视频6| 日本av免费视频播放| 秋霞在线观看毛片| 亚洲精品乱码久久久久久按摩| 国产精品熟女久久久久浪| 国产精品久久久久久久电影| 我要看黄色一级片免费的| 久久女婷五月综合色啪小说| 一级毛片我不卡| 久久久久久久久久人人人人人人| 亚洲高清免费不卡视频| 亚洲成色77777| 国产成人a∨麻豆精品| 黄色一级大片看看| 亚洲,一卡二卡三卡| 国产一区二区三区综合在线观看 | 中文字幕另类日韩欧美亚洲嫩草| 日韩免费高清中文字幕av| 色网站视频免费| 99九九在线精品视频| 亚洲经典国产精华液单| 精品少妇内射三级| 人人妻人人澡人人爽人人夜夜| 黄色毛片三级朝国网站| 精品酒店卫生间| 国产免费视频播放在线视频| 国产高清不卡午夜福利| 亚洲成人手机| 一级毛片黄色毛片免费观看视频| 亚洲四区av| 全区人妻精品视频| 国产在视频线精品| 狠狠婷婷综合久久久久久88av| 亚洲综合精品二区| 国产精品久久久久久久电影| 在线 av 中文字幕| 国产女主播在线喷水免费视频网站| 成年人午夜在线观看视频| 午夜福利在线观看免费完整高清在| 一本大道久久a久久精品| 中文字幕人妻丝袜制服| 欧美 亚洲 国产 日韩一| 亚洲第一区二区三区不卡| 又黄又粗又硬又大视频| 麻豆乱淫一区二区| 国产极品天堂在线| 韩国av在线不卡| 国产极品天堂在线| 韩国高清视频一区二区三区| 国产精品一国产av| 国产精品国产三级国产专区5o| 亚洲精品,欧美精品| 妹子高潮喷水视频| 一区在线观看完整版| 欧美亚洲日本最大视频资源| 最新中文字幕久久久久| 乱人伦中国视频| 桃花免费在线播放| 亚洲少妇的诱惑av| 精品一区二区三区四区五区乱码 | 国产欧美日韩综合在线一区二区| 亚洲国产精品国产精品| 日本vs欧美在线观看视频| 91成人精品电影| xxx大片免费视频| 久久婷婷青草| 两个人看的免费小视频| 欧美激情国产日韩精品一区| 毛片一级片免费看久久久久| 插逼视频在线观看| 中文字幕精品免费在线观看视频 | 国产精品久久久久久精品古装| 国产精品一国产av| 18禁观看日本| 女人精品久久久久毛片| 国产xxxxx性猛交| 精品久久国产蜜桃| 亚洲欧美成人精品一区二区| 亚洲欧洲日产国产| 免费黄频网站在线观看国产| 波多野结衣一区麻豆| 亚洲av免费高清在线观看| 高清视频免费观看一区二区| 一本色道久久久久久精品综合| 欧美 日韩 精品 国产| 久久精品久久久久久噜噜老黄| 久久精品国产a三级三级三级| 亚洲av男天堂| 亚洲精品久久成人aⅴ小说| 伦理电影免费视频| 久久精品国产亚洲av涩爱| 国产免费视频播放在线视频| 久久人妻熟女aⅴ| 黄色视频在线播放观看不卡| 亚洲美女黄色视频免费看| 三上悠亚av全集在线观看| 美女国产视频在线观看| 精品一区二区三卡| 精品一区在线观看国产| 欧美激情国产日韩精品一区| 99久久综合免费| 日本-黄色视频高清免费观看| 黄色视频在线播放观看不卡| 如日韩欧美国产精品一区二区三区| 晚上一个人看的免费电影| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美色中文字幕在线| 欧美国产精品一级二级三级| 深夜精品福利| 精品卡一卡二卡四卡免费| 午夜福利在线观看免费完整高清在| 水蜜桃什么品种好| 街头女战士在线观看网站| 精品99又大又爽又粗少妇毛片| av片东京热男人的天堂| 免费人成在线观看视频色| 久久影院123| 国产在线免费精品| 午夜老司机福利剧场| 亚洲一码二码三码区别大吗| a级毛色黄片| 久久久久精品久久久久真实原创| 亚洲国产毛片av蜜桃av| 夫妻午夜视频| 岛国毛片在线播放| 我要看黄色一级片免费的| 日韩av不卡免费在线播放| 婷婷成人精品国产| 99热网站在线观看| 一区二区日韩欧美中文字幕 | 成人午夜精彩视频在线观看| 91在线精品国自产拍蜜月| 精品国产一区二区三区久久久樱花| 在现免费观看毛片| 在线观看免费日韩欧美大片| 国产在线一区二区三区精| 黄色 视频免费看| 精品福利永久在线观看| 久久人人爽人人片av| 中文字幕人妻熟女乱码| 久久久久久久亚洲中文字幕| 中文字幕最新亚洲高清| 精品酒店卫生间| 日韩欧美精品免费久久| 国产精品一区二区在线观看99| 久久精品久久精品一区二区三区| 亚洲国产精品999| 欧美精品av麻豆av| 日韩电影二区| 成人国产av品久久久| 精品99又大又爽又粗少妇毛片| 丝袜人妻中文字幕| 欧美日韩视频精品一区| av电影中文网址| 女人久久www免费人成看片| 久久99热这里只频精品6学生| 久久av网站| av天堂久久9| 午夜福利视频在线观看免费| av福利片在线| 欧美日韩亚洲高清精品| 久久久久久久久久久久大奶| 9191精品国产免费久久| 97超碰精品成人国产| 午夜久久久在线观看| 国产精品久久久av美女十八| 少妇人妻久久综合中文| 18禁动态无遮挡网站| 香蕉国产在线看| 韩国av在线不卡| 婷婷色麻豆天堂久久| 欧美xxxx性猛交bbbb| 伊人亚洲综合成人网| 日韩免费高清中文字幕av| 大陆偷拍与自拍| 王馨瑶露胸无遮挡在线观看| 黄色配什么色好看| 搡老乐熟女国产| 97超碰精品成人国产| 亚洲欧洲精品一区二区精品久久久 | 十八禁高潮呻吟视频| 久久久久视频综合| 亚洲成av片中文字幕在线观看 | 国产乱来视频区| 极品人妻少妇av视频| 另类亚洲欧美激情| av国产久精品久网站免费入址| 男女边摸边吃奶| 日韩制服丝袜自拍偷拍| 欧美国产精品一级二级三级| 90打野战视频偷拍视频| 欧美xxxx性猛交bbbb| 人人妻人人澡人人看| 久久这里有精品视频免费| 久久国产亚洲av麻豆专区| av网站免费在线观看视频| 如何舔出高潮| 免费久久久久久久精品成人欧美视频 | 国产精品无大码| 少妇精品久久久久久久| 天美传媒精品一区二区| 欧美xxⅹ黑人| 国产精品久久久久久久久免| 高清av免费在线| 欧美日本中文国产一区发布| www日本在线高清视频| av免费观看日本| 一级爰片在线观看| 久久97久久精品| 精品国产国语对白av| 亚洲一码二码三码区别大吗| 中文字幕制服av| 色哟哟·www| 色94色欧美一区二区| 少妇 在线观看| 久久这里只有精品19| 国产又色又爽无遮挡免| 卡戴珊不雅视频在线播放| 天天躁夜夜躁狠狠久久av| 国产深夜福利视频在线观看| 91久久精品国产一区二区三区| 免费高清在线观看日韩| 亚洲欧美一区二区三区国产| 18在线观看网站| 亚洲国产欧美日韩在线播放| 观看av在线不卡| 男女午夜视频在线观看 | 免费少妇av软件| 国产男女内射视频| 国产精品国产av在线观看| 色视频在线一区二区三区| 伦理电影大哥的女人| 精品久久久精品久久久| 国产女主播在线喷水免费视频网站| 一二三四在线观看免费中文在 | 久久精品久久精品一区二区三区| av有码第一页| 成人漫画全彩无遮挡| 亚洲性久久影院| 国产1区2区3区精品| 女人久久www免费人成看片| 精品卡一卡二卡四卡免费| 国产免费福利视频在线观看| 精品久久久精品久久久| 精品国产一区二区三区久久久樱花| av国产久精品久网站免费入址| 日本-黄色视频高清免费观看| 午夜激情av网站| 亚洲美女黄色视频免费看| 熟妇人妻不卡中文字幕| 日韩三级伦理在线观看| 人妻 亚洲 视频| 黄色怎么调成土黄色| 国产高清不卡午夜福利| 中文乱码字字幕精品一区二区三区| 亚洲精品日韩在线中文字幕| 欧美 日韩 精品 国产| 女人精品久久久久毛片| 80岁老熟妇乱子伦牲交| 亚洲精品久久午夜乱码| 最近中文字幕2019免费版| 丝袜脚勾引网站| 国产精品无大码| 亚洲少妇的诱惑av| 午夜久久久在线观看| 十八禁网站网址无遮挡| 丝袜美足系列| 这个男人来自地球电影免费观看 | 内地一区二区视频在线| 亚洲av电影在线观看一区二区三区| 狠狠婷婷综合久久久久久88av| 纯流量卡能插随身wifi吗| 国产高清国产精品国产三级| 大话2 男鬼变身卡| 国产深夜福利视频在线观看| 青青草视频在线视频观看| 母亲3免费完整高清在线观看 | 80岁老熟妇乱子伦牲交| 一本大道久久a久久精品| 国产欧美日韩综合在线一区二区| 久久亚洲国产成人精品v| 国产片特级美女逼逼视频| 国产麻豆69|