• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study on Multi-objective Optimization of Airbag Landing Attenuation System for Heavy Airdrop

    2013-07-25 11:26:29Hong-yanWANG,Huang-jieHONG,Jian-yangLI
    Defence Technology 2013年4期

    Study on Multi-objective Optimization of Airbag Landing Attenuation System for Heavy Airdrop

    A f i nite element model of vehicle and its airbag landing attenuation system is established and verif i ed experimentally.Two design cases are selected to constrain the airbag design for extreme landing conditions,while the height and width of airbag and the area of vent hole are chosen as design variables.The optimization is forced to compromise the design variables between the conf l icting requirements of the two extremes.In order to optimize the parameters of airbag,the multi-dimensional response surfaces based on extended Latin hypercube design and radial basis function are employed instead of the complex f i nite element model.Pareto optimal solution sets based on response surfaces are then obtained by multi-objective genetic algorithm.The results show the optimization method presented in this paper is a practical tool for the optimization of airbag landing attenuation system for heavy airdrop.

    Copyright?2013,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    Airbag;Multi-objective optimization;Finite element analysis;Response surface

    1.Introduction

    The airbag landing attenuation system is one of the most important technologies for the landing impact attenuation for heavy airdrop.There are many landing cushion technologies, suchashoneycombandretro,whichnormallyhavecomplicated structures and thus are very expensive.Airbag landing attenuation system is comparatively simple,convenient,eff i cient and cheap.Itcanabsorbmostoflandingimpactenergytoreducethe impact force by exhausting the inf l ation gas through vents.

    Droptestsare credible toresearchairbag landing attenuation system but too expensive.The safety and time are the other two key problems.Thus it is practically impossible to optimize the parameters of airbag landing attenuation system for heavy airdrop only by experimental methods.Development of simulation technology makes the problems overcome.Several simulation models of airbag were established[1-3].It’s feasible to optimize the parameters of airbag landing attenuation system for heavy airdrop using simulation technology.

    In this paper,a f i nite element model of vehicle with airbag landing attenuation system was established based on control volumemodelandf i niteelementmethod.Theestablishedmodel was validated by drop test.Furthermore,the multi-dimensional response surfaces were employed instead of the complex f i nite element model.Pareto optimal solution sets based on response surfaceswerethenobtainedbymulti-objectivegeneticalgorithm.

    2.Modeling and verif i cation

    2.1.FE Model of airbags

    Airbag landing attenuation system consists of eight independent and identical airbags,as shown in Fig.1.It’s connected to the bottom of vehicle.Each airbag has a mainchamber and an assistant chamber connected with main chamber through communication holes.The injection holes are located in the bottom of the main chamber in order to implement air inf l ation when vehicle descends.When the bottoms of airbags are in contact with the ground,the injection holes are closed.The vent holes are located at the sides of airbags for exhaust.These holes are closed initially and are opened when the pressure difference between the inside and outside airbags exceeds venting pressure Fig.1.

    The model of airbag landing attenuation system can be modeled on the basis of the following assumptions[4]:

    1)Perfect gas law and adiabatic condition are valid for the gas in airbag during landing process.

    2)The aerodynamic resistance is negligible in the process of landing cushion.

    3)The air in airbag is exhausted only through the vent holes.

    4)The pressure in airbag is uniform.

    The equations of the air in airbag are

    Fig.1.Airbag landing attenuation system.

    where P is the gas pressure in airbag;Vis the gas volume;m is the gas mass;T is the gas temperature;R is the gas constant;ρ is the gas density;E is the energy in airbag;and γ is the ratio of specif i c heat.

    Airbag is regarded as expanding control volume[5].For each time step,the gas pressure in airbag is calculated based on the thermodynamics equations.When the gas pressure acts on the elements of airbags,the shape of airbags can be then obtained.Control volume is given as

    where xiis the mean value of x coordinate values of element I; nixis the direction cosine between normal of element and x direction;and Aiis the surface area of element i.

    The mass fl ow rate in control volume is given by the mass fl ow of gas injected into airbag and the mass fl ow of gas expulsed out of airbag.

    where˙minis the mass f l ow of gas injected into airbag;and˙moutis the mass f l ow of gas expulsed out of airbag.

    2.2.Contact model between vehicle,airbag and ground

    The transformations of shape and position of airbags are very complex in the process of landing cushion.The airbags may contact with each other because of large compression deformation.Here,penalty method is adopted to describe selfcontact of airbags[6].Every side of airbags is slave surface as well as master surface.For each time step,it’s checked whether the slave nodes penetrate the master surfaces f i rst.If a slave node does not penetrate through master surface,no treatment is required.Otherwise,an interface force vector is introduced at the position between slave node and master surface.It can be modeled as a normal spring between the slave node and the master surface.The absolute magnitude of force is proportional to penetration l and master surface stiffness ki.

    where fsis the contact force vector between slave node and master node;and niis the normal unit vector in contact point of master surface Si.

    The contact between airbag landing attenuation system and vehicle is described by tied contact model.The bottom of simplif i ed vehicle model is def i ned as master surface,while the top of airbag landing attenuation system is def i ned as slave surface.With a tied contact model,it is possible to connect rigidly the slave surface nodes with a master surface.This kinetic constraint is applied on all slave nodes.They remain at the same position on their master surfaces.The acceleration and velocity of each master node are calculated from the force and mass applied by the slave nodes.

    Fig.2.Finite element model.

    The ground is modeled as an inf i nite plane.The contact between airbags and ground is described and solved by penalty method,too.The FE model of vehicle and airbags cushion system is shown in Fig.2.

    2.3.Result verif i cation

    The FE model was established based on the simplif i cations and assumptions.Thus,the model should be validated by experiment because of unexpected errors.The test data is obtained from the drop test which was thoroughly discussed in Ref.[7].The initial vertical velocity is 7.0 m/s,the initial horizontal velocity is 0 m/s,and the ground is f l at.The accuracy of the model was validated by the comparison of acceleration results,as shown in Fig.3.

    As shown in Fig.3,the curves of simulation and experiment match well with each other.The error of maximal acceleration is 8.1%.Thus,the established model can be used for further research.

    Fig.3.Result comparison.

    3.Response surfaces

    3.1.Response surface method

    Airbaglanding attenuation system offers anattractivemeans of impact attenuation for heavy airdrop.Design optimization of airbag landing attenuation system relies on explicit f i nite element analysis because of the non-linear behavior of cushion characteristics and the diff i culty of adequate airdrop test. However,the simulation of an impact typically requires tens of hours.As a result,it is diff i cult to use the traditional iterative approach to optimize the design based on a nonlinear model. The response surface method presents a methodology for overcoming these problems with design optimization of airbag landing attenuation system for heavy airdrop.

    A response surface[8]gives the value of a key output variable in the design space as a function of design variables. In response surface modeling approach,the response surfaces are approximated from a relatively small number of FE analysis runs by using surface-f i tting algorithms.The response surface method can be used to solve optimization problem with minimal computational effort.

    The success of the response surface modeling approach depends on the quality of the response surface approximations. These must reproduce highly non-linear response functions over a large parameter space from only a limited number of analyzed points.The quality of the response surface approximations is determined by selecting the sampling points in the parameter space and the surface-f i tting algorithm through the sample points.

    Fig.4.Extended Latin hypercube design.

    3.2.Extended Latin hypercube design

    The choice of the sampling points is important for generating response surface.There are different methods to select the locations of the sampling points.As one of these methods, the eff i ciency of Latin hypercube design was proven for wide range of applications.Latin hypercube design developed by McKay et al.[9]is an alternative approach which can yield precise estimates of output statistics with a lesser number of samples.The Latin hypercube samples are random but are guaranteed to be relatively uniformly distributed over each dimension.

    In practice,Latin hypercube design can be obtained as follows.The range of each design variable is divided into n non-overlapping intervals on the basis of equal probability. One value from each interval is selected at random with respect to the probability density in the interval.The n values thus obtained for x1are paired in a random manner with the n values of x2.These n pairs are combined in a random manner with the n values of x3to form n triplets and so on.A similar procedure is followed for x4,...,xn,which exhausts all observations and results in n LHD points.In this design,the points are generated randomly.But The Latin hypercube samples can be iteratively generated to f i nd the best one according to careful design criterion.

    Extended Latin hypercube design is a Latin hypercube design with the addition of the corner points in the parameter space.This ensures that the extreme parameter combinations are included in the analyzed set and give a uniform f i lling ofthe design space.For the design optimization of airbag landing attenuation system,3 variables were considered and 28 combinations of these parameters obtained by extended Latin hypercube design were sought as sampling points for the FE analysis runs,as shown in Fig.4.

    3.3.Response surface f i tting

    The response values are obtained according to the simulation of FE analysis runs.Most literature about airbag design optimization just considered vertical landing case.However, the landing environment is commonly complex.Two design cases were selected to constrain the airbag design.In Case 1, the contact area with the ground is maximized in the case of vertical impact.Relatively tall prof i le is required to reduce the impact force,but it makes vehicle stability worse.In Case 2, high lateral landing velocity component,pitch-down angle and upper slope landing site are added.This case tends to push the airbag design towards a larger plane area.Relatively short prof i le is better for stability.

    28 FE analysis runs are performed for each landing case (i.e.,a total of 56 runs)for the design parameter combinations. The response values listed were then extracted from the FE analyses.The response surfaces are f i tted to the analysis results using radial basis function.The response surfaces at a vent area of 38,000 mm2are shown in Figs.5 and 6.

    Fig.5.Acceleration response surface.

    Fig.6.Attitude angle response surface.

    4.Multi-objective optimization

    4.1.Optimization analysis

    Here the height and width of airbag and the area of vent hole are chosen as design variables,while the objective of the optimization is to minimize the maximum acceleration and the maximum attitude angle.It’s a multi-objective optimization problem.There is no unique solution to this problem.Instead, the concept of non-inferiority(also called Pareto optimality) must be used to characterize the objectives.A non-inferior solution is one in which an improvement in one objective requires a degradation of another.The mission of multiobjective optimization is to work out a set of non-inferior solutions.

    Multi-objective genetic algorithm can solve the type of problem eff i ciently.NSGA-II(fast elitist non-dominated sorting genetic algorithm)is one of better elitist multiobjective genetic algorithms[10].It reduces the computational complexity,assures the preservation of previously found best solutions,and makes the algorithm independent of users. Thus,considering both cushion performance and stability,a set of non-inferior solutions and the Pareto front are obtained by NSGA-II based on response surfaces,as shown in Fig.7 and Table 1.The Pareto front PF*is def i ned as PF*={f→(x→) x→∈P*},where P is a set of all non-inferior solutions.

    The Pareto plot displays two competing objectives.The horizontal axis is the maximum acceleration,while the vertical axis is the maximum attitude angle.In Fig.7,there are 14 points on the Pareto front.A set of Pareto solutions include the 14 points.The f i nal design parameters can be chosen from the 14 points.The 3 non-inferior solutions in left lower part of Fig.7 have smaller acceleration and attitude angle.For other solutions,an improvement in one objective requires a relatively large degradation of another objective.The 3 noninferior solutions are the 1st solution,the 3rd solution and the 14th solution listed in Table 1.Compared with the other two solutions,the cushion performance of the 1st solution is obviously improved,while the stability is not worse.Thus the 1st solution is chosen as optimized solution.

    Fig.7.Pareto front.

    Table 1A set of Pareto solutions.

    4.2.Comparison of airbags cushion characteristics

    In order to estimate the improvement of airbags cushion performance and stability,the optimized velocity,acceleration,pressure inside airbags,residual energy and attitude angle are compared with the original results,as listed in Table 2.

    As listed in Table 2,the landing velocity is decreased from 2.20 m/s to 0.73 m/s,and the maximum acceleration of airborne vehicle is decreased by 16%.The maximum pressure inside airbags is slightly increased.Because the energy absorption performance of airbags is improved,the residual energy of the system is decreased by 23%.The maximum attitude angle is decreased in Case 2.Overall,the cushion performance of airbags cushion system is obviously improved after optimization,while the stability is slightly improved.It indicates that the optimization method presented in the paper is feasible to such complex nonlinear problem.

    5.Conclusions

    1)A FE model of vehicle and its airbag landing attenuation system was established on the basis of volume control model in this paper.The established model was validated by drop test.The simulation results agree very well with the experimental results.

    2)In order to optimize the parameters of airbags,the multidimensional response surfaces based on extended Latin hypercubemethodandradialbasisfunctionwere employed instead of the complex f i nite element model. The method overcomes the diff i culties in traditional iterative optimization method.

    3)The cushion performance of airbags cushion system is obviously improved after optimization,while the stability is slightly improved.It indicates the optimization method presented in the paper is feasible to such complex nonlinear problem.

    Table 2Comparison of simulation results and original values.

    [1]Wang YE,Yang CX,Peng K.Airbag cushion process simulation for cargoairdropsystem.JSystSimul2007;19(14):3176-9[in Chinese].

    [2]Le YX.Numerical simulation and optimal design of the process of airbag landing.Changsha:Hunan University;2010[in Chinese].

    [3]Taylor AP.Investigation of the application of airbag technology to provide a softlanding capability for military heavy airdrop.AIAA 2001-2046;2001.pp.284-92.

    [4]Hao GX.Research on impact responses of airborne tracked equipment and parameter optimization for airbag system.Beijing:Academy of Armored Forces Engineering;2011[in Chinese].

    [5]Wang JT,Nefske JD.A new CAL3D airbag inf l ation model.SAE Paper No.880654;1988.

    [6]Wang XC.Finite element method.Beijing:Tsinghua University Press; 2003[in Chinese].

    [7]DuZQ,ShaoPL.Dynamicf i niteelementsimulationofthe aluminum alloy hull at landing.Acta Armamentarii 2009;30(1):1-4 [in Chinese].

    [8]Box GEP,Wilson KB.On the experimental attainment of optimum conditions.J R Stat Soc 1951;13:1-45.

    [9]McKay MD,Conover WJ,Beckman RJ.A comparison of three methods for selecting values of input variables in the analysis of output from a computer code.Technometrics 1979;21(2):239-45.

    [10]Deb K,Pratap A,Agarwal S,Meyarivan T.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ.IEEE Trans Evolut Comput 2002;6(2):182-97.

    Hong-yan WANG*,Huang-jie HONG,Jian-yang LI,Qiang RUI
    Academy of Armored Force Engineering,Beijing 100072,China

    8 November 2013;revised 29 November 2013;accepted 6 December 2013 Available online 17 December 2013

    *Corresponding author.Tel.:+86 13811431852.

    E-mail address:why_cvt@263.net(H.-Y.WANG).

    Peer review under responsibility of China Ordnance Society.

    Production and hosting by Elsevier

    2214-9147/$-see front matter Copyright?2013,China Ordnance Society.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.dt.2013.12.004

    成人欧美大片| 亚洲国产欧美一区二区综合| 在线观看美女被高潮喷水网站 | 黄片小视频在线播放| 国产精品亚洲美女久久久| 欧美中文日本在线观看视频| 亚洲18禁久久av| 好男人电影高清在线观看| 国产视频一区二区在线看| 在线观看舔阴道视频| 日日夜夜操网爽| 精品欧美一区二区三区在线| 一本久久中文字幕| 18禁黄网站禁片免费观看直播| 麻豆成人av在线观看| 成人18禁高潮啪啪吃奶动态图| av片东京热男人的天堂| 麻豆av在线久日| 欧美一区二区国产精品久久精品 | 97人妻精品一区二区三区麻豆| 国产精品影院久久| 国产精品免费视频内射| 天天一区二区日本电影三级| 午夜久久久久精精品| 久9热在线精品视频| 欧美在线一区亚洲| 欧美性猛交黑人性爽| www.999成人在线观看| av欧美777| 在线观看www视频免费| 国产精品乱码一区二三区的特点| 亚洲在线自拍视频| 桃红色精品国产亚洲av| 免费电影在线观看免费观看| 国产又色又爽无遮挡免费看| 好男人电影高清在线观看| 欧美成人午夜精品| 我的老师免费观看完整版| 国产精品乱码一区二三区的特点| 久久热在线av| 亚洲一区高清亚洲精品| 久久性视频一级片| 国产亚洲精品久久久久5区| 国产蜜桃级精品一区二区三区| 亚洲国产看品久久| 欧美+亚洲+日韩+国产| 国产一级毛片七仙女欲春2| 色老头精品视频在线观看| 不卡av一区二区三区| 国产激情偷乱视频一区二区| 黑人欧美特级aaaaaa片| 久久久久精品国产欧美久久久| 黄片小视频在线播放| 久久欧美精品欧美久久欧美| 99国产精品99久久久久| 两性夫妻黄色片| 啪啪无遮挡十八禁网站| 中文在线观看免费www的网站 | 久久久久久免费高清国产稀缺| 国内精品一区二区在线观看| 波多野结衣巨乳人妻| 中文在线观看免费www的网站 | www.自偷自拍.com| 免费在线观看影片大全网站| 欧美不卡视频在线免费观看 | 免费一级毛片在线播放高清视频| 真人一进一出gif抽搐免费| 制服丝袜大香蕉在线| 91成年电影在线观看| 国产精品爽爽va在线观看网站| 久久久国产精品麻豆| 母亲3免费完整高清在线观看| 男女床上黄色一级片免费看| 一区福利在线观看| av中文乱码字幕在线| 色哟哟哟哟哟哟| 国内少妇人妻偷人精品xxx网站 | 精品电影一区二区在线| 亚洲av成人精品一区久久| 在线观看免费午夜福利视频| 91国产中文字幕| 亚洲黑人精品在线| 一个人免费在线观看电影 | www.999成人在线观看| 丰满的人妻完整版| 少妇人妻一区二区三区视频| 精品一区二区三区视频在线观看免费| 亚洲中文字幕日韩| 欧美不卡视频在线免费观看 | 国产精品日韩av在线免费观看| 久久久久久国产a免费观看| 一区福利在线观看| 日韩欧美一区二区三区在线观看| 国产在线观看jvid| 国产精品一区二区三区四区久久| av免费在线观看网站| 欧美精品亚洲一区二区| 黑人巨大精品欧美一区二区mp4| 久久精品91蜜桃| 午夜两性在线视频| 在线观看66精品国产| 国产精品免费视频内射| 亚洲成人免费电影在线观看| 婷婷精品国产亚洲av| av福利片在线观看| 少妇熟女aⅴ在线视频| 欧美日韩国产亚洲二区| 无限看片的www在线观看| 欧美绝顶高潮抽搐喷水| 欧美日韩国产亚洲二区| 久久久久久久久中文| netflix在线观看网站| 国内久久婷婷六月综合欲色啪| 淫妇啪啪啪对白视频| 给我免费播放毛片高清在线观看| 国产精品一及| 每晚都被弄得嗷嗷叫到高潮| 亚洲中文字幕日韩| 国产精品亚洲一级av第二区| 黑人巨大精品欧美一区二区mp4| 日本黄色视频三级网站网址| 天天躁夜夜躁狠狠躁躁| 午夜免费成人在线视频| 麻豆久久精品国产亚洲av| 97碰自拍视频| 伊人久久大香线蕉亚洲五| 欧美日韩黄片免| 国产视频一区二区在线看| 国产精品99久久99久久久不卡| 欧美精品啪啪一区二区三区| 黄色成人免费大全| 久久久久国产精品人妻aⅴ院| 搡老熟女国产l中国老女人| 老司机在亚洲福利影院| 亚洲成人免费电影在线观看| 悠悠久久av| 日本黄大片高清| 不卡一级毛片| 搡老熟女国产l中国老女人| 中文字幕最新亚洲高清| 一本精品99久久精品77| 久久热在线av| 国产av麻豆久久久久久久| 欧美日韩瑟瑟在线播放| 婷婷亚洲欧美| 夜夜看夜夜爽夜夜摸| 亚洲av成人不卡在线观看播放网| 精品日产1卡2卡| 宅男免费午夜| 男女做爰动态图高潮gif福利片| 91麻豆精品激情在线观看国产| 国产成年人精品一区二区| 久久人妻福利社区极品人妻图片| 极品教师在线免费播放| 九九热线精品视视频播放| 波多野结衣高清作品| 欧美黑人欧美精品刺激| 黄色视频不卡| 亚洲性夜色夜夜综合| 男女之事视频高清在线观看| 淫秽高清视频在线观看| 国内揄拍国产精品人妻在线| 男人舔女人的私密视频| 亚洲成人精品中文字幕电影| 久久天堂一区二区三区四区| 琪琪午夜伦伦电影理论片6080| 又大又爽又粗| 久久午夜亚洲精品久久| 国产真实乱freesex| aaaaa片日本免费| 最新美女视频免费是黄的| 国产免费男女视频| 国产一区二区三区视频了| 少妇人妻一区二区三区视频| 亚洲国产欧洲综合997久久,| av超薄肉色丝袜交足视频| 欧美人与性动交α欧美精品济南到| 日韩大码丰满熟妇| 女警被强在线播放| 午夜久久久久精精品| 手机成人av网站| 亚洲一区二区三区色噜噜| 大型黄色视频在线免费观看| 五月伊人婷婷丁香| av有码第一页| 欧美zozozo另类| 一级作爱视频免费观看| 午夜久久久久精精品| 日本熟妇午夜| 天天一区二区日本电影三级| 在线十欧美十亚洲十日本专区| 91在线观看av| 欧美精品亚洲一区二区| 不卡av一区二区三区| 麻豆成人av在线观看| 少妇粗大呻吟视频| 18禁黄网站禁片免费观看直播| 国产精品久久久久久精品电影| 国产精品,欧美在线| 久久久久久久午夜电影| 午夜福利免费观看在线| 日本a在线网址| 又大又爽又粗| 欧美中文日本在线观看视频| 成熟少妇高潮喷水视频| 精品国产乱子伦一区二区三区| 国产伦一二天堂av在线观看| 久久久久久免费高清国产稀缺| 亚洲成人中文字幕在线播放| 国产精品av视频在线免费观看| 午夜福利免费观看在线| 中国美女看黄片| 中文字幕精品亚洲无线码一区| 精品久久久久久成人av| 怎么达到女性高潮| 久久热在线av| 国产伦在线观看视频一区| 亚洲一区二区三区不卡视频| 亚洲电影在线观看av| 我的老师免费观看完整版| 亚洲真实伦在线观看| 美女高潮喷水抽搐中文字幕| 18禁美女被吸乳视频| 午夜精品久久久久久毛片777| 制服人妻中文乱码| 在线观看舔阴道视频| 久热爱精品视频在线9| 天天躁夜夜躁狠狠躁躁| 国产欧美日韩一区二区三| 免费看美女性在线毛片视频| 久9热在线精品视频| 久久久久精品国产欧美久久久| 精品国内亚洲2022精品成人| 亚洲 欧美一区二区三区| 一本大道久久a久久精品| 动漫黄色视频在线观看| 搡老岳熟女国产| 精品乱码久久久久久99久播| 听说在线观看完整版免费高清| 十八禁人妻一区二区| 国产69精品久久久久777片 | 欧美日韩中文字幕国产精品一区二区三区| 久久人妻福利社区极品人妻图片| 91国产中文字幕| 亚洲欧美精品综合久久99| 一区二区三区国产精品乱码| 国产精品免费视频内射| av中文乱码字幕在线| 91麻豆精品激情在线观看国产| 99精品欧美一区二区三区四区| 久久中文字幕人妻熟女| 一边摸一边抽搐一进一小说| 国产成人av教育| www.精华液| 免费搜索国产男女视频| 男人的好看免费观看在线视频 | 亚洲精品在线美女| 美女大奶头视频| 亚洲精品久久成人aⅴ小说| 露出奶头的视频| 国产麻豆成人av免费视频| 国产aⅴ精品一区二区三区波| 成人亚洲精品av一区二区| 国产探花在线观看一区二区| 99热这里只有精品一区 | 两性夫妻黄色片| 久久久久精品国产欧美久久久| 日韩国内少妇激情av| 女人高潮潮喷娇喘18禁视频| 深夜精品福利| 啪啪无遮挡十八禁网站| 久久这里只有精品19| 欧美一级a爱片免费观看看 | 亚洲精品中文字幕一二三四区| e午夜精品久久久久久久| 麻豆一二三区av精品| 亚洲午夜精品一区,二区,三区| 久久欧美精品欧美久久欧美| 色噜噜av男人的天堂激情| 九色成人免费人妻av| 日韩高清综合在线| 成人三级做爰电影| 国产视频一区二区在线看| 香蕉av资源在线| 久久久久久久精品吃奶| 欧美日韩亚洲国产一区二区在线观看| 亚洲 欧美一区二区三区| 少妇熟女aⅴ在线视频| 久久久久久九九精品二区国产 | 成人av在线播放网站| 国产精品 欧美亚洲| 久久久久国产精品人妻aⅴ院| av中文乱码字幕在线| 精品久久久久久久毛片微露脸| 午夜激情福利司机影院| 久久人妻av系列| 国产精品98久久久久久宅男小说| 97碰自拍视频| 亚洲av成人av| 亚洲精华国产精华精| 久久久久九九精品影院| 又爽又黄无遮挡网站| 99精品在免费线老司机午夜| 搡老熟女国产l中国老女人| 日韩免费av在线播放| 亚洲精品美女久久av网站| 亚洲精华国产精华精| 级片在线观看| 999久久久精品免费观看国产| 免费av毛片视频| 99国产精品一区二区蜜桃av| 免费在线观看亚洲国产| 欧美乱色亚洲激情| 巨乳人妻的诱惑在线观看| 69av精品久久久久久| 亚洲成a人片在线一区二区| 9191精品国产免费久久| 在线视频色国产色| 亚洲精华国产精华精| www国产在线视频色| 看黄色毛片网站| 男人舔女人的私密视频| 男人舔奶头视频| 啦啦啦观看免费观看视频高清| 国产精品久久电影中文字幕| netflix在线观看网站| www日本在线高清视频| 日韩成人在线观看一区二区三区| 亚洲性夜色夜夜综合| 免费看日本二区| 色综合婷婷激情| 精品电影一区二区在线| 视频区欧美日本亚洲| 亚洲人与动物交配视频| 亚洲天堂国产精品一区在线| 国产视频一区二区在线看| 99在线人妻在线中文字幕| 午夜激情福利司机影院| 一级毛片高清免费大全| 老司机靠b影院| 免费高清视频大片| 久9热在线精品视频| 久久伊人香网站| 人妻夜夜爽99麻豆av| 欧美日韩乱码在线| 国产亚洲欧美98| 啦啦啦观看免费观看视频高清| 精品不卡国产一区二区三区| 丰满的人妻完整版| 最近最新中文字幕大全免费视频| 人妻久久中文字幕网| 757午夜福利合集在线观看| 日韩欧美一区二区三区在线观看| 欧美日韩一级在线毛片| 黄色a级毛片大全视频| 国产亚洲精品久久久久久毛片| 精品国产美女av久久久久小说| 亚洲黑人精品在线| 亚洲国产精品久久男人天堂| 又紧又爽又黄一区二区| 欧美黑人欧美精品刺激| 99在线视频只有这里精品首页| 脱女人内裤的视频| 午夜福利高清视频| 国产黄a三级三级三级人| 日韩有码中文字幕| 成人一区二区视频在线观看| 成年版毛片免费区| 啦啦啦免费观看视频1| 国产一区二区激情短视频| 两性夫妻黄色片| 观看免费一级毛片| 国产亚洲av高清不卡| 久久久久久久久久黄片| 国产亚洲av嫩草精品影院| 国产av又大| 亚洲av中文字字幕乱码综合| 国产亚洲精品第一综合不卡| 久久香蕉国产精品| e午夜精品久久久久久久| 欧美绝顶高潮抽搐喷水| 午夜福利欧美成人| 1024视频免费在线观看| 久久人妻av系列| 我的老师免费观看完整版| 哪里可以看免费的av片| 别揉我奶头~嗯~啊~动态视频| 国产激情偷乱视频一区二区| 久久欧美精品欧美久久欧美| 日日干狠狠操夜夜爽| 成熟少妇高潮喷水视频| 亚洲一区二区三区不卡视频| 精品国产美女av久久久久小说| 成年人黄色毛片网站| 中文字幕高清在线视频| 97人妻精品一区二区三区麻豆| 日本a在线网址| 日韩欧美国产在线观看| 日韩欧美 国产精品| 久久久国产精品麻豆| 久久久久久亚洲精品国产蜜桃av| 女人爽到高潮嗷嗷叫在线视频| 日韩精品免费视频一区二区三区| av视频在线观看入口| 国产精品久久电影中文字幕| 亚洲熟女毛片儿| 麻豆国产97在线/欧美 | 亚洲欧美精品综合久久99| av福利片在线观看| 琪琪午夜伦伦电影理论片6080| 国产v大片淫在线免费观看| www日本在线高清视频| 日本 av在线| 国产精华一区二区三区| 国产精品电影一区二区三区| 啦啦啦免费观看视频1| 日本一二三区视频观看| 成人精品一区二区免费| 五月伊人婷婷丁香| 亚洲欧美日韩高清专用| 欧美 亚洲 国产 日韩一| 国产精品久久久人人做人人爽| 成人手机av| 一级毛片精品| 国产av在哪里看| 亚洲aⅴ乱码一区二区在线播放 | 巨乳人妻的诱惑在线观看| 1024手机看黄色片| 亚洲自偷自拍图片 自拍| 国产av不卡久久| 少妇的丰满在线观看| 三级国产精品欧美在线观看 | 男女做爰动态图高潮gif福利片| 欧美日韩精品网址| 欧美日韩精品网址| 亚洲av美国av| 成人国语在线视频| 亚洲人成网站在线播放欧美日韩| 老汉色av国产亚洲站长工具| 国产亚洲欧美98| 国产午夜福利久久久久久| 欧美日韩亚洲综合一区二区三区_| 国产久久久一区二区三区| 久久久久久九九精品二区国产 | 亚洲午夜理论影院| 日韩欧美一区二区三区在线观看| 久久久久性生活片| av免费在线观看网站| 久久中文字幕人妻熟女| 欧美日韩亚洲国产一区二区在线观看| 999久久久精品免费观看国产| 国产高清有码在线观看视频 | 麻豆久久精品国产亚洲av| 亚洲一码二码三码区别大吗| 欧美最黄视频在线播放免费| 18禁黄网站禁片免费观看直播| 麻豆国产av国片精品| www日本在线高清视频| videosex国产| 成人18禁在线播放| 男女午夜视频在线观看| 欧美黑人巨大hd| 一本综合久久免费| 深夜精品福利| 老司机午夜福利在线观看视频| 动漫黄色视频在线观看| 在线观看美女被高潮喷水网站 | 亚洲人成电影免费在线| 欧美精品亚洲一区二区| 久久久精品欧美日韩精品| 黄色a级毛片大全视频| 久久婷婷人人爽人人干人人爱| 少妇的丰满在线观看| 女人高潮潮喷娇喘18禁视频| 国产成人av教育| 悠悠久久av| 色播亚洲综合网| 日韩欧美在线乱码| 国产一区二区激情短视频| 久久久国产成人精品二区| 又粗又爽又猛毛片免费看| 18禁裸乳无遮挡免费网站照片| 亚洲 欧美一区二区三区| 婷婷六月久久综合丁香| 免费看日本二区| 少妇人妻一区二区三区视频| 欧美色欧美亚洲另类二区| 999精品在线视频| 亚洲精华国产精华精| 亚洲国产日韩欧美精品在线观看 | 中文资源天堂在线| 国产成人av激情在线播放| 午夜福利18| 特大巨黑吊av在线直播| 日本 av在线| 中出人妻视频一区二区| 久久久国产欧美日韩av| 狂野欧美白嫩少妇大欣赏| 国内少妇人妻偷人精品xxx网站 | 欧美乱妇无乱码| 麻豆成人av在线观看| 99久久无色码亚洲精品果冻| 国产精品亚洲美女久久久| videosex国产| 啦啦啦观看免费观看视频高清| 男女做爰动态图高潮gif福利片| 狂野欧美激情性xxxx| 国产av在哪里看| 国产区一区二久久| 亚洲乱码一区二区免费版| 国内精品久久久久久久电影| 日韩免费av在线播放| 国模一区二区三区四区视频 | 香蕉久久夜色| 美女黄网站色视频| 日本三级黄在线观看| 少妇人妻一区二区三区视频| 狂野欧美白嫩少妇大欣赏| 国产午夜福利久久久久久| 精品久久久久久久末码| 成人永久免费在线观看视频| 女生性感内裤真人,穿戴方法视频| 一卡2卡三卡四卡精品乱码亚洲| 男女午夜视频在线观看| 亚洲人成电影免费在线| 成人特级黄色片久久久久久久| 男人的好看免费观看在线视频 | 九九热线精品视视频播放| 欧美最黄视频在线播放免费| 免费电影在线观看免费观看| 亚洲国产精品久久男人天堂| av欧美777| 老司机午夜福利在线观看视频| 亚洲自拍偷在线| 亚洲人成电影免费在线| 夜夜看夜夜爽夜夜摸| 久久天躁狠狠躁夜夜2o2o| 亚洲国产精品合色在线| 国产精品av久久久久免费| 国产激情偷乱视频一区二区| 亚洲熟妇熟女久久| 黄色a级毛片大全视频| 岛国视频午夜一区免费看| 亚洲avbb在线观看| 欧美av亚洲av综合av国产av| 免费在线观看成人毛片| 国产三级中文精品| 女警被强在线播放| 国内少妇人妻偷人精品xxx网站 | 日本 欧美在线| 欧美日本视频| 欧美性猛交黑人性爽| 看片在线看免费视频| 国产一区二区在线av高清观看| 免费观看精品视频网站| 亚洲成人国产一区在线观看| 欧美另类亚洲清纯唯美| av在线播放免费不卡| 午夜成年电影在线免费观看| 男女下面进入的视频免费午夜| 精品欧美一区二区三区在线| 美女大奶头视频| 国产单亲对白刺激| 最好的美女福利视频网| 狂野欧美白嫩少妇大欣赏| 国内少妇人妻偷人精品xxx网站 | 俺也久久电影网| 小说图片视频综合网站| 欧美成人一区二区免费高清观看 | 欧美绝顶高潮抽搐喷水| 极品教师在线免费播放| 一区二区三区国产精品乱码| 亚洲精品国产精品久久久不卡| 日韩大尺度精品在线看网址| 亚洲激情在线av| 久久久久精品国产欧美久久久| 亚洲精品久久成人aⅴ小说| 欧美成人免费av一区二区三区| 午夜影院日韩av| 国产日本99.免费观看| av中文乱码字幕在线| 桃色一区二区三区在线观看| 亚洲成人精品中文字幕电影| 99热6这里只有精品| 国产av在哪里看| 成年女人毛片免费观看观看9| 美女午夜性视频免费| 亚洲男人的天堂狠狠| 国产免费av片在线观看野外av| svipshipincom国产片| 一进一出好大好爽视频| 久久午夜综合久久蜜桃| 亚洲成人国产一区在线观看| 黄色a级毛片大全视频| 国产av不卡久久| 精品久久久久久久人妻蜜臀av| 丝袜美腿诱惑在线| 国内精品一区二区在线观看| cao死你这个sao货| 老司机在亚洲福利影院| 久久天躁狠狠躁夜夜2o2o| 中文亚洲av片在线观看爽| 香蕉国产在线看| 精品少妇一区二区三区视频日本电影| 这个男人来自地球电影免费观看| 欧美三级亚洲精品| 国产av又大| 亚洲专区中文字幕在线| 国产麻豆成人av免费视频| 免费看a级黄色片| www国产在线视频色| 国产精品香港三级国产av潘金莲| 国产片内射在线| 欧美黑人欧美精品刺激| 99精品在免费线老司机午夜|