• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Improved Phase Correlation Method for Obtaining Dynamic Feature of the Ocean from Sequential SAR Sub-aperture Images

    2013-07-25 06:25:38WangXiaoqingSunHaiqingChongJinsong
    雷達學報 2013年1期
    關(guān)鍵詞:圖像匹配孔徑海洋

    Wang Xiao-qing*① Sun Hai-qing①② Chong Jin-song①

    ?

    An Improved Phase Correlation Method for Obtaining Dynamic Feature of the Ocean from Sequential SAR Sub-aperture Images

    Wang Xiao-qingSun Hai-qingChong Jin-song

    (National Key Laboratory of Science and Technology on Microwave Imaging, Institute of Electronics,Chinese Academy of Sciences, Beijing100190, China)(Graduate University of Chinese Academy of Sciences, Beijing 100049, China)

    Dynamic features are important aspects of the ocean. However the dynamic information is lost in most conventional Synthetic Aperture Radar (SAR) image processing methods, because they treat the image as an instantaneous state of the observed area. In fact, we can obtain dynamic features of the ocean from sequential sub-aperture images, because we know that the different parts of the azimuthal aperture correspond to different imaging instances. A key step for retrieving the dynamic features from sequential images is image-matching. However, the heavy noise characteristic of sub-aperture SAR images renders the traditional image-matching methods ineffective. In this paper we propose an image matching method based on improved phase correlation to deal with the heavy noise problem of SAR sub-aperture images. Experimental results show that the improved image-matching method presents an accuracy of 0.15 pixel and noise robustness. The analysis indicates that the improved algorithm is competent for obtaining dynamic information from the medium resolution airborne SAR images or high resolution spaceborne SAR images with 0.15-0.3 m/s estimation precision under most SNR conditions. The improved algorithm was used on an airborne SAR data to retrieve the movement velocity. The retrieved velocity ranged from 0.05-0.5 m/s, which seems to be reasonable value for the ocean current velocity.

    Ocean surface dynamic feature; Synthetic Aperture Radar (SAR) sub-aperture image; Image matching; Phase correlation

    1 Introduction

    Synthetic Aperture Radar (SAR) has its adven- tages of high resolution, wide scale, working on day as well as night and under most weather conditions. It is a significant important sensor in ocean remote sensing field, and has many successful applications on obtaining the ocean feature such as ocean internal wave, wind field. Dynamic features are also important aspects of the ocean. However, the dynamic information is lost in most SAR image processing methods, because they treat SAR image as an instantaneous state of the ocean surface. There are mainly two techniques for obtaining the movement information based on SAR data: (1) one method utilizes the mechanism that the surface current can cause SAR Doppler centroid shift in the single antenna SAR signal; (2) another technique called Along Track Interferomatric SAR (ATISAR), which requires a second receiving antenna, can also calculate the current with much higher resolution than the method based on Doppler centroid shift. The main drawback of these two techniques is that they can only retrieve the current in the SAR look direction but not two-dimension current.

    In fact, we indeed can obtain the dynamic information from SAR data by some proper methods because the SAR data reflects the dynamic information during the SAR integral time. From the principle of SAR imaging, we know that the different parts of the azimuthal aperture correspond to different imaging instants. There- fore, using SAR sub-aperture imaging method, we can acquire the sequential SAR sub-aperture images with a short time interval. Then, the ocean surface two-dimensional movement information can be further obtained from these sequential images by some image matching methods. However, the heavy noise characteristic of SAR sub-aperture image renders the traditional image matching method ineffective. Phase correlation method is a very useful high-precise image matching method. Nevertheless, the classic phase correlation method is mainly applied in optical image processing, in which the Signal to Noise Ratio (SNR) is generally higher than that of SAR images. When used for the sub-aperture SAR images with heavy multi- plicative and additive noise, the precision of the classic phase correlation method is rather low. In this paper, an improved phase correlation method is proposed for dealing with the heavy noise problem of SAR sub-aperture images. Simulation experimental results show that, the improved method can raise matching accuracy by dozens of times under low signal-noise ratio condition, and still reach rather high precision when the classic phase correlation method is unable to work properly.

    The approach and some simulation experiment of the improved phase correlation method are given in Section 2. And in Section 3, we use the improved algorithm to process an airborne SAR data for obtaining the two-dimensional dynamic feature of the ocean surface. At the end, some conclusions are given in the Section 4.

    2 Improved Phase Correlation Method

    2.1 Phase correlation method theory

    The key point of phase correlation method is to get the movement quantity in spacial domain via phase shift quantity in frequency domain. The most important advantage of phase correlation method is its high precision. It can obtain sub-pixel precision under proper SNR condition.

    Supposing a rigid movement vector [,] between sequential imagesandwhereis a rigid movement of,..

    then two-dimensionalFourier-Transform ofandhave following relation:

    (2)

    where(,) is the Fourier-Transform of,andare the image height and width respectively.

    The movement vector in spacial domain leads to a linear phase shift in frequency domain. So we can calculate the movement quantity through the phase shift quantity. The element of normalized cross- power spectrum matrixis expressed as below:

    A method based on Singular Value Decompo- sition (SVD) is proposed by Hoge for solving the movement vector [,]. He concluded that the high-order singular values in the SVD matrix of the phase matrix reflect image noise, and the low-order singular values correspond to image background. According to Eq. (3), we know the rank of the normalized cross-power spectrum matrixmust be 1. However, because of the noise, the real rank is greater than 1. So we apply SVD on the matrixand use the lowest order singular value to reconstruct the matrix. It is a convenient and noise-robust method for calculating the movement vector [,].

    The size of cross-power spectrum matrixis assumed to be(supposing), and the rank ofis supposed to be. The singular value decomposition of a non-square matrix is expressed as:

    (5)

    The non-zero diagonal elements satisfy:

    Then the matrix can be expressed by

    (7)

    For filtering out the noise, we only reserve the lowest-order singular value and discard other singular values to reconstruct matrix.

    Finally, we can use one column of data extracted fromto solveby least square method, as shown in Eq. (9).

    (9)

    2.2 Error analysis

    Since image matrix is discrete signal and there are approximate calculations during the processing, some error exits invetibly in phase correlation method. The error comes mainly from two effects: image boundary effect and image aliasing effect.

    Image boundary effect is caused by two- dimensional Discrete Fourier-Transform (DFT). DFT supposes the image are periodical. As a result, the image left-top part is jointed with the right- bottom part, and the left-bottom part is jointed with the right-top part. The discontinuity at the joint position leads to high frequency noise in the frequency domain. This is the image-boundary effect. According to Stone,., an effective way to reduce image boundary effect is to append a Blackman-Harris window (shown in Fig. 1) in spacial domain before DFT.

    When the continuous signal is sampled and becomes discrete image signal, this process is similar to passing a low-pass filter. When the sampling rate is smaller than Nyquist frequency, the image aliasing effect happens.

    In general, the high frequency components are smaller than lower components, so the aliasing effect is slight at lower frequency and serious at higher frequency, as shown in Fig. 2. Stone,. point out an effective method for suppressing image-aliasing effect: only using the central low frequency region. In general, the effective low frequency region is about 60% of the entire image for optical images, as shown in Fig. 3.

    Fig. 1 Blackman-Harris window

    Fig. 2 Sketch of image aliasing effect

    Fig. 3 Cross-power spectrumand the effective region of a typical optical image (blue rectangle)

    2.3 The improved phase correlation method

    Up to now, the phase correlation method is mainly used in the imaging matching of optical images. Unlike optical imaging sensor, SAR is a coherent imaging sensor in which the coherent speckle noise is inevitable. Furthermore, the speckle noise of sub-aperture SAR image is higher than that of full-aperture SAR image because of its narrower Doppler bandwidth. In addition, the radar backscattering signal of ocean is relatively low, which results in relatively higher additive thermal noise effect. Therefore the noise problem of ocean SAR sub-aperture images is much more serious than that of common optical images, therefore, could lead to more serious aliasing effect. As Fig. 4 shows, Stones’ proposal of effective region parameter “60%” already has included severe aliased region for SAR images, so this algorithm must be optimized for SAR sub-aperture images.

    Fig. 4 Several kinds of images’ cross-power spectrum

    Because SNR of image affects the aliasing level, the effective region size of “60%” is only suit for common high SNR optical images but not for SAR sub-aperture images. The movement estimation errors, obtained in our simulation experiment, under various effective region and different SNR are shown in Fig. 5.

    From Fig. 5, we can see that when the SNR range from 3 dB to 9 dB, the optimal effective region is around 40%. Nevertheless, the estimation error will be much higher if the effective region is set to be 60%, as recommended in Ref. [7]. With the optimal effective region size, the error is about -25 dB, which means the matching accuracy is smaller than 0.06 pixel.

    Fig. 5 Movement estimation error under various effective region size and different SNR

    In this paper, we will search for an adaptive algorithm for getting the optimal effective region size under arbitrary SNR conditions.

    According to Subsection 2.1, the matching problem transforms to an over-determined equation solving problem. In the Eq. (9), after unwrapping operation, a typical column phase data ofdata and a typical row phase data ofare shown in Fig. 6.

    First, we use a small central region (in this paper the first small region is set to be 10%) as the original effective region. And then based on the phase data in the small frequency region, we use least square method to fit a straight line, as shown in Fig. 7, the line gradient is the first estimation of the movement vector [,]. Next, we compare the real phase data with the fitted line from centre to edge, if the difference between them is larger than a certain threshold, the effective region stop there. Then we can use the new effective area to repeat the aforementioned operation. After several iterations, we can get the final optimal effective region size.

    Furthermore, the phase data in the effective region should not be treated equally because the phase noise intensity is not uniform in the effective region. Fig. 2 shows that the aliasing effect is not same from centre to edge, Thus an appropriate weighting factor should be added to the phase data when calculating the movement vector [,]. Here we use the reciprocal of the noise intensity as the weighting factor. The noise intensity can be approximated by the difference between the fitted line and the real phase data. To suppress the fluctuation, a curve fitting algorithm is used to fit noise intensity curve from the difference between the fitted straight line and the real phase data, which is shown in Fig. 8.

    Fig. 6 Spectrum phase

    Fig. 7 Spectrum phase and the fitted straight line

    Fig. 8 Difference between the fitted straight line andthe real phase data (red), fitted curve line (blue)

    The weighted version of Eq. (9) becomes

    whereis the angular weighting factor matrix

    withkdenoting the weighting factor at the-th point.

    2.4 Comparison between the improved algorithm and the classic algorithm

    The best approach to assess the accuracy of our algorithm is comparing the estimated result with the in-situ measurement. Unfortunately, we have no in-site measurement of the movement in the observed ocean area of the SAR data. Thus, we have to use simulation experiments to evaluate our idea. The simulation experiments include following steps:

    Step 1 Select a typical ocean SAR image as the original images;

    Step 2 Make a certain shift with the original image to generate a second image;

    Step 3 Add noise with different type and intensity to these two images;

    Step 4 Use the improved algorithm and the classic algorithm to estimate the relative shift between the two images contaminated by the noise. And then compare the estimated result with the actual shift we set in the second step.

    The original image used in the simulation experiments is shown in Fig. 9.

    Fig.9 Original image used in the simulation (CIECAS 2003)

    The following 3 tables show the standard deviation of the estimation error under different noise intensity and type.

    Tab. 1 Estimation error under Gaussian noise with standard deviation of 0.1 (normalized)

    Error(pixel)Exp. 1Exp. 2Exp. 3Exp. 4Exp. 5 Ey0.92860.89910.60820.90110.9030 Ey_w0.08670.08630.07640.07930.0768 Ex0.19900.07870.21240.08850.1328 Ex_w0.06240.07340.06470.06560.0647

    Tab. 3 Estimation error under Gaussian noise with standard deviation of 0.22 (normalized)

    In Tabs. 1-3, Ex and Ey refer to the estimation error on theandaxis using classic algorithm, and Ex_w and Ey_w denote the estimation error on theandaxis using the improved algorithm. The numbers of simulation repeat in each experiment is 100.

    From Tabs. 1-3, we can see that the estimation error of classic algorithm increases rapidly with increasing noise, while our improved algorithm can keep the estimation error under 0.15 pixel in most cases. Under heavy noise case (Tab. 3), the precise of our improved algorithm is much higher than the classic one. Under low noise condition (Tab. 1), the precision of the improved algorithm even reach about 0.03 pixel order.

    For airborne SAR with mediate resolution of 3 -5 m and integral time of 10 s order, the image matching precision of 0.15 pixel can ensure the velocity estimation accuracy of about 0.15 m/s or higher. So the improved algorithm is competent for obtaining dynamic feature with an accuracy of 0.15 m/s accuracy under most SNR conditions.

    For spaceborne SAR with medium resolution of 10-20 m and integral time of 1-2 s, only image matching precision of 0.03 pixel can ensure the accuracy of 0.3-0.6 m/s estimation accuracy. As to the high resolution spaceborne SAR such as RADARSAT-2 (the resolution is about 3 m, and the integral time is about 3 s), the image matching precision of 0.15 pixel can ensure an accuracy of 0.3 m/s or higher. In other words, the improved algori- thm is applicable for obtaining dynamic feature from medium resolution spaceborne SAR image only under high SNR condition, and from high resolution spaceborne SAR image under most SNR conditions.

    3 Matching Sub-aperture Sequential Images

    As an example, we use an airborne SAR data to test the improved algorithm. The airborne data was obtained in 2003 with resolution of 5.4 m(azimuth direction)*4.5 m(range direction) by the L band SAR of the Institute of Electronics, Chinese Academy of Science (IECAS).

    The data processing includes following steps:

    Step 1 Dividing the Doppler spectrum of SAR raw data into two parts and re-imaging these two parts, we can get two sub-aperture sequential images;

    Step 2 Divide these two sub-aperture images into small girds (in this examples, the gird size is 128×128 pixels)

    Step 3 Matching the corresponding grids of the two sub-aperture images by the improved method, we can get the relative shift of every grid between the two sub-aperture images.

    Step 4 Multiplied by the pixel size and divided by the time interval between the two sub-aperture images, we can get the movement velocity of each grid from the relative shift.

    The time interval between the sub-aperture images is about 8 s. Thus, to reach a movement accuracy of 0.2 m/s, the image matching error must be lower than 0.15 pixel, which can be satisfied by the improved algorithm in most case. The surface dynamic feature obtained from the airborne SAR of IECAS is shown in Fig. 10.

    For example, the computed velocity of 25 grids in this image are shown in Tab. 4

    Fig. 10 Ocean surface dynamic feature obtained from airborne SAR of IECAS (C IECAS 2003)

    Tab. 4 The computed velocity vector of 25 grids (m/s)

    Number of rowNumber of colum 12345 1[-0.07,-0.16][-0.04,-0.14][-0.05,-0.35][-0.06,-0.35][0.04,-0.06] 2[0.05,0.20][0.04,-0.12][0.01,-0.39][0.03,-0.13][0.10,-0.08] 3[0.16,-0.26][0.10,-0.22][0.19,-0.33][0.09,-0.24][0.10,-0.14] 4[0.19,-0.33][0.25,-0.20][0.28,-0.26][0.21,-0.36][0.15,-0.33] 5[0.28,0.26][0.33,-0.32][0.32,0.49][0.19,-0.33][0.09,-0.24]

    In Tab. 4, the estimated velocities range from 0.05 m/s to 0.5 m/s, which seems to be a reasonable value of the ocean current. Unfortunately, we have no in-situ measurement to validate the estimated velocity.

    4 Conclusions

    We can obtain ocean dynamic feature from sequential sub-aperture SAR images, because we know that the different parts of the azimuthal aperture correspond to different imaging instants. Image-matching is a key technique for retrieving the movement information from sequential images. In the image matching methods, the phase correlation method is a widely used and high- precision method. However, the classic phase correlation method is mainly used in optical image with relatively high SNR. When used for sub- aperture SAR images with heavy noise, theprecision of classic phase correlation method is rather low. In this paper, an improved phase correlation method is proposed for dealing with the heavy noise problem. The simulation results show that the improved algorithm can get much higher estimation precision than the classic algorithm especially under rather low SNR conditions. The estimation precision of the improved algorithm is smaller than 0.15 pixel under most cases, and reaches 0.03 pixel under high SNR condition. The analysis indicates that the improved algorithm is competent for obtaining the dynamic information from the medium resolution airborne SAR image or high resolution spaceborne SAR image with 0.15-0.3 m/s velocity precision under most SNR conditions. We use the improved algorithm to obtain the dynamic feature from an airborne SAR data, acquired by a L band airborne SAR of IECAS. The retrieved velocity ranges from 0.05-0.5 m/s, which seems to be a reasonable value of ocean current velocity.

    [1] Van der Kooij M, Hughes W, and Sato S. Doppler current velocity measurements: a new dimension to spaceborne sar data [OL]. http://atlantisscientific.com/eoserv.html, 2001.

    [2] Johannessen J A, Chapron B, Collard F,.. Direct ocean surface velocity measurements from space: improved quantitative interpretation of Envisat ASAR observations[J]., 2008, 35(10), L22608, doi: 10.1029/2008GL035709.

    [3] Johannessen J A, Kudryavtsev V, Chapron B,.. Backscatter and doppler signals of surface current in SAR images: a step towards inverse modelling[C]. Proceedings of SEASAR 2006, ESA/ESRIN, Frascati, Jan. 2006: 23-26.

    [4] Hansen M W, Kudryavtsev Chapron V B, Johannessen J A,.. Simulation of radar backscatter and Doppler shifts of wave–current interaction in the presence of strong tidal current[J]., 2012, 120(1): 113-122.

    [5] Rossi C, Runge H, and Breit H. Surface current retrieval from TERRASAR-X data using Doppler measurements[C]. IEEE Geoscience and Remote Sensing Symposium, Munich, German, July 2012: 3055-3058.

    [6] Kersten P R and Jansen R W. Estimating surface water flow speeds using time-frequency methods[J]., 2010, (4): 406-412.

    [7] Graber H C, Thompson D R, and Carande R E. Ocean surface features and currents measured with synthetic aperture radar interferometry and HF radar[J]., 1996, 101(C11): 25,813-25,832.

    [8] Romeiser R, Breit H, Eineder M,.. Current measurements by SAR along-track interferometry from a space shuttle[J]., 2005, 43(10): 2315-2324.

    [9] Romeiser R and Runge H. Theoretical evaluation of several possible along-track InSAR modes of TerraSAR-X for ocean current measurements[J]., 2007, 45(1): 21-35.

    [10] Romeiser R, Suchandt S, Runge H,.. First analysis of TerraSAR-X along-track InSAR-Derived current fields[J]., 2010, 48(2): 820-829.

    [11] Hoge W S. A subspace identification extension to the phase correlation method[J]., 2003, 22(2): 277-280.

    [12] Stone M, Orchard E C, and Chang S M. A fast direct Fourier- based algorithm for sub-pixel registration of images[J]., 1998, 20(10): 2235-2243.

    [13] Foroosh H, Zerubia J B, and Berthod M. Extension of phase correlation to sub-pixel registration[J]., 2002, 11(3): 188-200.

    [14] Belongie S, Malik J, and Puzicha J. Shape matching and object recognition using shape contexts[J]., 2002, 24(4): 509-522.

    [15] Huang L and Li Z. Feature-based image registration using the shape context[J]., 2010, 31(8): 2169-2177.

    從SAR子孔徑序列圖像中提取海洋動態(tài)特征的改進相位相關(guān)法

    王小青孫海清種勁松

    (中國科學院電子學研究所微波成像國家重點實驗室 北京 100190)(中國科學院大學 北京 100049)

    動態(tài)特征是海洋信息中的重要方面。但是在通常的SAR圖像處理中動態(tài)信息往往會被丟失,因為這些方法大多把SAR圖像看成是觀測區(qū)域的瞬時狀態(tài)。實際上,我們可以從SAR子孔徑序列圖像中獲取動態(tài)信息,因為我們知道SAR不同方位向孔徑對應(yīng)不同的成像瞬間。從序列圖像中獲取動態(tài)信息的一個關(guān)鍵步驟就是圖像匹配。但是SAR子孔徑圖像的強噪聲特性使得傳統(tǒng)的圖像匹配算法難以奏效。該文中,為了應(yīng)對SAR子孔徑圖像中的噪聲問題,我們提出了一種改進的相位相關(guān)法。仿真實驗表明改進的算法在多數(shù)情況下都可以達到0.15像素以上的精度以及很好的噪聲魯棒性。分析表明,該方法可以適用于從中等分辨的機載SAR圖像和高分辨的星載SAR圖像中提取動態(tài)特征,速度提取精度可以達到0.15-0.3 m/s。該文將該方法用于一個實際的機載SAR圖像的處理,反演的海面動態(tài)速度在0.05-0.5 m/s左右,這個速度范圍符合海面上一般的流速范圍。

    海洋面動態(tài)特征;SAR 子孔徑圖像;圖像匹配;相位相關(guān)

    TN957.52

    A

    2095-283X(2013)01-0030-09

    Wang Xiao-qing.E-mail: huadaqq@126.com.

    CLC index: TN957.52

    10.3724/SP.J.1300.2013.13016

    Manuscript received February 28, 2013; revised March 22, 2013. Published online March 27, 2013.

    Supported by the National Natural Science Foundation of China (No. 41276185).

    Wang Xiao-qing was born in 1978. He received his Ph.D. degree from the Institute of Electronics, Chinese Academy of Sciences in 2006. He is currently an associate research fellow with the Institute of Electronics, Chinese Academy of Sciences. His research interests are SAR signal and marine information processing.E-mail: huadaqq@126.com

    Sun Hai-qing was born in 1989. She received her Master degree from the Institute of Electronics, Chinese Academy of Sciences in 2012. She is currently an engineer in Micro- soft Corporation. Her research interests is image processing.E-mail: haiqingsun2010@gmail.com

    Chong Jin-song was born in 1969. She received her Ph.D. degree from the Institute of Electronics, Chinese Academy of Sciences in 2003. She is currently a research fellow with the Institute of Electronics, Chinese Academy of Sciences. Her research interests are SAR signal and marine information processing.E-mail: chongjinsong@sina.com

    猜你喜歡
    圖像匹配孔徑海洋
    不同滲透率巖芯孔徑分布與可動流體研究
    海洋的路
    當代音樂(2018年4期)2018-05-14 06:47:13
    愛的海洋
    琴童(2017年7期)2017-07-31 18:33:48
    一種用于光照變化圖像匹配的改進KAZE算法
    第一章 向海洋出發(fā)
    小學科學(2017年5期)2017-05-26 18:25:53
    分布式孔徑相參合成雷達技術(shù)
    雷達學報(2017年1期)2017-05-17 04:48:53
    基于子孔徑斜率離散采樣的波前重構(gòu)
    挖掘機器人圖像匹配算法研究
    基于SIFT和LTP的圖像匹配方法
    大孔徑淺臺階控制爆破在重慶地區(qū)的應(yīng)用
    重慶建筑(2014年12期)2014-07-24 14:00:32
    啦啦啦啦在线视频资源| 成年免费大片在线观看| 啦啦啦观看免费观看视频高清| 精品福利观看| 亚洲av二区三区四区| 精品人妻偷拍中文字幕| www.色视频.com| av在线天堂中文字幕| 嫩草影院入口| 免费看日本二区| 男女那种视频在线观看| 成人亚洲欧美一区二区av| 我的老师免费观看完整版| av中文乱码字幕在线| 久久精品国产亚洲av香蕉五月| 天堂√8在线中文| 超碰av人人做人人爽久久| 美女cb高潮喷水在线观看| 美女高潮的动态| 欧美最黄视频在线播放免费| 成人av一区二区三区在线看| 97超视频在线观看视频| 18禁裸乳无遮挡免费网站照片| 男人狂女人下面高潮的视频| 国产精品亚洲美女久久久| 国产精品综合久久久久久久免费| 亚洲熟妇熟女久久| 午夜精品在线福利| 黄色欧美视频在线观看| 1000部很黄的大片| 日本精品一区二区三区蜜桃| 日韩亚洲欧美综合| 日韩一区二区视频免费看| 成年女人看的毛片在线观看| 国产国拍精品亚洲av在线观看| 日韩欧美精品免费久久| 最近最新中文字幕大全电影3| 欧美不卡视频在线免费观看| 久久99热这里只有精品18| 女人十人毛片免费观看3o分钟| 国产69精品久久久久777片| 少妇的逼水好多| 99久久久亚洲精品蜜臀av| 亚州av有码| 国产精华一区二区三区| 色尼玛亚洲综合影院| 国产成人freesex在线 | 观看免费一级毛片| 亚洲中文字幕一区二区三区有码在线看| 成人三级黄色视频| 亚洲精品影视一区二区三区av| 亚洲av电影不卡..在线观看| 变态另类成人亚洲欧美熟女| 亚洲av免费在线观看| 午夜免费激情av| 国产久久久一区二区三区| 亚洲国产日韩欧美精品在线观看| 日韩一本色道免费dvd| 国产一区二区在线av高清观看| 麻豆成人午夜福利视频| a级一级毛片免费在线观看| 亚洲成人久久性| 亚洲va在线va天堂va国产| 久久久久精品国产欧美久久久| 国产黄片美女视频| 久久久久久久久大av| 成人无遮挡网站| 亚洲国产精品国产精品| 国产成人精品久久久久久| 国产精品国产三级国产av玫瑰| 18禁裸乳无遮挡免费网站照片| 国产大屁股一区二区在线视频| 国产高清不卡午夜福利| 高清日韩中文字幕在线| 午夜福利视频1000在线观看| 亚洲人成网站高清观看| 欧美激情久久久久久爽电影| 亚洲欧美日韩无卡精品| 舔av片在线| 欧美成人a在线观看| 日本三级黄在线观看| 国产黄片美女视频| 亚洲av成人av| 99热6这里只有精品| 人人妻人人看人人澡| 99国产极品粉嫩在线观看| 偷拍熟女少妇极品色| 啦啦啦啦在线视频资源| 在线观看66精品国产| 香蕉av资源在线| 日本一二三区视频观看| 赤兔流量卡办理| 国产精品久久久久久亚洲av鲁大| 两个人视频免费观看高清| 欧美极品一区二区三区四区| av.在线天堂| 国产高清视频在线观看网站| 国产日本99.免费观看| 中国美白少妇内射xxxbb| 久久国产乱子免费精品| 亚洲av第一区精品v没综合| 特大巨黑吊av在线直播| 高清午夜精品一区二区三区 | 亚洲最大成人手机在线| 欧美最黄视频在线播放免费| 少妇人妻精品综合一区二区 | 免费无遮挡裸体视频| 99热网站在线观看| 三级毛片av免费| 欧美日本视频| 九九久久精品国产亚洲av麻豆| 一边摸一边抽搐一进一小说| 午夜免费男女啪啪视频观看 | 观看免费一级毛片| av在线观看视频网站免费| 99九九线精品视频在线观看视频| 九九爱精品视频在线观看| 欧美区成人在线视频| 久久人人爽人人爽人人片va| 非洲黑人性xxxx精品又粗又长| 中文资源天堂在线| 色综合亚洲欧美另类图片| 一本久久中文字幕| 欧美日韩国产亚洲二区| 国产精品国产三级国产av玫瑰| 在线免费十八禁| 久久亚洲国产成人精品v| 亚洲国产精品sss在线观看| а√天堂www在线а√下载| 成熟少妇高潮喷水视频| 亚洲成人av在线免费| 日韩三级伦理在线观看| 欧美3d第一页| 你懂的网址亚洲精品在线观看 | 99热只有精品国产| 久久精品国产亚洲网站| 变态另类成人亚洲欧美熟女| 我要看日韩黄色一级片| 国产 一区 欧美 日韩| 亚洲中文字幕一区二区三区有码在线看| 97在线视频观看| 日本黄色片子视频| 九九在线视频观看精品| 国产精品精品国产色婷婷| 免费看av在线观看网站| 国产亚洲精品久久久久久毛片| АⅤ资源中文在线天堂| 精品久久久久久成人av| 男女啪啪激烈高潮av片| 精品久久久久久久末码| 午夜日韩欧美国产| 久久精品夜夜夜夜夜久久蜜豆| 一本久久中文字幕| 搞女人的毛片| 国产男人的电影天堂91| 免费看日本二区| 欧美区成人在线视频| 男女边吃奶边做爰视频| 亚洲精品乱码久久久v下载方式| 夜夜看夜夜爽夜夜摸| 久久久久久久午夜电影| 色尼玛亚洲综合影院| 国产女主播在线喷水免费视频网站 | 一边摸一边抽搐一进一小说| 少妇的逼水好多| 看非洲黑人一级黄片| 一本久久中文字幕| 伊人久久精品亚洲午夜| 男女边吃奶边做爰视频| 久久精品国产鲁丝片午夜精品| 国产精品综合久久久久久久免费| 国产精品久久视频播放| 亚洲无线观看免费| 国产亚洲91精品色在线| 午夜福利成人在线免费观看| 欧美一区二区精品小视频在线| 免费大片18禁| 国产探花在线观看一区二区| 村上凉子中文字幕在线| 久久九九热精品免费| 久久久久久久久中文| 黄片wwwwww| 亚洲最大成人手机在线| 欧美不卡视频在线免费观看| 露出奶头的视频| 校园春色视频在线观看| 亚洲精品在线观看二区| 日本欧美国产在线视频| 国产精品一区二区三区四区免费观看 | 亚洲精品456在线播放app| 国产视频一区二区在线看| 国产一区二区激情短视频| 91精品国产九色| 成年女人看的毛片在线观看| 亚洲av一区综合| 国产又黄又爽又无遮挡在线| 2021天堂中文幕一二区在线观| 成人无遮挡网站| 97超碰精品成人国产| 草草在线视频免费看| 日韩 亚洲 欧美在线| 亚洲av五月六月丁香网| 舔av片在线| 午夜久久久久精精品| 日产精品乱码卡一卡2卡三| 欧美xxxx黑人xx丫x性爽| 国产伦精品一区二区三区四那| 一a级毛片在线观看| 麻豆成人午夜福利视频| 在线观看免费视频日本深夜| 成人漫画全彩无遮挡| 乱码一卡2卡4卡精品| 欧美又色又爽又黄视频| 亚洲四区av| 国产探花极品一区二区| 亚洲精品国产成人久久av| 亚洲精品乱码久久久v下载方式| 在线观看av片永久免费下载| 少妇猛男粗大的猛烈进出视频 | 久久热精品热| 高清毛片免费观看视频网站| 欧美激情久久久久久爽电影| 色哟哟·www| 亚洲不卡免费看| 22中文网久久字幕| 久久久久九九精品影院| 国产精品国产高清国产av| 精品久久国产蜜桃| 真实男女啪啪啪动态图| 在线观看一区二区三区| 亚洲人与动物交配视频| 欧美三级亚洲精品| 成人午夜高清在线视频| 赤兔流量卡办理| 亚洲综合色惰| 成熟少妇高潮喷水视频| 午夜福利18| 午夜福利在线在线| 草草在线视频免费看| 亚洲婷婷狠狠爱综合网| 99久久成人亚洲精品观看| 国产亚洲精品久久久久久毛片| 偷拍熟女少妇极品色| 精品久久久噜噜| 日韩中字成人| 久久99热6这里只有精品| 欧美三级亚洲精品| 国模一区二区三区四区视频| 大香蕉久久网| 综合色丁香网| 欧美高清成人免费视频www| 国产精品久久久久久精品电影| 国产成人影院久久av| 不卡视频在线观看欧美| 欧美性猛交╳xxx乱大交人| 久久久a久久爽久久v久久| 搡老岳熟女国产| 乱系列少妇在线播放| 免费av不卡在线播放| 舔av片在线| 国产精品一区二区免费欧美| 亚洲欧美成人综合另类久久久 | 午夜精品在线福利| 国产老妇女一区| 69人妻影院| 少妇的逼水好多| 亚洲av免费在线观看| 一卡2卡三卡四卡精品乱码亚洲| 国产乱人视频| 成人av在线播放网站| 亚洲专区国产一区二区| 欧美性猛交╳xxx乱大交人| 亚洲欧美日韩高清在线视频| 色噜噜av男人的天堂激情| 麻豆乱淫一区二区| 亚洲精品亚洲一区二区| 午夜福利在线观看吧| 国产av一区在线观看免费| 成人毛片a级毛片在线播放| av视频在线观看入口| a级一级毛片免费在线观看| 亚洲一级一片aⅴ在线观看| 极品教师在线视频| 成人三级黄色视频| 干丝袜人妻中文字幕| 一进一出抽搐gif免费好疼| 天天躁日日操中文字幕| 国产精品国产高清国产av| 亚洲性夜色夜夜综合| 乱码一卡2卡4卡精品| 国产一区二区在线观看日韩| 国产v大片淫在线免费观看| 国产乱人视频| 亚洲成人久久爱视频| 欧美日韩一区二区视频在线观看视频在线 | 国国产精品蜜臀av免费| 亚洲在线自拍视频| 亚洲av免费在线观看| 亚洲av电影不卡..在线观看| 亚洲精品日韩在线中文字幕 | 级片在线观看| 男女做爰动态图高潮gif福利片| 免费看日本二区| 国产精品久久久久久亚洲av鲁大| 午夜激情福利司机影院| 国产爱豆传媒在线观看| 乱系列少妇在线播放| 国产成人精品久久久久久| 国模一区二区三区四区视频| 欧美日韩综合久久久久久| 亚洲欧美日韩卡通动漫| 国产精品国产高清国产av| 少妇裸体淫交视频免费看高清| 国产激情偷乱视频一区二区| 亚洲av美国av| 国产在线精品亚洲第一网站| 国产精品,欧美在线| 日本三级黄在线观看| 最好的美女福利视频网| 日日干狠狠操夜夜爽| 欧美高清成人免费视频www| 亚洲精品粉嫩美女一区| 免费一级毛片在线播放高清视频| 久久久久久久久久黄片| 观看免费一级毛片| 深夜精品福利| 99热这里只有是精品50| 日本精品一区二区三区蜜桃| 亚洲欧美日韩高清在线视频| 久久人人爽人人爽人人片va| 亚洲丝袜综合中文字幕| 久久精品综合一区二区三区| 国产激情偷乱视频一区二区| 综合色av麻豆| 在线播放无遮挡| 女生性感内裤真人,穿戴方法视频| 黄色欧美视频在线观看| 国产国拍精品亚洲av在线观看| 亚洲人成网站高清观看| 十八禁网站免费在线| 日韩欧美国产在线观看| 国产精品免费一区二区三区在线| 欧美国产日韩亚洲一区| 亚洲av.av天堂| 欧美国产日韩亚洲一区| 久久精品国产清高在天天线| 真实男女啪啪啪动态图| 波多野结衣高清作品| 亚洲在线自拍视频| 哪里可以看免费的av片| 成人欧美大片| or卡值多少钱| 久久久久久久久久成人| 日本免费a在线| 欧美+日韩+精品| 欧美性猛交╳xxx乱大交人| 国产亚洲精品综合一区在线观看| 深爱激情五月婷婷| 国产精品99久久久久久久久| 日本爱情动作片www.在线观看 | 午夜免费激情av| 国产亚洲精品久久久久久毛片| 亚洲精品久久国产高清桃花| 高清午夜精品一区二区三区 | 精品一区二区三区av网在线观看| 亚洲熟妇中文字幕五十中出| 免费观看精品视频网站| 色综合站精品国产| 久久久久久久亚洲中文字幕| 亚洲成人中文字幕在线播放| 国产真实乱freesex| 日本成人三级电影网站| 久久国内精品自在自线图片| 国产高清不卡午夜福利| 国产精华一区二区三区| 国产女主播在线喷水免费视频网站 | 午夜激情欧美在线| 国产视频一区二区在线看| 一级毛片我不卡| 日本成人三级电影网站| 99久国产av精品国产电影| 国产极品精品免费视频能看的| 最近手机中文字幕大全| 亚洲欧美精品自产自拍| 一进一出抽搐动态| 国产男靠女视频免费网站| 久久精品国产亚洲网站| 国产精品无大码| 国产淫片久久久久久久久| 看十八女毛片水多多多| 欧美xxxx黑人xx丫x性爽| 日本熟妇午夜| 综合色av麻豆| 中文字幕av在线有码专区| 中文字幕熟女人妻在线| 久久久久久久久久成人| 亚洲aⅴ乱码一区二区在线播放| 欧美激情久久久久久爽电影| 在线观看午夜福利视频| 国产免费一级a男人的天堂| 好男人在线观看高清免费视频| 国产免费一级a男人的天堂| 亚洲欧美中文字幕日韩二区| 波多野结衣高清无吗| 久久99热6这里只有精品| 亚洲国产精品sss在线观看| 老司机福利观看| 亚洲美女视频黄频| 亚洲人成网站高清观看| 97在线视频观看| 91在线观看av| 69人妻影院| 国语自产精品视频在线第100页| 久久天躁狠狠躁夜夜2o2o| 在线观看免费视频日本深夜| 久久久国产成人免费| 又粗又爽又猛毛片免费看| 免费在线观看成人毛片| 日本色播在线视频| 精品久久久久久久久久久久久| 亚州av有码| 日日摸夜夜添夜夜添小说| 中文字幕熟女人妻在线| 欧美激情久久久久久爽电影| 午夜免费激情av| 两个人的视频大全免费| 秋霞在线观看毛片| 少妇被粗大猛烈的视频| 天堂影院成人在线观看| 国产一区二区在线av高清观看| 亚洲成av人片在线播放无| 一级毛片久久久久久久久女| 人人妻人人澡人人爽人人夜夜 | 乱人视频在线观看| 日韩精品中文字幕看吧| 免费观看的影片在线观看| av在线蜜桃| 亚洲人与动物交配视频| 精华霜和精华液先用哪个| 久久精品国产亚洲av天美| 亚洲欧美成人综合另类久久久 | 欧美高清性xxxxhd video| 国产精品一及| 真人做人爱边吃奶动态| 日日干狠狠操夜夜爽| 在线a可以看的网站| 男插女下体视频免费在线播放| 成人毛片a级毛片在线播放| 久久精品夜色国产| 黄片wwwwww| 国产又黄又爽又无遮挡在线| 亚洲无线在线观看| 少妇熟女aⅴ在线视频| 亚洲aⅴ乱码一区二区在线播放| 看十八女毛片水多多多| 国产精品乱码一区二三区的特点| 久久人人爽人人爽人人片va| 国产午夜精品论理片| 一个人观看的视频www高清免费观看| 欧美日韩综合久久久久久| 国产欧美日韩一区二区精品| 亚洲乱码一区二区免费版| 人妻久久中文字幕网| 免费电影在线观看免费观看| 亚洲av中文字字幕乱码综合| 国产一区二区三区在线臀色熟女| 亚洲色图av天堂| 在现免费观看毛片| 久久人人精品亚洲av| 91精品国产九色| 99久久中文字幕三级久久日本| 国产伦精品一区二区三区四那| 免费观看人在逋| 国产精品1区2区在线观看.| 最近在线观看免费完整版| 日日啪夜夜撸| 国产91av在线免费观看| 亚洲熟妇中文字幕五十中出| 亚洲,欧美,日韩| 国产精品久久久久久av不卡| 国产精品综合久久久久久久免费| 欧美成人精品欧美一级黄| 免费av毛片视频| 日韩一区二区视频免费看| 一夜夜www| 国产老妇女一区| 狂野欧美白嫩少妇大欣赏| 亚洲国产精品sss在线观看| 中文字幕人妻熟人妻熟丝袜美| 哪里可以看免费的av片| 伊人久久精品亚洲午夜| 久久九九热精品免费| av中文乱码字幕在线| 国产久久久一区二区三区| 99在线人妻在线中文字幕| 欧美人与善性xxx| 国产成人影院久久av| 日韩精品青青久久久久久| 欧美成人精品欧美一级黄| 黑人高潮一二区| 日日摸夜夜添夜夜添av毛片| 亚洲高清免费不卡视频| 日韩av不卡免费在线播放| 午夜精品国产一区二区电影 | 狠狠狠狠99中文字幕| 高清午夜精品一区二区三区 | 欧美激情国产日韩精品一区| 午夜福利视频1000在线观看| 亚洲乱码一区二区免费版| 级片在线观看| 最近视频中文字幕2019在线8| 黄色日韩在线| 在线免费十八禁| 亚洲精品成人久久久久久| 亚洲在线观看片| 我要搜黄色片| 精品一区二区三区视频在线观看免费| 麻豆精品久久久久久蜜桃| 精品一区二区免费观看| 欧美高清成人免费视频www| 18禁在线无遮挡免费观看视频 | 欧美另类亚洲清纯唯美| 麻豆国产97在线/欧美| 日韩精品中文字幕看吧| 人妻少妇偷人精品九色| 久久精品夜夜夜夜夜久久蜜豆| 可以在线观看毛片的网站| 最近中文字幕高清免费大全6| 亚洲中文字幕一区二区三区有码在线看| 欧美丝袜亚洲另类| 日韩欧美一区二区三区在线观看| 午夜日韩欧美国产| 最后的刺客免费高清国语| 欧美+亚洲+日韩+国产| 亚洲图色成人| 欧美性猛交黑人性爽| 国产精品1区2区在线观看.| 午夜激情福利司机影院| 亚洲综合色惰| av在线亚洲专区| 美女cb高潮喷水在线观看| 午夜福利18| 精品一区二区三区av网在线观看| 嫩草影院新地址| 悠悠久久av| 99热这里只有精品一区| 97在线视频观看| 亚洲精品一卡2卡三卡4卡5卡| 国产成人aa在线观看| 热99在线观看视频| 18+在线观看网站| 99riav亚洲国产免费| 亚洲美女黄片视频| 久久久久精品国产欧美久久久| 亚洲性夜色夜夜综合| 日本黄色视频三级网站网址| 干丝袜人妻中文字幕| 波多野结衣高清作品| 又黄又爽又免费观看的视频| 国产美女午夜福利| 久久99热这里只有精品18| 国产亚洲精品av在线| 午夜福利视频1000在线观看| 美女免费视频网站| 99热精品在线国产| 欧美zozozo另类| 1000部很黄的大片| 亚洲久久久久久中文字幕| 综合色av麻豆| 成人特级黄色片久久久久久久| 干丝袜人妻中文字幕| 欧美精品国产亚洲| 久久鲁丝午夜福利片| 亚洲国产色片| 久久99热这里只有精品18| 中文资源天堂在线| 国产精品嫩草影院av在线观看| 18禁黄网站禁片免费观看直播| 啦啦啦韩国在线观看视频| 嫩草影院入口| 最好的美女福利视频网| 人妻丰满熟妇av一区二区三区| 狠狠狠狠99中文字幕| 精品人妻偷拍中文字幕| 天堂影院成人在线观看| 男女之事视频高清在线观看| 久久久久久九九精品二区国产| 亚洲不卡免费看| 成人漫画全彩无遮挡| 色哟哟哟哟哟哟| 免费黄网站久久成人精品| 久久久精品欧美日韩精品| 国产午夜福利久久久久久| 亚洲人成网站在线播| 狂野欧美激情性xxxx在线观看| 精品熟女少妇av免费看| 亚洲欧美精品综合久久99| 成人特级av手机在线观看| h日本视频在线播放| 国产欧美日韩一区二区精品| 午夜影院日韩av| 国产综合懂色| 国产高清有码在线观看视频| 免费在线观看影片大全网站| 国产精品久久电影中文字幕| 99九九线精品视频在线观看视频| 人妻夜夜爽99麻豆av| 国产精品久久久久久久久免| 美女黄网站色视频| 日韩欧美在线乱码| 18禁在线无遮挡免费观看视频 | 直男gayav资源| 女生性感内裤真人,穿戴方法视频| 天天一区二区日本电影三级| 欧美色视频一区免费|