• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Novel Phase Compensation Method for ISAR Imaging in Wideband Radar

    2013-07-25 06:25:36ChenZengpingZhangWeichengLinQianqiang
    雷達(dá)學(xué)報 2013年1期
    關(guān)鍵詞:國防科技大學(xué)寬帶多普勒

    Chen Zeng-ping Zhang Wei-cheng Lin Qian-qiang*

    ?

    A Novel Phase Compensation Method for ISAR Imaging in Wideband Radar

    Chen Zeng-ping Zhang Wei-cheng Lin Qian-qiang

    (ATR Key Lab, National University of Defense Technology, Changsha 410073, China)

    This paper is proposed to eliminate the negative influence of the Rotational Phase Component (RPC) on the performance of the Doppler Centroid Tracking (DCT) phase compensation method. Firstly, the coherent property between adjacent echo pulses sampled directly in Intermediate Frequency (IF) is analyzed in the paper. Then a coherent phase compensation method is developed to improve the Translational Phase Component (TPC) estimation accuracy of DCT. Compared to the Modified DCT (MDCT) algorithm, the proposed method achieves better phase compensation performance. Experimental results prove the effectiveness and efficiency of the proposed strategy.

    Wideband radar; Phase compensation; Direct Intermediate Frequency (IF) sampling; Curve fitting

    1 Introduction

    Inverse Synthetic Aperture Radar (ISAR) can obtain the 2-D images of moving targets (such as aircraft, ship, satellite,.), and improve the target recognition performance. Generally, ISAR aims at non-cooperative targets, this puts forward high request to motion compensation. The non- cooperative motion of radar target can be decomposed into rotational component and translational component. The rotational component is beneficial to ISAR imaging while the effects of translational component is just the opposite. Among them, the proceeding of eliminate the influence of translational component on echo envelope is called envelop alignment, and proceeding of eliminate the influence of rotational component on echo phase is called phase compensation. ISAR imaging raises a high demand on the latter. Therefore, improving precision of phase compensation plays an important role in improving the quality of ISAR imaging. Centring on this, domestic and foreign scholars carried out many related researches for a long time and achieved a lot of fruits. All of them can be classified into two kinds: one is parameterization method and the other is non-parameterization method. Among these numerous methods, Doppler Centroid Tracking (DCT) algorithm is adopted widely. DCT algorithm is the optimal one based on maximum likelihood criterion and can reduce the tracking loss induced by scintillation and obscuring while tracking the whole object instead of whichever scattering point. Also, it has fast calculation speed and is beneficial to real-time imaging. How- ever, the DCT algorithm has poor Translational Phase Component (TPC) estimation accuracy because of the Rotational Phase Component (RPC). The Modified DCT (MDCT) algorithm eliminates the negative influence of the RPC on the estimation accuracy of the TPC by circular shifting, windowing and iteration steps. Generally speaking, we need 8 to 10 times of iteration before obtaining good compensation performance. Consequently, the heavy computation load induced by times of iteration makes the MDCT method hard to be applied in engineering.

    With the development of Analog-to-Digital Converter (ADC), direct Intermediate Frequency (IF) sampling for wideband radar comes true and is used widely in applications. Compared to STRETCH processing, direct IF sampling raises a high demand on sampling frequency. But it also brings obvious advantages. One of them is coherent property of echo pulses. Coherent property between echo pulses plays an important role in ISAR imaging. In this paper, we explore improving the translational component estimation accuracy of DCT with simpler operation by adopting the coherent property.

    The remainder of this paper is organized as follows. In Section 2, the DCT algorithm is briefly introduced, as well as its limitation. Further, we analysis the coherent property of echo signal sampled directly in IF, and place an emphasis on the novel phase compensation method in Section 3. Experimental verification and conclusions are respectively given in Sections 4 and 5.

    2 DCT Algorithm and Its Limitation

    DCT algorithm is the embodiment of target centroid tracking method proposed firstly by Prichet. It tracks the target centroid and force the average Doppler to be zero. Its concrete implementation steps can be described as follows: After envelope alignment, calculate the weighted mean of adjacent echoes phase difference complex exponential function on weighted amplitude. In other words, obtain the Doppler centroid phase difference complex exponential functionas follows:

    where=1, 2, … is the frame serial number,andare the sub-echoes of range bin n in the adjacent echoes (Frameand Frame+1),stands for the phase difference of adjacent echoes. This is the Doppler phase induced by envelope motion. Obtain the adjacent envelopes phase difference successively and establish Doppler centroid phase difference function. Calibrating the phase of all range bins using this function, we can complete the phase compensation. But the rotational component of target motion may reduce the translational phase estimation accuracy of DCT method. Ref. [4] proposed the MDCT algorithm which solves this problem based on circle shift operation. Unfortunately, the multiple iterations induce heavy computation load. To solve this problem, we improve the estimation accuracy of DCT method by adopting the coherent property of echo pulses.

    3 Phase Compensation Method Based on the Coherent Property of Echo Pulses

    3.1 Phase property of STRETCH method

    It is assumed that the carrier frequency is,is the pulse duration,is time variable, andis the chirp rate. The amplitude of the Linear Frequency Modulation (LFM) signal is set to 1 for the convenience of analyzing. For STRETCH processing, the digital echo signals can be express in frequency domain as:

    whereis the velocity of light,,is the distance between the target and radar, andis the reference distance. The second exponential term is Residual Video Phase (RVP) term, and the third exponential term is the envelop “sideling” term when. This two exponential phase term can be eliminated by phase compensation at the envelope peak point when. The first phase term is the echo pulse phase brought by translational motion:

    (3)

    As is shown in Eq. (3), the phase of STRETCH processing echo pulse is related to the radial distanceand the reference distance.is closely related to the time-delay of the narrowband echo, which is not precise enough. So the phase term in Eq. (3) can not be obtained precisely and finally induced the incoherence of STRETCH processing echo returns. Fig. 1 shows the phase difference curves of adjacent echo pulses in STRETCH processing by using DCT method in a phased array radar. As shown in Fig. 1, the phase difference curve has tough undulation and cannot reflect the motion state of the target. This is due to the coherence destroying in STRETCH processing.

    3.2 Coherent property of direct IF sampling

    As is known to all, most of modern radars use the phase and frequency information instead of amplitude only for their main function. The radar coherent property plays a more and more important role in the system performance. Coherent radar sets higher requirements on radar frequency source. The frequency and phase stability of frequency source is the precondition of coherence in coherent radar. Based on the coherence mentioned above, we can ensure the coherent property of echo pulses sampling directly in IF by proper design of system parameters.

    Fig. 1 Phase difference curves of adjacent echo pulses achieving by STRETCH processing

    As for the coherent pulse compression radar, in order to keep the coherent property of echo pulses sampled directly in IF, there are some constraints to the sampling frequency. We usually adopt pulse train sampling or pulse sampling in the present existing direct IF sampling systems. Compar- atively, pulse train sampling is more suitable for keeping coherence of echo pulses. In Ref. [13], two conditions for keeping coherence in pulsed radar are summarized:

    (1) band-pass signal non-aliasing sampling rule

    (2) coherent requirement of adjacent pulses

    Then we’ll proof the coherent property of echo signals sampled directly in IF bellow. The LFM signal used by radar can be expressed as

    (5)

    After mixing process, the echo returns are converted down to IF signal, which can be express as

    (7)

    According to the stationary phase principle, we obtain the frequency domain expression offrom Eq. (8).

    Then the matched filter of signal expressed by Eq. (9) can be written as

    (10)

    So the output signal of the matched filter can be expressed as

    We can see from Eq. (9) that, the phase of signal after matched filtering is

    (12)

    Eq. (11) shows that, for the 1-D range profile of matched filtering after direct IF sampling, phase compensation means to eliminate the exponential term written aswhich truly reflects the phase variation induced by transla- tional motion of the target. The exponential term’s variation between pulses reflects the phase shift induced by target motion. Even though there may be accelerated motion during observation, the phase transformation curve induced by motion should be continuous and smooth because of the inertial. The non-ideal factors such as system distortion and radio propagation path just superimpose little ripple on the smooth curve.

    Fig. 2 shows that the phase difference curve of adjacent echo returns sampled directly in IF is continuous and approximate smooth. The little ripple is induced by the non-ideal factors such as system distortion and radio propagation path. Also we can find from the figure that the phase difference has an increasing trend. This indicates the accelerated motion of the target.

    Fig. 2 Phase difference curves of adjacent echo pulses achieving by direct IF sampling

    3.3 Coherent phase compensation method

    Based on the coherent property of direct IF sampling, we can smooth the phase difference curve using the least squares curve fitting method, and eliminate the phase error. Then we achieve the accurate phase difference curve and can improve the phase compensation effect.

    The concrete steps of the algorithm are shown bellow:

    Step 1 Estimate the Doppler centroid phase difference complex exponential function shown in Eq. (1) using DCT method, so we can obtain the phase difference curve of adjacent echo returns (curve of);

    Step 2 Do the curve fitting using the least squares curve fitting method, then we achieve the accurate phase difference function;

    Step 3 Reconstruct the phase compensation exponential functionusing. Socan be express as

    Step 4 Implement the phase compensation by multiplying the 1-D range profile data with the corresponding.

    Seen form the steps above, the algorithm proposed in this paper is on the basis of DCT method, and improves the translational phase estimation accuracy using one-time curve fitting. It resolves the heavy computation load problem in Ref. [4] and is fit for engineering application.

    4 Experimental Verification and Analysis

    In order to verify the algorithm analyzed above, we compare it with unmodified DCT method and MDCT method in this section. Aircraft echo data sampled by an experimental phased array radar is adopted. Fig. 3 shows the difference between pre- and post curve fitting. This figure indicates that there are errors between the phase estimated by DCT method and that induced by target motion. The difference, which is just the negative influences of the RPC and other system factors on the TPC estimation accuracy, is lies within the scope of ±0.6 rad. ISAR imaging is processed after phase compensation using the phase difference function achieved by the least squares curve fitting method. It is important to choose a proper polynomial order when using curve fitting in Step 2 of the algorithm. Experimental shows that, in order to reflect the actual phase change induced by motion of the space or air targets as much as possible, the polynomial order should be set to 3.

    Fig. 4(a) shows the ISAR image obtained using unmodified DCT method, while Fig. 4(b) are the ISAR image obtained by adopting the MDCT method and Fig. 4(c) via the novel phase compen- sation algorithm proposed in this paper. It is seen from the figure that, the imaging focus effect of Fig.4(c) is better than that of Fig. 4(a). So, the method proposed in this paper is effective and feasible.

    The performance of phase compensation directly affects the quality of ISAR image which can be quantitatively evaluated by image entropy. Therefore, image entropy is adopted for the performance evaluation of phase compensation in this section. With the same other algorithms (such as distortion compensation, envelope alignment, image reconstruction,.), the better phase compensation performance, the higher image quality and lower image entropy. On the other hand, the worse phase compensation performance, the lower image quality and higher image entropy.

    We accomplished the phase compensation for the aircraft echo returns mentioned above by using unmodified DCT method, MDCT algorithm and the strategy proposed in this paper respectively. Then the ISAR image entropies are obtained and shown in Tab. 1.

    Fig. 3 Difference between pre- and post fitting

    Fig. 4 ISAR imaging results of three methods

    Tab. 1 Entropies of the three ISAR images obtained by using three phase compensation methods respectively

    In a word, compared with the MDCT method, our method improves the unmodified DCT method and achieves better performance of phase compen- sation.

    5 Conclusion

    The coherence plays a more and more important role in radar system performance. Employing the coherent property of echo pulses, we can make better phase compensation in ISAR imaging. In this paper, the coherent property of echo pulses sampled directly in IF is obtained by analyzing, and a novel phase compensation algorithm is proposed to improve the translational phase estimation accuracy in DCT method, and then improve the quality of ISAR image. Experimental results prove the effectiveness and efficiency of the proposed strategy.

    [1] Kaya A and Kartal M. Point scatterer model for RCS prediction using ISAR measurements[C]. Proceedings of 4th International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 2009: 422-425.

    [2] Cao Min. Research on high resolution radar imaging technology for space targets[D]. [Ph.D. dissertation], National University of Defence Technology, 2008: 7-10.

    曹敏. 空間目標(biāo)高分辨雷達(dá)成像技術(shù)研究[D]. [博士論文], 國防科技大學(xué), 2008: 7-10.

    [3] Ye Chun-mao, Xu Jia, Peng Ying-ning,.. Performance analysis of Doppler centroid tracking for ISAR autofocusing[J]., 2009, 37(6): 1324-1328.

    葉春茂, 許稼, 彭應(yīng)寧, 等. 逆合成孔徑雷達(dá)多普勒質(zhì)心跟蹤法性能分析[J]. 電子學(xué)報, 2009, 37(6): 1324-1328.

    [4] Zhu Zhao-da, Qiu Xiao-hui, and She Zhi-shun. ISAR motion compensation using modified Doppler centroid tracking method[J]., 1997, 25(3): 65-69.

    朱兆達(dá), 邱曉暉, 佘志舜. 用改進(jìn)的多普勒中心跟蹤法進(jìn)行ISAR運(yùn)動補(bǔ)償[J]. 電子學(xué)報, 1997, 25(3): 65-69.

    [5] Ye Chun-mao, Ning Xia, Yang Jian,.. Parallel implementation of a block-wise phase gradient autofocusing method[J].(), 2012, 52(5): 612-615.

    葉春茂, 寧夏, 楊健, 等. 一種分塊相位梯度自聚焦算法的并行實(shí)現(xiàn)[J]. 清華大學(xué)學(xué)報(自然科學(xué)版), 2012, 52(5): 612-615.

    [6] Krichene H A, Pekala M J, Sharp M D,.. Compressive sensing and stretch processing[C]. Proceedings of 2011 IEEE Radar Conference (RADAR), Kansas, 2011: 362-367.

    [7] Lina Yeh, Kainam Thomas Wong, and Hasan Saeed Mir. Viable/inviable polynomial-phase modulations for “stretch processing”[J]., 2012, 48(1): 923-926.

    [8] Lin Qian-qiang, Tang Peng-fei, and Chen Zeng-ping. Design and implementation of direct IF sampling and high-speed storage system for wideband radar[J]., 2012, 1(3): 283-291.

    林錢強(qiáng), 唐鵬飛, 陳曾平. 寬帶雷達(dá)中頻直接采樣與高速存儲系統(tǒng)設(shè)計與實(shí)現(xiàn)[J]. 雷達(dá)學(xué)報, 2012, 1(3): 283-291.

    [9] Bao Zheng, Xing Meng-dao, and Wang Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 24-26.

    保錚, 邢孟道, 王彤. 雷達(dá)成像技術(shù)[M]. 北京: 電子工業(yè)出版社, 2005: 24-26.

    [10] Pricket M J and Chen C C. Principle of inverse synthetic aperture radar (ISAR) imaging[C]. IEEE EASCON Record, Virginia, 1980: 340-345.

    [11] Yi Wen. Radar Receiver Technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 131-136.

    弋穩(wěn). 雷達(dá)接收機(jī)技術(shù)[M]. 北京: 電子工業(yè)出版社, 2005: 131-136.

    [12] Cai Fei, Fan Hong-qi, Lin Hua,.. IF receiving method for pulsed coherent radar[J].&, 2011, 26(4): 457-462.

    蔡飛, 范紅旗, 林華, 等. 相參脈沖雷達(dá)中頻直接接收方式研究[J]. 數(shù)據(jù)采集與處理, 2011, 26(4): 457-462.

    [13] Ma Bo-tao, Fan Hong-qi, and Fu Qiang. IF sampling conditions for coherent pulse radar[J].&, 2009, 24(1): 114-118.

    馬博韜, 范紅旗, 付強(qiáng). 相參脈沖雷達(dá)中頻采樣條件研究[J]. 數(shù)據(jù)采集與處理, 2009, 24(1): 114-118.

    [14] Pi Yi-Ming, Yang Jian-yu, Fu Yu-sheng,.. SAR Imaging Theory[M]. Chengdu: University of Electronic Science and Technology Press, 2007: 27-32.

    皮亦鳴, 楊建宇, 付毓生, 等. 合成孔徑雷達(dá)成像原理[M]. 成都: 電子科技大學(xué)出版社, 2007: 27-32.

    [15] Li Xi, Liu Guo-sui, and Ni Jin-lin. Auto-focusing of ISAR images based on entropy minimization[J]., 1999, 35(4): 1240-1252.

    [16] Jeong H R, Kim H T, and Kim K T. Application of subarray averaging and entropy minimization algorithm to stepped- frequency ISAR autofocus[J]., 2008, 56(4): 1144-1154.

    [17] Cao Pan, Xing Meng-dao, Sun Guang-cai,.. Minimum entropy via subspace for ISAR autofocus[J]., 2010, 7(1): 205-209.

    寬帶雷達(dá)ISAR成像相位補(bǔ)償新方法

    陳曾平 張煒承 林錢強(qiáng)

    (國防科技大學(xué)ATR國防科技重點(diǎn)實(shí)驗(yàn)室 長沙 410073)

    為了消除目標(biāo)強(qiáng)散射中心的轉(zhuǎn)動相位分量對傳統(tǒng)多普勒中心跟蹤(DCT)相位補(bǔ)償方法性能的影響,該文提出了一種新的相位補(bǔ)償方法。該方法通過分析得出中頻直接采樣回波信號脈間相參的特點(diǎn),并利用相參性改進(jìn)DCT相位補(bǔ)償方法對平動相位分量估計的精度,從而提高相位補(bǔ)償效果,改善ISAR成像的質(zhì)量。相對于MDCT法,該方法能夠達(dá)到更好的相位補(bǔ)償效果。實(shí)測數(shù)據(jù)驗(yàn)證了該方法是一種可行、高效的相位補(bǔ)償方法。

    寬帶雷達(dá);相位補(bǔ)償;中頻直接采樣;曲線擬合

    TN95

    A

    2095-283X(2013)01-0023-07

    Lin Qian-qiang.E-mail: Even_qqlin@163.com.

    CLC index: TN95

    10.3724/SP.J.1300.2013.13023

    Manuscript received March 13, 2013; revised March 18, 2013.

    Published online March 27, 2013.

    Supported by the National Government Foundation of China.

    Chen Zeng-ping (1967-) was born in Fuqing, Fujian province. He received the Ph.D. degree from National University of Defense Technology (NUDT) in 1994. Currently, he is a professor of NUDT and the vice director of ATR National Defense Science and Technology Key Lab. His research interests are radar signal processing and automatic target recognition. E-mail: atrchen@sina.com

    Zhang Wei-cheng (1982-) was born in Changsha, Hunan province. He is pursuing the Ph.D. degree in ATR Key Laboratory of National University of Defense Technology. His research interests are radar imaging and signal processing.E-mail: zhangweicheng_iet@163.com

    Lin Qian-qiang (1983-) was born in Putian, Fujian province. He is pursuing the Ph.D. degree in ATR Key Laboratory of National University of Defense Technology. His research interests are radar data acquisition and signal processing.E-mail: Even_qqlin@163.com

    猜你喜歡
    國防科技大學(xué)寬帶多普勒
    雷達(dá)學(xué)報(2023年4期)2023-09-16 07:38:28
    國防科技大學(xué)電子科學(xué)學(xué)院介紹
    雷達(dá)學(xué)報(2023年1期)2023-03-08 11:42:54
    裝寬帶的人
    文苑(2020年7期)2020-08-12 09:36:04
    一種新穎的寬帶大功率分配器
    基于多普勒效應(yīng)的車隨人動系統(tǒng)
    電子器件(2015年5期)2015-12-29 08:43:38
    最美師生情
    大眾文藝(2015年16期)2015-11-28 03:12:40
    可否把寬帶作為社會福利
    什么是寬帶?
    基于多普勒的車輛測速儀
    久久精品国产亚洲网站| 99久久精品一区二区三区| 亚洲av二区三区四区| 婷婷色麻豆天堂久久| 在线免费观看的www视频| 日韩成人av中文字幕在线观看| av一本久久久久| 高清日韩中文字幕在线| 日韩一区二区视频免费看| 日日啪夜夜爽| 国产综合懂色| 亚洲av成人精品一区久久| 人妻一区二区av| av在线亚洲专区| 亚洲国产日韩欧美精品在线观看| 高清视频免费观看一区二区 | 日本-黄色视频高清免费观看| .国产精品久久| 久久精品人妻少妇| 国产伦精品一区二区三区视频9| 一级毛片 在线播放| 国产精品国产三级国产av玫瑰| 99久久精品热视频| 免费观看a级毛片全部| 又大又黄又爽视频免费| 97人妻精品一区二区三区麻豆| 黄片wwwwww| 黄片wwwwww| 精品国产三级普通话版| 国产精品国产三级专区第一集| 午夜福利在线观看免费完整高清在| 人妻夜夜爽99麻豆av| 亚洲精品亚洲一区二区| 中文天堂在线官网| 免费av毛片视频| 日本免费a在线| 精品久久久精品久久久| 能在线免费观看的黄片| 色视频www国产| 亚洲精品乱码久久久v下载方式| 亚洲美女搞黄在线观看| videos熟女内射| 免费黄网站久久成人精品| 又黄又爽又刺激的免费视频.| 美女被艹到高潮喷水动态| 国产午夜精品论理片| 精品国产露脸久久av麻豆 | 国产成人91sexporn| 久久久精品94久久精品| 男插女下体视频免费在线播放| 又爽又黄无遮挡网站| 中文字幕久久专区| 亚洲成色77777| 亚洲av成人av| 久久久久久久久久人人人人人人| 国内精品美女久久久久久| 精品国产一区二区三区久久久樱花 | 天天躁夜夜躁狠狠久久av| 26uuu在线亚洲综合色| 亚洲av成人av| 久久精品久久精品一区二区三区| 亚洲国产色片| 内地一区二区视频在线| 国产伦理片在线播放av一区| 亚洲精品aⅴ在线观看| 国内揄拍国产精品人妻在线| 狂野欧美激情性xxxx在线观看| 午夜爱爱视频在线播放| 精品久久久噜噜| 成年女人看的毛片在线观看| 日本wwww免费看| 日韩三级伦理在线观看| 91久久精品国产一区二区成人| 国产精品一区www在线观看| 国产一区有黄有色的免费视频 | 3wmmmm亚洲av在线观看| 97在线视频观看| 国产亚洲精品久久久com| 免费看日本二区| 国产在线男女| av福利片在线观看| 亚洲国产精品sss在线观看| 精品久久久久久久久av| 能在线免费看毛片的网站| 人妻少妇偷人精品九色| 久久久a久久爽久久v久久| 国产一区二区三区综合在线观看 | 国产精品嫩草影院av在线观看| 蜜桃亚洲精品一区二区三区| 国产淫语在线视频| 一级毛片黄色毛片免费观看视频| 少妇被粗大猛烈的视频| 91久久精品国产一区二区三区| 综合色av麻豆| 欧美成人一区二区免费高清观看| 女的被弄到高潮叫床怎么办| 99热这里只有精品一区| 久久久久免费精品人妻一区二区| av在线蜜桃| 少妇被粗大猛烈的视频| 777米奇影视久久| 亚洲美女视频黄频| 九色成人免费人妻av| 大片免费播放器 马上看| 亚洲精品456在线播放app| 美女被艹到高潮喷水动态| 精品国产露脸久久av麻豆 | 听说在线观看完整版免费高清| 青青草视频在线视频观看| 老司机影院成人| av在线老鸭窝| 插逼视频在线观看| 亚洲欧洲国产日韩| av又黄又爽大尺度在线免费看| 综合色av麻豆| 国语对白做爰xxxⅹ性视频网站| 亚洲精品国产av蜜桃| 嫩草影院新地址| 国产国拍精品亚洲av在线观看| 国产成人精品婷婷| 亚洲av一区综合| 日本一二三区视频观看| 亚洲久久久久久中文字幕| 日本熟妇午夜| 国产真实伦视频高清在线观看| 91久久精品电影网| 免费播放大片免费观看视频在线观看| 久久久久久国产a免费观看| 一本一本综合久久| 久久久久久久久久久丰满| 网址你懂的国产日韩在线| 国产一区二区在线观看日韩| 一区二区三区四区激情视频| 成年免费大片在线观看| 干丝袜人妻中文字幕| 直男gayav资源| 国产精品人妻久久久久久| 黄色日韩在线| 亚洲成人精品中文字幕电影| 少妇的逼好多水| 午夜福利在线观看吧| 秋霞在线观看毛片| 成人无遮挡网站| 青春草亚洲视频在线观看| 亚洲综合精品二区| 内地一区二区视频在线| 在线a可以看的网站| 亚洲精品日韩在线中文字幕| 男女边吃奶边做爰视频| 美女cb高潮喷水在线观看| 久久久色成人| 又黄又爽又刺激的免费视频.| 在线a可以看的网站| 国产精品av视频在线免费观看| 国产一区亚洲一区在线观看| 91在线精品国自产拍蜜月| 一边亲一边摸免费视频| 亚洲高清免费不卡视频| 欧美丝袜亚洲另类| 欧美 日韩 精品 国产| h日本视频在线播放| 亚洲欧美成人综合另类久久久| 91在线精品国自产拍蜜月| 中文字幕制服av| 夫妻性生交免费视频一级片| 国产精品一及| 日韩av在线大香蕉| 最后的刺客免费高清国语| 亚洲精品中文字幕在线视频 | 国产色婷婷99| 一个人看的www免费观看视频| 九九久久精品国产亚洲av麻豆| 亚洲精品国产av成人精品| 真实男女啪啪啪动态图| 成人毛片60女人毛片免费| 综合色av麻豆| 色视频www国产| www.av在线官网国产| 亚洲综合色惰| 中文乱码字字幕精品一区二区三区 | 十八禁国产超污无遮挡网站| 免费av观看视频| 亚洲自拍偷在线| 欧美性感艳星| 国产一级毛片在线| 日韩在线高清观看一区二区三区| 国产精品国产三级专区第一集| 日韩强制内射视频| 少妇熟女欧美另类| 少妇的逼水好多| 日韩av不卡免费在线播放| 日本wwww免费看| 一本一本综合久久| 秋霞伦理黄片| av网站免费在线观看视频 | 国产精品伦人一区二区| 91狼人影院| 亚洲欧美成人综合另类久久久| 91精品伊人久久大香线蕉| 在线免费观看不下载黄p国产| 国产人妻一区二区三区在| 女的被弄到高潮叫床怎么办| 国产色婷婷99| 汤姆久久久久久久影院中文字幕 | 亚洲最大成人手机在线| 免费看日本二区| 国产白丝娇喘喷水9色精品| 小蜜桃在线观看免费完整版高清| 精品久久久久久成人av| 亚洲成色77777| 在线观看一区二区三区| 噜噜噜噜噜久久久久久91| 国产精品久久久久久久久免| 国模一区二区三区四区视频| 精品久久久噜噜| 日韩人妻高清精品专区| 一级毛片久久久久久久久女| 内地一区二区视频在线| 欧美日韩综合久久久久久| 欧美日韩精品成人综合77777| 少妇人妻一区二区三区视频| 激情五月婷婷亚洲| 嘟嘟电影网在线观看| 欧美 日韩 精品 国产| 少妇熟女aⅴ在线视频| 99久久中文字幕三级久久日本| 七月丁香在线播放| 精品久久久精品久久久| 国产淫语在线视频| 成人亚洲精品一区在线观看 | 亚洲av免费在线观看| 久久久久精品性色| 黄色欧美视频在线观看| 全区人妻精品视频| 久久人人爽人人爽人人片va| 99热6这里只有精品| 人妻制服诱惑在线中文字幕| 高清日韩中文字幕在线| 一本一本综合久久| 联通29元200g的流量卡| 天天躁夜夜躁狠狠久久av| 国产精品人妻久久久影院| 男人爽女人下面视频在线观看| 啦啦啦韩国在线观看视频| 亚洲av中文av极速乱| 综合色av麻豆| 日本黄色片子视频| 免费人成在线观看视频色| 国产黄色免费在线视频| 搡老妇女老女人老熟妇| 在线 av 中文字幕| 日韩一区二区三区影片| 亚洲经典国产精华液单| 国产精品一及| 久99久视频精品免费| 国产在视频线在精品| 国产高潮美女av| 亚洲精品国产成人久久av| 亚洲成人一二三区av| 欧美不卡视频在线免费观看| 99热网站在线观看| 午夜激情欧美在线| 高清视频免费观看一区二区 | 听说在线观看完整版免费高清| 啦啦啦中文免费视频观看日本| 成人美女网站在线观看视频| 免费高清在线观看视频在线观看| 一区二区三区乱码不卡18| 日韩在线高清观看一区二区三区| 免费电影在线观看免费观看| 国产精品国产三级国产专区5o| 大陆偷拍与自拍| 夫妻午夜视频| 如何舔出高潮| 精品少妇黑人巨大在线播放| 国产伦精品一区二区三区视频9| 高清欧美精品videossex| 亚洲精品视频女| 校园人妻丝袜中文字幕| videos熟女内射| 男女啪啪激烈高潮av片| 综合色丁香网| 国产亚洲av片在线观看秒播厂 | 亚洲国产欧美在线一区| 免费看av在线观看网站| 国产精品久久久久久久电影| 久久久精品94久久精品| 蜜桃亚洲精品一区二区三区| 一级毛片黄色毛片免费观看视频| 一级毛片久久久久久久久女| 亚洲在线自拍视频| 哪个播放器可以免费观看大片| 免费观看无遮挡的男女| 国产色爽女视频免费观看| 亚洲精品乱码久久久久久按摩| 国产成人a∨麻豆精品| 久久久久久久久中文| 久久精品夜夜夜夜夜久久蜜豆| 国产人妻一区二区三区在| 伦理电影大哥的女人| 国产国拍精品亚洲av在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产成人精品一,二区| 亚洲精品自拍成人| 日本av手机在线免费观看| 极品教师在线视频| av.在线天堂| 日韩欧美三级三区| 极品教师在线视频| 色综合色国产| 一级片'在线观看视频| 久久草成人影院| 永久网站在线| 国产欧美另类精品又又久久亚洲欧美| 亚洲四区av| 丝袜喷水一区| 欧美xxⅹ黑人| 国精品久久久久久国模美| 成年女人在线观看亚洲视频 | 免费不卡的大黄色大毛片视频在线观看 | 久久精品久久久久久久性| 欧美不卡视频在线免费观看| 国产精品爽爽va在线观看网站| 亚洲精品乱码久久久v下载方式| 国产熟女欧美一区二区| 麻豆国产97在线/欧美| 中文字幕制服av| 亚洲av国产av综合av卡| 精品久久久久久久末码| 国产亚洲精品av在线| 久久久久久久久大av| 韩国av在线不卡| 成人亚洲精品一区在线观看 | 99久国产av精品| 夜夜看夜夜爽夜夜摸| 丝袜美腿在线中文| 啦啦啦韩国在线观看视频| 国产精品无大码| 男插女下体视频免费在线播放| 在线播放无遮挡| 草草在线视频免费看| 熟女人妻精品中文字幕| 国产黄片美女视频| 18禁在线播放成人免费| 国产大屁股一区二区在线视频| 午夜福利在线观看免费完整高清在| 亚洲最大成人av| 熟妇人妻不卡中文字幕| 天天躁夜夜躁狠狠久久av| 一区二区三区四区激情视频| 欧美97在线视频| 婷婷色综合大香蕉| 高清欧美精品videossex| 亚洲性久久影院| 日日撸夜夜添| 麻豆av噜噜一区二区三区| 大陆偷拍与自拍| 日本免费a在线| 赤兔流量卡办理| 日韩三级伦理在线观看| 美女高潮的动态| 国产乱人视频| av国产久精品久网站免费入址| 国产成人freesex在线| 一级毛片久久久久久久久女| 国产一区二区三区综合在线观看 | 久久精品综合一区二区三区| 亚洲精华国产精华液的使用体验| 嫩草影院精品99| 在线播放无遮挡| 一级二级三级毛片免费看| 国产精品不卡视频一区二区| 综合色丁香网| 国产精品一区二区三区四区免费观看| 国产黄色小视频在线观看| 久久久久免费精品人妻一区二区| 亚洲av福利一区| 中文字幕亚洲精品专区| 两个人的视频大全免费| 日本免费a在线| 少妇的逼水好多| 国产 亚洲一区二区三区 | 免费在线观看成人毛片| 国内精品一区二区在线观看| 夫妻午夜视频| 女人被狂操c到高潮| 欧美日韩综合久久久久久| 欧美性猛交╳xxx乱大交人| 亚洲美女搞黄在线观看| 婷婷色麻豆天堂久久| 18禁裸乳无遮挡免费网站照片| 人妻一区二区av| 中文精品一卡2卡3卡4更新| 免费在线观看成人毛片| 亚洲国产高清在线一区二区三| 日本爱情动作片www.在线观看| 青春草视频在线免费观看| 日韩精品有码人妻一区| 日韩 亚洲 欧美在线| 亚洲成人av在线免费| 舔av片在线| 又黄又爽又刺激的免费视频.| 亚洲成人中文字幕在线播放| 中文乱码字字幕精品一区二区三区 | 蜜臀久久99精品久久宅男| 午夜福利视频1000在线观看| 免费看不卡的av| 色吧在线观看| 熟妇人妻不卡中文字幕| 中文欧美无线码| 一区二区三区四区激情视频| 国产又色又爽无遮挡免| 国产成年人精品一区二区| 亚洲图色成人| 亚洲精品色激情综合| 夜夜爽夜夜爽视频| 搡老乐熟女国产| 在线播放无遮挡| 校园人妻丝袜中文字幕| av天堂中文字幕网| 国产片特级美女逼逼视频| 久久久久久九九精品二区国产| 99热6这里只有精品| 中文欧美无线码| 亚洲av电影不卡..在线观看| 免费电影在线观看免费观看| 日韩一区二区视频免费看| 一边亲一边摸免费视频| 国产综合懂色| 久久久久精品久久久久真实原创| 午夜激情欧美在线| 麻豆成人av视频| 777米奇影视久久| 久久精品国产亚洲av天美| 亚洲乱码一区二区免费版| 亚洲婷婷狠狠爱综合网| 色5月婷婷丁香| 亚洲av成人av| 高清在线视频一区二区三区| 日韩av在线免费看完整版不卡| 亚洲欧美日韩卡通动漫| 国产午夜精品一二区理论片| 欧美另类一区| 99久久精品一区二区三区| 七月丁香在线播放| 狠狠精品人妻久久久久久综合| freevideosex欧美| 在现免费观看毛片| 免费av不卡在线播放| 最近中文字幕高清免费大全6| 精华霜和精华液先用哪个| 亚洲精品第二区| 亚洲国产精品sss在线观看| 亚洲人成网站在线播| 亚洲伊人久久精品综合| 亚洲在线自拍视频| 激情 狠狠 欧美| 欧美人与善性xxx| 亚洲国产精品成人综合色| 精品酒店卫生间| 亚洲va在线va天堂va国产| 国产免费福利视频在线观看| 99热全是精品| 26uuu在线亚洲综合色| 中文在线观看免费www的网站| 国产国拍精品亚洲av在线观看| 免费看不卡的av| 啦啦啦中文免费视频观看日本| av天堂中文字幕网| 亚洲国产精品成人久久小说| 少妇人妻一区二区三区视频| 老女人水多毛片| av一本久久久久| www.av在线官网国产| 高清欧美精品videossex| 亚洲精品乱码久久久久久按摩| 国产v大片淫在线免费观看| 日日撸夜夜添| 午夜视频国产福利| 久久久精品94久久精品| 久久久久久久久中文| 舔av片在线| 国产精品99久久久久久久久| 国产视频首页在线观看| 国产成人a区在线观看| 国产 亚洲一区二区三区 | 国产视频内射| 婷婷色麻豆天堂久久| 97精品久久久久久久久久精品| 中文字幕av成人在线电影| 精品人妻熟女av久视频| av网站免费在线观看视频 | 看黄色毛片网站| 国产亚洲午夜精品一区二区久久 | 国产伦在线观看视频一区| 99九九线精品视频在线观看视频| 在线播放无遮挡| 99九九线精品视频在线观看视频| 欧美日本视频| 国产精品女同一区二区软件| 18+在线观看网站| 嫩草影院精品99| 中文资源天堂在线| 免费大片18禁| 久久久久久久久久成人| 一个人免费在线观看电影| 尾随美女入室| 青青草视频在线视频观看| 国产精品99久久久久久久久| 久久99热这里只频精品6学生| 成人高潮视频无遮挡免费网站| 日日摸夜夜添夜夜爱| 一个人看的www免费观看视频| 久久午夜福利片| 国产高潮美女av| 欧美成人精品欧美一级黄| 国产一区亚洲一区在线观看| av在线亚洲专区| 亚洲国产最新在线播放| 亚洲av中文av极速乱| 丝瓜视频免费看黄片| 国产国拍精品亚洲av在线观看| 日韩国内少妇激情av| 国内精品宾馆在线| 97人妻精品一区二区三区麻豆| 一级爰片在线观看| 最近中文字幕高清免费大全6| 日本-黄色视频高清免费观看| 欧美丝袜亚洲另类| 亚洲av男天堂| 亚洲av在线观看美女高潮| 国国产精品蜜臀av免费| 精品酒店卫生间| 久99久视频精品免费| 久久精品夜夜夜夜夜久久蜜豆| 国产欧美日韩精品一区二区| 亚洲欧美日韩卡通动漫| av网站免费在线观看视频 | 亚洲乱码一区二区免费版| 在线观看人妻少妇| 欧美日韩视频高清一区二区三区二| 欧美日韩一区二区视频在线观看视频在线 | .国产精品久久| 欧美成人一区二区免费高清观看| 天天一区二区日本电影三级| 两个人视频免费观看高清| 三级经典国产精品| 最后的刺客免费高清国语| 亚洲欧美精品自产自拍| 简卡轻食公司| freevideosex欧美| 久热久热在线精品观看| 草草在线视频免费看| 久久久a久久爽久久v久久| 久久人人爽人人爽人人片va| 80岁老熟妇乱子伦牲交| 偷拍熟女少妇极品色| www.av在线官网国产| videossex国产| 亚洲欧美精品自产自拍| 国产美女午夜福利| 国产黄频视频在线观看| 亚洲av电影不卡..在线观看| 久久久久久久久大av| 大又大粗又爽又黄少妇毛片口| 精品一区在线观看国产| 国产成人一区二区在线| 卡戴珊不雅视频在线播放| 全区人妻精品视频| 国产人妻一区二区三区在| 自拍偷自拍亚洲精品老妇| 欧美极品一区二区三区四区| 久久久久久久久大av| 国产淫语在线视频| av在线天堂中文字幕| 免费无遮挡裸体视频| 国产亚洲av嫩草精品影院| 全区人妻精品视频| 久99久视频精品免费| 日韩欧美精品v在线| 高清毛片免费看| 亚洲精品国产成人久久av| 你懂的网址亚洲精品在线观看| 婷婷色av中文字幕| 麻豆国产97在线/欧美| 国产精品1区2区在线观看.| 国产亚洲一区二区精品| 天堂√8在线中文| 亚洲成色77777| 美女高潮的动态| 少妇的逼好多水| 国内精品一区二区在线观看| 禁无遮挡网站| 神马国产精品三级电影在线观看| 91精品国产九色| 国产真实伦视频高清在线观看| 久久久久久久久久黄片| av专区在线播放| 久久久久久久久久黄片| 国产久久久一区二区三区| 777米奇影视久久| 亚洲欧美成人精品一区二区| 天美传媒精品一区二区| 亚洲经典国产精华液单| 久久久色成人| 2021天堂中文幕一二区在线观| 亚洲国产成人一精品久久久| 亚洲一级一片aⅴ在线观看| 99久久精品一区二区三区| 久久99热这里只频精品6学生| 日本av手机在线免费观看| 一级爰片在线观看| 色综合站精品国产| 不卡视频在线观看欧美| 亚洲综合精品二区|