• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust Texture Classification via Group-Collaboratively Representation-Based Strategy

    2013-06-19 17:39:42XiaoLingXiaandHangHuiHuang

    Xiao-Ling Xia and Hang-Hui Huang

    Robust Texture Classification via Group-Collaboratively Representation-Based Strategy

    Xiao-Ling Xia and Hang-Hui Huang

    —In this paper, we present a simple but powerful ensemble for robust texture classification. The proposed method uses a single type of feature descriptor, i.e. scale-invariant feature transform (SIFT), and inherits the spirit of the spatial pyramid matching model (SPM). In a flexible way of partitioning the original texture images, our approach can produce sufficient informative local features and thereby form a reliable feature pond or train a new class-specific dictionary. To take full advantage of this feature pond, we develop a group-collaboratively representation-based strategy (GCRS) for the final classification. It is solved by the well-known group lasso. But we go beyond of this and propose a locality-constraint method to speed up this, named local constraint-GCRS (LC-GCRS). Experimental results on three public texture datasets demonstratetheproposedapproachachieves competitive outcomes and even outperforms the state-of-the-art methods. Particularly, most of methods cannot work well when only a few samples of each category are available for training, but our approach still achieves very high classification accuracy, e.g.an average accuracy of 92.1% for the Brodatz dataset when only one image is used for training, significantly higher than any other methods.

    Index Terms—Dictionary learning, group lasso, local constraint,spatialpyramidmatching,texture classification.

    1. Introduction

    Texture classification is an important problem in the computer vision community with many applications. Yet despite several decades of research, designing a high-accuracy and robust texture classification system for real-world applications remains a challenge due to at least three reasons: the wide range of various natural texture types; the presence of large intra-class variations in texture images, e.g. rotation, scale, and viewpoint, caused by arbitrary viewing and illumination conditions; and the demands of low computational complexity and a desire to limit algorithm tuning[1].

    Liuet al.pointed out in [2] that there are four basic elements that constitute a reliable texture classification system: 1) local texture descriptors, 2) non-local statistical descriptors, 3) the design of a distance/similarity measure, and 4) the choice of classifier. Thanks to the emergence of the bag-of-feature words (BoF) model, which treats an image as a collection of unordered appearance descriptors extracted from local patches, quantizes them into discrete“visual words”, and then computes a compact histogram representation for semantic image classification. Recent interests for texture classification tend to represent a texture non-locally by the distribution of local textons[1],[3]?[5].

    Inspired by a spatial pyramid matching model (SPM)[6], an extension of BoF, which is a similar framework to the spatial pyramid matching model (SPM), is used to partition an image into increasingly finer segments, but in a more flexible way by exploiting multi-level partitions and permitting various overlapping patterns. Thereby, our method can produce redundant local texture features and form a reliable feature pond containing these feature codes, or a much compacted feature pond (a new dictionary learned from those codes).

    To take full advantage of the feature pond, we develop an effective and efficient mechanism for the final classification via the group-collaboratively representationbased strategy (GCRS), which is similar in appearance to the sparse representation-based classification (SRC)[7], but essentially differs in employing group sparsity rather than the simple1l sparse penalty. It is the well-known group lasso problem, but we go beyond of this by exploring the local constraint (LC) to speed up the group lasso as well as promoting intra-group sparsity. We call our classification mechanism as LC-GCRS. The overall flowchart of our method is shown in Fig. 1.

    2. Proposed Texture Classification

    2.1 Local Texture Descriptor

    In our work, we use a single type of feature descriptor, the popular scale-invariant feature transform descriptor (SIFT)[8], which is extracted on a dense grid rather than at interest points and has been shown to yield superiorclassification performance in [9] and [10]. Suppose there areTimages fromCclasses andLcdenotes the index of thecth class, and let thetth image be represented by a set of dense scale-invariant feature transform (SIFT) descriptorsatNlocations identified with their indicesAndmregions of interest are defined on the image, whereanddenotes the set of these regions. Then,means themth region belongs to thelth level,indexes the regions in thelth level. So we use all the dense SIFT descriptors to train a dictionary DICdD×∈R , where R denotes the real number range,dis the dimensionality, andDis the number of atoms. And we employ the learned dictionary back to represent the dense SIFT descriptors into a sparse code vector, as the formulation below:

    Fig. 1. Flowchart of our proposed robust texture classification approach (best seen in color).

    Each elementkaof the code vectoraindicates the local descriptor’s response to thekth visual word in the dictionary. Let|denote the cardinality of the setNm, meaning the number of elements. We align all the SIFT descriptors belonging to the regionmas a matrix, then the corresponding code matrixis obtained. Here we aggregate the local descriptors’ responses across all thelocations of this region into an-dimensional response vector(thekth row ofA), in which each elementrepresents the response of the local descriptormxat themth location to thekth visual word. After obtaining all the feature descriptorsAwithin a region, we can use a pooling operation to pool these feature descriptors into a single vectoryof a fixed dimension. Before the feature pooling, we first address the relevant partition issues.

    ? Partition issues. Different from the classical and common SPM method[9]which is three-level pyramid comprising pooling regions of {1×1, 2×2, 4×4}, we adopt a more flexible partition strategy and divide the original image into finer regions, e.g. {3×3, 4×4, 5×5}. Merely relying on this flexible partition fashion, through our observation, the proposed method can indeed capture sufficient local features in different scales and is resilient to local rotations. We do further by permitting different overlapping patterns at the same level. Various overlapping patterns within a single level produce more regions and therefore these redundant local texture features can effectively alleviate the difficulty caused by local variance. In conjunction with our proposed classification mechanism described in Subsection 2.2, the proposed method will lead to state-of-the-art performance of texture classification in the experiments.

    ? Feature pooling. Feature pooling is essential to map the response vectors within each region into a statistic valuevia some spatial pooling operationf.Among various pooling methods, such as average pooling, max pooling, and some other pooling methods transiting from the average to the max, max pooling is inspired by the mechanism of the complex cells in the primary visual cortex and has been shown a powerful operation empirically and theoretically[9],[11]. In this paper, we also adopt max pooling for its translation-invariance in different levels of partitions[12], thusand the pooled feature codeover the code matrixAof the regionm:Actually, no matter how the size of different regions differs, the pooled feature code is of the same dimension and well summarizes the distribution of the SIFT feature descriptors in each region. This property enables us to adopt the flexible partition way and various overlapping patterns within the same level of partition, thereby producing redundant local texture features.

    2.2 Texture Image Representation

    As described in the previous subsection, we store all the pooled feature codes of one image to form a matrixas the new texture image representation. That is to say, regardless of the region size and overlapping patterns, all the pooled feature vectors of regions are stored in an orderless way. This orderless storage, in conjunction with max pooling, holds invariance to translation, rotation, and scale, then we will see the benefit of it from the experiment in Section 3.

    2.3 Proposed Classification Mechanism

    Actually, all the pooled feature codes from regions of various levels of training images can be seen as redundant feature bases, or a feature pond, which can effectively represent pooled feature codes of a new image, and in this way, scale, translation, and rotation invariance can be achieved. This idea has been explored in the SRC scheme[7].

    In SRC, a vectorized test imagezis coded collaboratively over the feature pond of all the training samples under the-norm sparsity constraint, whereconsists of all the images from thecth category. For simplicity, SRC first calculates the sparse coefficient vector by

    Then, SRC classifies the test imagezindividually to determine which classzshould belong to. In other words, it calculates the reconstruction errorfor all theCclasses, whereis the part fromathat corresponds tocLY. Finally, it selectsas the predicted label.

    SRC uses the1l-norm penalty in (2) and the resultant nonzero elements of a scatters, therefore, it is desirable to make the nonzero elements cluster in one part of the feature pond. For this reason, we propose to apply the group-sparse penalty instead of the1l-norm penalty, or the well-known group lasso problem. Moreover, we also keep the coefficient a sparse intra group:

    where “°” means the element-wise production, andcLdis the group mask in which the elements corresponding toare 1 and 0 elsewhere, and they are of the same dimension asa. There are several toolboxes to solve (3), and we do not elaborate the algorithms due to limited space.

    In fact, the number of the atoms from the feature pond can be very big, and direct solving (3) will be computationally expensive. To circumvent this problem, we borrow the idea of learning locality-constrained linear coding (LLC)[10],[21]by applying theK-nearest neighbors (KNN) search among the feature pond before solving (3) by choosing theKnearest neighbors to formwith indices ()H K, and representing the testing image by solving a much lower-complexity sparse group lasso problem, replacingYin (3) with()KYand the relevant modification of group masksd. After this, an overall coefficient vector (code vector)ais formed by embedding the elements oflocations ofaand zeros elsewhere. The final classification follows the SRC method.

    3. Experiment

    We evaluate the proposed texture classification framework on three public datasets: the Brodatz dataset[13], KTH-TIPS dataset[14], and UMD texture database[15]. Due to the limited space, we briefly summarize the three datasets in Fig. 2.

    Direct comparisons between the proposed and the state-of-the-art methods on three datasets are shown in Table 1. Scores were originally reported or taken from the comparative study in Zhanget al.[4]. For the three datasets, 3, 41, and 20 samples per class are used for training, respectively. Interested readers can refer to the papers of these methods for details. We can easily see that our method achieves comparable performance or even outperforms the state-of-the-art approaches. It is worth noting that our method uses only a single type feature descriptor, i.e. SIFT, whereas other methods simultaneously adopt several types of features, such as multiple histograms in [16]. Moreover, benefiting from our LC-GCS classification method, we avoid more complex classifiers, such as combining several classifier in [2].

    Fig. 3 plots the performance of our method vs. the number of training samples on the three databases, as well as the performances of other methods. Here we compare our method with three methods from [16], Mellors’s method[17], and Lazebnik’s method[3]on the Brodatz dataset; with the methods of Zhanget al.[4], Lazebniket al.[3], and Liuet al.[2]on the KTH-TIPS dataset; and with the methods proposed by Lazebniket al.[3], Xiaet al.[16], Xuet al.[1], and Liuet al.[2]on the UMD dataset. From Fig. 3, it is easy to see that our method can extract reliable texture features, and even though only a few training sample images are available, our method can still achieve promising performance.

    Fig. 2. Summary of texture datasets used in our experiment.

    Fig. 3. Classification rate vs. number of training samples on the three datasets: (a) Brodatz, (b) KTH-TIPS, and (c) UMD.

    Table 1: Direct comparisons between the proposed and the state-of-the-art methods

    Fig. 4. Confusion matrix on KTH-TIPS database.

    Fig. 5. Textures from two categories of KTH-TIPS.

    A confusion matrix is presented in Fig. 4. As shown in Fig. 4, the number at rowRand columnCis the proportion ofRclass which is classified asCclass. For example, 7.04% of corduroy images are misclassified as cotton. The average accuracy is 94.8%. While the number of training sample grows, our method can still achieve decent results. Particularly on the Brodatz dataset, when only one sample per category is used for training, our method achieves an impressive result with the accuracy of 90.12%, largely higher than that of other methods. Also on the KTH-TIPS dataset, when only ten sample images of each class are used for training, our method achieves the classification accuracy of 95.14%, much higher than others. Fig. 5 displays some similar textures of the KTH-TIPS dataset. It is easy to see that some texture images are very similar with various scales. This phenomenon explains the misclassification on this dataset.

    4. Conclusions and Future Work

    Different from many advanced texture classification methods which combine several types of descriptors, we propose a method which uses only a single type of feature descriptor (SIFT). This makes our method much simple but be capable of discriminating textures demonstrated in the experiment. Benefiting from the flexible partition strategy inspired by SPM, our method can produce redundant features to form a reliable feature pond, even though only a few samples of each category are available for training. Instead of the widely-used SVMs, we develop a new classification mechanism called LC-GORS, which is a simple and fast implementation of group lasso with intra-group sparsity, and use the reconstruction error for the final classification. Experiments show the proposed LC-GORS is very effective and efficient. As future work, we intend to introduce a new class-specific sub-dictionary[20]?[24]instead of the original feature pond to improve the performance further. This idea can be transformed to a multi-layer dictionary learning problem. Furthermore, besides the low-level SIFT feature descriptor, other features can be also simultaneously adopted to improve the performance, such as multi-feature fusion[25],[26].

    5. References

    [1] Y. Xu, X. Yang, H. Ling, and H. Ji, “A new texturedescriptor using multifractal analysis in multi-orientation wavelet pyramid,” inProc. of IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, 2010, pp. 161?168.

    [2] L. Liu, P. Fieguth, G. Kuang, and H. Zha, “Sorted random projections for robust texture classification,” inProc. of IEEE Int. Conf. on Computer Vision, Barcelona, 2011, pp. 391?398.

    [3] S. Lazebnik, C. Schmid, and J. Ponce, “A sparse texture representation using local affine regions,”IEEE Trans.on Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1265?1278, 2005.

    [4] J.-G. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid,“Local features and kernels for classification of texture and object categories: a comprehensive study,” inProc. of Conf. on Computer Vision and Pattern Recognition Workshop, doi: 10.1109/CVPRW.2006.121.

    [5] M. Crosier and L. D. Griffin, “Use basic image features for texture classification,”Int. Journal of Computer Vision, vol. 88, no. 3, pp. 447?460, 2010.

    [6] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: spatial pyramid matching for recognition natural scene categories,” inProc. of IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2006, doi: 10.1109/CVPR.2006.68.

    [7] J. Wright, A.-Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma,“Robust face recognition via sparse representation,”IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210?227, 2008.

    [8] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”Int. Journal of Computer Vision, vol. 60, no. 2, pp. 91?110, 2004.

    [9] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching using sparse coding for image classification,” inProc. of IEEE Conf. on Computer Vision and Pattern Recognition, Miami, 2009, pp. 1794?1801.

    [10] J.-J. Wang, J.-C. Yang, K. Yu, and F.-J. Lv, T. Huang, and Y. Gong, “Locality-Constrained linear coding for image classification,” inProc. of IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, 2010, pp. 3360?3367.

    [11] Y. L. Boureau, J. Ponce, and Y. Lecun, “A theoretical analysis of feature pooling in visual recognition,” inProc. of the 27th Int. Conf. on Machine Learning, Haifa, 2010.

    [12] J.-C. Yang, K. Yu, and T. Huang, “Supervised translation-invariant sparse coding,” inProc. of IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, 2010, pp. 3517?3524.

    [13] P. Brodatz,Textures: A Photographic Album for Artists and Designers, New York: Dover Publications, 1966.

    [14] E. Hayman, B. Caputo, M. Fritz, and J. O. Eklundh, “On the significance of real-World conditions for material classification,”Lecture Notes in Computer Science, vol. 3024, pp. 253-266, 2004, doi: 10.1007/978-3-540-24673-2_21

    [15] Y. Xu, H. Ji, and C. Fermuller, “Viewpoint invariant texture description using fractal analysis,”Int. Journal of Computer Vision, vol. 83, no. 1, pp. 85?100, 2009.

    [16] G. S. Xia, J. Delon, and Y. Gousseau, “Shape-based invariant texture indexing,”Int. Journal of Computer Vision, vol. 88, no. 3, pp. 382?403, 2010.

    [17] M. Mellor, B. W. Hong, and M. Brady, “Locally rotation, contrast, and scale invariant descriptors for texture analysis,”IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 30, no. 1, pp. 52?61, 2008.

    [18] M. Varma and A. Zisserman, “A statistical approach to material classification using image patches,”IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 31, no. 11, pp. 2032?2047, 2009.

    [19] Y. Xu, S. B. Huang, H. Ji, and C. Fermuller, “Combining powerful local and global statistics for texture description,”inProc. of IEEE Conf. on Computer Vision and Pattern Recognition, Miami, 2009, pp. 573?580.

    [20] M. Yang, L. Zhang, J. Yang, and D. Zhang, “Metaface learning for sparse representation based face recognition,” inProc. ofthe 17th IEEE Int. Conf. on Image Processing, Hong Kong, 2010, pp. 1601?1604.

    [21] S. Kong and D. Wang. Multi-level feature descriptor for robust texture classification via locality-constrained collaborative strategy. [Online]. Available: http://arxiv.org/abs/1203.0488

    [22] S. Kong and D. Wang, “A dictionary learning approach for classification: separating the particularity and the commonality,”Lecture Notes in Computer Science, vol. 7572, pp. 186?199, 2012, doi: 10.1007/978-3-642-33718-5_14.

    [23] S. Kong and D.-H. Wang, “Learning exemplar-represented manifolds in latent space for classification,”Lecture Notes in Computer Science, 2013, doi: 10.1007/978-3-642-40994-3_16.

    [24] S. Kong, X.-K. Wang, D.-H. Wang, and Fei Wu, “Multiple feature fusion for face recognition,” inProc. of the10th IEEE Int. Conf. and Workshops on Automatic Face and Gesture Recognition, Shanghai, 2013, doi: 10.1109/FG.2013. 6553718.

    [25] S. Kong and D. Wang, “Learning individual-specific dictionaries with fused multiple features for face recognition,” in10th IEEE Int. Conf. and Workshops on Automatic Face and Gesture Recognition, Shanghai, 2013, doi: 10.1109/FG.2013.6553710.

    Xiao-Ling Xiawas born in Hubei, China in 1966. She received the Ph.D. degree from Shanghai Jiao Tong University in image processing and pattern recognition in 1994. Now, she works with Donghua University, Shanghai, China as an associate professor. Her research interests include image processing and data visualization.

    Hang-Hui Huangwas born in Shaanxi, China in 1986. He received the B.S. degree from Donghua University in 2010. He is currently a graduate student with the Department of Computer Science and Technology, Donghua University. His research interests include computer vision, machine learning, and pattern recognition.

    t

    May 28, 2013; revised September 27, 2013

    X.-L. Xia is with the Department of Computer Science and Technology, Donghua University, Shanghai 201620, China (Corresponding author email: sherlysha@dhu.edu.cn).

    H.-H. Huang is with the Department of Computer Science and Technology, Donghua University, Shanghai 201620, China (email: yellow.beyond@mail.dhu.edu.cn).

    Color versions of one or more of the figures in this paper are available online at http://www.intl-jest.com.

    Digital Object Identifier: 10.3969/j.issn.1674-862X.2013.04.014

    欧美性猛交╳xxx乱大交人| 久久久成人免费电影| 亚洲国产精品sss在线观看| 一a级毛片在线观看| 男女做爰动态图高潮gif福利片| 国产真实伦视频高清在线观看 | 精品国产三级普通话版| 高清日韩中文字幕在线| 国产成年人精品一区二区| 99在线人妻在线中文字幕| a级毛片a级免费在线| 变态另类丝袜制服| 中亚洲国语对白在线视频| 国内久久婷婷六月综合欲色啪| 免费在线观看日本一区| 我的老师免费观看完整版| 91麻豆精品激情在线观看国产| 久久久精品欧美日韩精品| 亚洲av免费高清在线观看| 精品一区二区三区视频在线| 中文在线观看免费www的网站| 国内精品久久久久精免费| 亚洲午夜理论影院| 无遮挡黄片免费观看| 丰满乱子伦码专区| bbb黄色大片| 精品国内亚洲2022精品成人| 好男人电影高清在线观看| 亚洲国产欧洲综合997久久,| 美女cb高潮喷水在线观看| 国产精品永久免费网站| 九九在线视频观看精品| 国产私拍福利视频在线观看| 欧美成狂野欧美在线观看| 乱码一卡2卡4卡精品| 国产精品1区2区在线观看.| 国产一区二区在线观看日韩| 亚洲av熟女| 欧美3d第一页| 亚洲欧美日韩东京热| 亚洲 国产 在线| 国产精品三级大全| 亚洲欧美激情综合另类| 好看av亚洲va欧美ⅴa在| 人人妻,人人澡人人爽秒播| 欧美日韩中文字幕国产精品一区二区三区| 51国产日韩欧美| 成人欧美大片| 精品人妻偷拍中文字幕| a级毛片a级免费在线| 午夜激情福利司机影院| 久久久久久久久久成人| 欧美在线黄色| 久久久久国内视频| 怎么达到女性高潮| 亚洲 国产 在线| 九九热线精品视视频播放| 99精品久久久久人妻精品| 欧美一级a爱片免费观看看| 日韩中文字幕欧美一区二区| 深夜精品福利| bbb黄色大片| 中文字幕av在线有码专区| 国产高清视频在线播放一区| 国产精品爽爽va在线观看网站| 热99re8久久精品国产| 人人妻人人看人人澡| 神马国产精品三级电影在线观看| 成年女人永久免费观看视频| 欧美3d第一页| 国产精品1区2区在线观看.| 国产蜜桃级精品一区二区三区| 男女之事视频高清在线观看| 亚洲天堂国产精品一区在线| 成人毛片a级毛片在线播放| 哪里可以看免费的av片| 国产美女午夜福利| 午夜视频国产福利| 亚洲国产精品sss在线观看| 狠狠狠狠99中文字幕| 又爽又黄无遮挡网站| 色5月婷婷丁香| 村上凉子中文字幕在线| 免费搜索国产男女视频| 精品久久久久久久久久免费视频| 此物有八面人人有两片| 亚洲av第一区精品v没综合| 午夜福利成人在线免费观看| 亚洲成人免费电影在线观看| 欧美一区二区国产精品久久精品| 欧美成人免费av一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 少妇被粗大猛烈的视频| 午夜福利视频1000在线观看| 乱码一卡2卡4卡精品| 身体一侧抽搐| a级毛片免费高清观看在线播放| 51国产日韩欧美| 色5月婷婷丁香| 亚洲精品在线观看二区| 国产精品女同一区二区软件 | 麻豆一二三区av精品| 日韩精品青青久久久久久| 亚洲最大成人av| 首页视频小说图片口味搜索| 国产精品一区二区三区四区免费观看 | 精品国内亚洲2022精品成人| 精品人妻视频免费看| 一夜夜www| 成熟少妇高潮喷水视频| 国产老妇女一区| 十八禁网站免费在线| 午夜激情欧美在线| 老熟妇乱子伦视频在线观看| 黄片小视频在线播放| 午夜免费激情av| 日韩大尺度精品在线看网址| 国产野战对白在线观看| 午夜老司机福利剧场| 九色国产91popny在线| 成人毛片a级毛片在线播放| 嫩草影院精品99| 国产精品久久久久久久久免 | 51午夜福利影视在线观看| 欧美极品一区二区三区四区| 国产亚洲精品久久久久久毛片| 欧美黑人欧美精品刺激| 欧美黄色淫秽网站| 亚洲人成网站在线播放欧美日韩| 国产一区二区亚洲精品在线观看| 成熟少妇高潮喷水视频| 午夜福利高清视频| 51午夜福利影视在线观看| 国内久久婷婷六月综合欲色啪| 999久久久精品免费观看国产| 变态另类丝袜制服| 欧美日韩亚洲国产一区二区在线观看| 在线a可以看的网站| 亚洲自偷自拍三级| 三级毛片av免费| 欧美日韩国产亚洲二区| 97超视频在线观看视频| 很黄的视频免费| 国产精品乱码一区二三区的特点| 久久精品国产亚洲av香蕉五月| a在线观看视频网站| 中文字幕久久专区| 18禁黄网站禁片免费观看直播| 亚洲专区国产一区二区| 国产精品免费一区二区三区在线| 亚洲欧美激情综合另类| 久久香蕉精品热| 少妇的逼好多水| 国产中年淑女户外野战色| 赤兔流量卡办理| 成人三级黄色视频| 一本一本综合久久| 久久香蕉精品热| 一区二区三区免费毛片| 窝窝影院91人妻| 自拍偷自拍亚洲精品老妇| 久久久久久久精品吃奶| 啦啦啦观看免费观看视频高清| 老熟妇仑乱视频hdxx| 一级毛片久久久久久久久女| 淫妇啪啪啪对白视频| ponron亚洲| 免费大片18禁| 久久久精品大字幕| 日韩免费av在线播放| 露出奶头的视频| 精品日产1卡2卡| 白带黄色成豆腐渣| 久久精品综合一区二区三区| 又爽又黄无遮挡网站| 99视频精品全部免费 在线| www日本黄色视频网| 一本久久中文字幕| 一本综合久久免费| 亚洲av免费在线观看| 狂野欧美白嫩少妇大欣赏| 黄色配什么色好看| 久久精品综合一区二区三区| 国产精品久久电影中文字幕| 成人av一区二区三区在线看| 男女视频在线观看网站免费| 韩国av一区二区三区四区| 婷婷六月久久综合丁香| 一级黄片播放器| 看十八女毛片水多多多| 最近视频中文字幕2019在线8| 亚洲av电影不卡..在线观看| 日韩欧美 国产精品| 国产三级黄色录像| 亚洲av电影不卡..在线观看| 人人妻,人人澡人人爽秒播| 亚洲性夜色夜夜综合| 精品99又大又爽又粗少妇毛片 | 在线免费观看的www视频| 免费在线观看成人毛片| 不卡一级毛片| 毛片一级片免费看久久久久 | 精品久久久久久久人妻蜜臀av| 国产免费一级a男人的天堂| 一级毛片久久久久久久久女| 成人欧美大片| 国产精品,欧美在线| 免费在线观看亚洲国产| 国产老妇女一区| 欧美性猛交╳xxx乱大交人| 在线播放国产精品三级| 午夜影院日韩av| 俺也久久电影网| 脱女人内裤的视频| 久久久成人免费电影| 99热6这里只有精品| 网址你懂的国产日韩在线| 有码 亚洲区| 国产精品久久久久久久久免 | 亚洲精品久久国产高清桃花| 欧美日韩瑟瑟在线播放| 淫秽高清视频在线观看| 中文在线观看免费www的网站| 亚洲av成人不卡在线观看播放网| 给我免费播放毛片高清在线观看| 久久久久国产精品人妻aⅴ院| www.999成人在线观看| 性欧美人与动物交配| 日本黄色视频三级网站网址| 亚洲欧美日韩卡通动漫| 韩国av一区二区三区四区| 丰满人妻一区二区三区视频av| 非洲黑人性xxxx精品又粗又长| 免费av不卡在线播放| 国产一区二区在线av高清观看| 欧美成人免费av一区二区三区| 国产精品综合久久久久久久免费| 桃红色精品国产亚洲av| 免费无遮挡裸体视频| 麻豆国产97在线/欧美| 成人亚洲精品av一区二区| 一进一出抽搐gif免费好疼| 岛国在线免费视频观看| 亚洲午夜理论影院| 国产一区二区在线av高清观看| 欧美日韩亚洲国产一区二区在线观看| 国产野战对白在线观看| 国产欧美日韩一区二区精品| 在线a可以看的网站| 美女xxoo啪啪120秒动态图 | 一区二区三区四区激情视频 | 欧美日韩乱码在线| 看片在线看免费视频| 草草在线视频免费看| 少妇人妻精品综合一区二区 | 亚洲av.av天堂| 久久久久性生活片| 国内少妇人妻偷人精品xxx网站| 亚洲精品影视一区二区三区av| 在线国产一区二区在线| 国产免费av片在线观看野外av| 亚洲人成伊人成综合网2020| 国产一级毛片七仙女欲春2| 天美传媒精品一区二区| 少妇的逼水好多| 国产欧美日韩一区二区三| 国产亚洲欧美98| 悠悠久久av| 在线观看午夜福利视频| 一本综合久久免费| 乱人视频在线观看| 成人一区二区视频在线观看| 黄色女人牲交| 精品日产1卡2卡| 婷婷精品国产亚洲av在线| 男插女下体视频免费在线播放| 中文字幕av在线有码专区| 搡女人真爽免费视频火全软件 | 亚洲精品粉嫩美女一区| 亚洲人成网站高清观看| 国产精品,欧美在线| 国产精品久久久久久久久免 | 国产精品久久视频播放| 亚洲av中文字字幕乱码综合| 五月玫瑰六月丁香| 十八禁国产超污无遮挡网站| 精品久久久久久,| 国产亚洲精品久久久com| 精品福利观看| 女人十人毛片免费观看3o分钟| 国产精品不卡视频一区二区 | 免费av观看视频| 国产精品一及| 久久伊人香网站| 国产野战对白在线观看| 99热这里只有是精品在线观看 | 久久精品国产99精品国产亚洲性色| 亚洲成人久久性| 97热精品久久久久久| 免费看光身美女| 露出奶头的视频| 脱女人内裤的视频| 99在线人妻在线中文字幕| 中文在线观看免费www的网站| 日韩中字成人| 人妻久久中文字幕网| 免费看a级黄色片| 精品熟女少妇八av免费久了| 色哟哟哟哟哟哟| 毛片一级片免费看久久久久 | 韩国av一区二区三区四区| 精品久久久久久久久av| 亚洲在线观看片| 久久精品国产亚洲av香蕉五月| 男插女下体视频免费在线播放| 国产精品一区二区三区四区免费观看 | 久久久久久九九精品二区国产| 欧美xxxx黑人xx丫x性爽| 亚洲欧美日韩东京热| 亚洲最大成人av| 国产av麻豆久久久久久久| 精品乱码久久久久久99久播| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 1024手机看黄色片| 麻豆成人av在线观看| 欧美激情在线99| 91在线观看av| 露出奶头的视频| 国产伦精品一区二区三区四那| 精品午夜福利在线看| 国产又黄又爽又无遮挡在线| 欧美黄色片欧美黄色片| 精品一区二区三区av网在线观看| 久久精品国产清高在天天线| 99久久成人亚洲精品观看| 国产精品影院久久| 免费在线观看亚洲国产| 国产男靠女视频免费网站| 一进一出抽搐动态| 91字幕亚洲| 麻豆成人午夜福利视频| 在线观看av片永久免费下载| 熟女人妻精品中文字幕| 大型黄色视频在线免费观看| bbb黄色大片| 国内少妇人妻偷人精品xxx网站| 精品欧美国产一区二区三| 熟女电影av网| 午夜福利视频1000在线观看| 午夜两性在线视频| 男人的好看免费观看在线视频| 欧美最新免费一区二区三区 | 亚洲一区二区三区不卡视频| 国产伦人伦偷精品视频| 亚洲最大成人中文| 啪啪无遮挡十八禁网站| .国产精品久久| 色播亚洲综合网| 成年版毛片免费区| 欧美黑人巨大hd| 婷婷精品国产亚洲av| 69av精品久久久久久| 亚洲最大成人中文| 天天躁日日操中文字幕| 亚洲专区国产一区二区| 十八禁人妻一区二区| av天堂中文字幕网| 禁无遮挡网站| 国产精品一区二区性色av| 精品欧美国产一区二区三| 午夜福利在线观看免费完整高清在 | 亚洲国产日韩欧美精品在线观看| 18禁在线播放成人免费| 日本熟妇午夜| 国产精品久久久久久人妻精品电影| 成人国产综合亚洲| 日本 欧美在线| av天堂中文字幕网| 国产成人影院久久av| 国产亚洲精品久久久久久毛片| 十八禁人妻一区二区| 亚洲国产高清在线一区二区三| 俺也久久电影网| 欧美三级亚洲精品| 国产真实乱freesex| 一区二区三区高清视频在线| 国产麻豆成人av免费视频| 波多野结衣高清无吗| 少妇人妻精品综合一区二区 | 午夜精品久久久久久毛片777| 国产高清视频在线播放一区| 免费在线观看成人毛片| 一级a爱片免费观看的视频| 免费看日本二区| 精品人妻视频免费看| 婷婷丁香在线五月| 国产欧美日韩一区二区三| 真实男女啪啪啪动态图| АⅤ资源中文在线天堂| 国产精品不卡视频一区二区 | 麻豆成人av在线观看| 国产精品久久视频播放| 国内精品美女久久久久久| 久久久色成人| 国产精品久久久久久亚洲av鲁大| 色视频www国产| 亚洲欧美日韩无卡精品| 亚洲国产精品久久男人天堂| 国产成年人精品一区二区| 免费观看精品视频网站| 舔av片在线| 欧美绝顶高潮抽搐喷水| 精品久久久久久久末码| 亚洲电影在线观看av| 亚洲成av人片免费观看| 亚洲 国产 在线| 夜夜夜夜夜久久久久| 亚洲精品成人久久久久久| 精品99又大又爽又粗少妇毛片 | 最后的刺客免费高清国语| 在线天堂最新版资源| 一本一本综合久久| 国产精品久久久久久亚洲av鲁大| 99久国产av精品| 男女做爰动态图高潮gif福利片| 亚洲av第一区精品v没综合| 九色国产91popny在线| 久久精品影院6| 日日摸夜夜添夜夜添小说| 午夜福利免费观看在线| 99久久99久久久精品蜜桃| 国产黄色小视频在线观看| 99久久九九国产精品国产免费| 我要搜黄色片| 国产精品98久久久久久宅男小说| 真人一进一出gif抽搐免费| 国产爱豆传媒在线观看| 又爽又黄无遮挡网站| eeuss影院久久| 99久久成人亚洲精品观看| 精品午夜福利在线看| 成人精品一区二区免费| 一个人免费在线观看电影| 99久久九九国产精品国产免费| 日韩高清综合在线| 国产精品综合久久久久久久免费| 成人鲁丝片一二三区免费| 日本 av在线| 亚洲av成人精品一区久久| 色哟哟·www| 亚洲午夜理论影院| 亚洲欧美日韩卡通动漫| 午夜福利在线观看免费完整高清在 | 婷婷精品国产亚洲av| 免费观看的影片在线观看| 日韩人妻高清精品专区| 婷婷丁香在线五月| 欧美黄色片欧美黄色片| 99久久99久久久精品蜜桃| 亚洲av熟女| 一区二区三区激情视频| 狂野欧美白嫩少妇大欣赏| 丁香欧美五月| 国产又黄又爽又无遮挡在线| 色哟哟·www| 搞女人的毛片| 嫁个100分男人电影在线观看| 色哟哟哟哟哟哟| 免费在线观看成人毛片| 草草在线视频免费看| 人妻丰满熟妇av一区二区三区| 丰满乱子伦码专区| 99久久九九国产精品国产免费| 最后的刺客免费高清国语| 一进一出抽搐gif免费好疼| 成人鲁丝片一二三区免费| 国产蜜桃级精品一区二区三区| 亚洲三级黄色毛片| 国产伦人伦偷精品视频| 夜夜看夜夜爽夜夜摸| 国产成人aa在线观看| 久久国产乱子伦精品免费另类| 国产精品永久免费网站| 国产黄a三级三级三级人| 国产午夜精品论理片| 久久天躁狠狠躁夜夜2o2o| 一进一出抽搐gif免费好疼| 桃色一区二区三区在线观看| 欧美午夜高清在线| 赤兔流量卡办理| 丝袜美腿在线中文| 国产高潮美女av| 国产亚洲欧美98| 他把我摸到了高潮在线观看| 国产激情偷乱视频一区二区| 嫩草影院新地址| 小说图片视频综合网站| 在线免费观看不下载黄p国产 | 69av精品久久久久久| 成人特级黄色片久久久久久久| bbb黄色大片| 一a级毛片在线观看| 成人美女网站在线观看视频| 极品教师在线免费播放| 又紧又爽又黄一区二区| 精品无人区乱码1区二区| 热99在线观看视频| 天堂av国产一区二区熟女人妻| 日本免费a在线| 国产亚洲精品久久久久久毛片| 国产中年淑女户外野战色| 久久亚洲精品不卡| 真人做人爱边吃奶动态| 欧美成人a在线观看| 日韩免费av在线播放| 亚洲av电影不卡..在线观看| 九色成人免费人妻av| 伊人久久精品亚洲午夜| 久久九九热精品免费| 国产av在哪里看| 别揉我奶头 嗯啊视频| 国产国拍精品亚洲av在线观看| 日本熟妇午夜| 精品一区二区三区视频在线| 日韩中字成人| 成人欧美大片| 性插视频无遮挡在线免费观看| 99久久久亚洲精品蜜臀av| 国产单亲对白刺激| 亚洲av美国av| 两性午夜刺激爽爽歪歪视频在线观看| 男插女下体视频免费在线播放| 欧美日本亚洲视频在线播放| 国产大屁股一区二区在线视频| a级毛片免费高清观看在线播放| 国产乱人伦免费视频| 好男人在线观看高清免费视频| 亚洲欧美日韩无卡精品| 午夜精品一区二区三区免费看| 亚洲av第一区精品v没综合| 三级国产精品欧美在线观看| 人妻久久中文字幕网| 亚洲内射少妇av| 亚洲国产精品合色在线| 久久久国产成人免费| 久久精品久久久久久噜噜老黄 | 国产三级中文精品| 亚洲人成网站在线播| 琪琪午夜伦伦电影理论片6080| 网址你懂的国产日韩在线| 午夜激情欧美在线| 亚洲激情在线av| 一本综合久久免费| 真人一进一出gif抽搐免费| 日韩中字成人| 真人做人爱边吃奶动态| 在线观看午夜福利视频| 午夜影院日韩av| 淫妇啪啪啪对白视频| 一区二区三区四区激情视频 | 亚洲avbb在线观看| 成人特级av手机在线观看| 又紧又爽又黄一区二区| 欧美丝袜亚洲另类 | 99riav亚洲国产免费| 亚洲自拍偷在线| 中文字幕久久专区| 男女视频在线观看网站免费| av天堂在线播放| 国产综合懂色| 一夜夜www| ponron亚洲| 直男gayav资源| 欧美性感艳星| 亚洲精品在线美女| 精品99又大又爽又粗少妇毛片 | 色视频www国产| 精品午夜福利在线看| 国产毛片a区久久久久| 国产麻豆成人av免费视频| 91麻豆精品激情在线观看国产| 国产精品99久久久久久久久| 1024手机看黄色片| 男女做爰动态图高潮gif福利片| 亚洲国产日韩欧美精品在线观看| 欧美乱妇无乱码| 男女下面进入的视频免费午夜| 久久久久久久久中文| 美女cb高潮喷水在线观看| eeuss影院久久| 在线国产一区二区在线| 久久九九热精品免费| avwww免费| 午夜日韩欧美国产| 成年人黄色毛片网站| 一区福利在线观看| 久久久久免费精品人妻一区二区| 久久九九热精品免费| 国内揄拍国产精品人妻在线| 国产亚洲精品综合一区在线观看| 久久九九热精品免费| 久久精品夜夜夜夜夜久久蜜豆| 欧美日本视频| 国产精品嫩草影院av在线观看 | 九色成人免费人妻av| 变态另类成人亚洲欧美熟女| 久久久国产成人精品二区| 精品久久久久久久久av| 九九在线视频观看精品| 色综合欧美亚洲国产小说| 国产一区二区三区在线臀色熟女| 永久网站在线| 久久伊人香网站| 国产黄色小视频在线观看| 亚洲精品亚洲一区二区|