• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Breast cancer therapy by laser-induced Coulomb explosion of gold nanoparticles

    2013-06-15 19:09:00MuhammadGulBaharAshiqMohammadAlamSaeedBashirAhmadTahirNoorddinIbrahimMuhammadNadeem
    Chinese Journal of Cancer Research 2013年6期

    Muhammad Gul Bahar Ashiq, Mohammad Alam Saeed, Bashir Ahmad Tahir, Noorddin Ibrahim, Muhammad Nadeem

    1Physics Department, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia;2Department of Electrical and Computer Engineering, McMaster University, Ontario L8S4L8, Canada;3National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia

    Breast cancer therapy by laser-induced Coulomb explosion of gold nanoparticles

    Muhammad Gul Bahar Ashiq1, Mohammad Alam Saeed1, Bashir Ahmad Tahir2, Noorddin Ibrahim3, Muhammad Nadeem1

    1Physics Department, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia;2Department of Electrical and Computer Engineering, McMaster University, Ontario L8S4L8, Canada;3National Defense University of Malaysia, Kuala Lumpur 57000, Malaysia

    Corresponding to:Mohammad Alam Saeed. Physics Department, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia. Email: saeed@utm.my.

    Objective:Laser-induced Coulomb explosion of gold nanoparticles for breast cancer has been studied by nanophotolysis technique. This study aimed to investigate whether laser-induced bubble formation due to Coulomb explosion can provide an effective approach for selective damage of breast cancer with gold nanoparticles.

    Method:Numerical method involves laser-induced Coulomb explosion of gold nanoparticles. Different parameters related to nanophotolysis such as laser fluence, tumor depth, cluster radius, laser pulse duration, and bubble formation is studied numerically. Numerical simulation was performed using Mat lab.

    Results:The gold nanoparticles of 10, 20, 30, 40, and 50 nm in radius could penetrate into tumor 1.14, 1.155, 1.189, 1.20 and 1.22 cm in depth respectively. The maximum penetration depth in tumor could be obtained with nanoparticles of 50 nm radius. Short laser pulse of 40 ns with nanoparticles of 10 nm radius could penetrate into tumor 1.14 cm in depth. Bubbles with a radius of 9 μm could effectively kill breast cancer cells without damaging healthy ones. The bubble radius increased from 4 to 9 μm with an increase in pulse duration in the range of 10 to 30 ns.

    Conclusions:Gold nanoparticles with increasing radius and bubble formation for selective damage of breast cancer cells are successfully probed. The present calculated results are compared with other experimental findings, and good correlation is found between the present work and previous experimental values. It was demonstrated that bubble formation in tumor may further increase the efficacy of breast cancer treatment.

    Gold nanoparticles; tumor depth; nanophotolysis; bubble formation; breast cancer

    Scan to your mobile device or view this article at:http://www.thecjcr.org/article/view/3082/3984

    Introduction

    Figure 1 Flow chart of proposed technique.

    In recent years, interest in nanotechnology development has increased rapidly. One specific application of nanostructure is to enhance the treatment methods for breast cancer. From the breast cancer therapeutics point of view, nanostructures have become very useful tools for photothermal therapy due to enhanced absorption cross section (1,2). Such a strong absorption cross section ensures effective laser therapy at lower energies. Additionally, metal nanostructures such as gold and silver are photo-stable and do not suffer from photo-bleaching (3). However, among other inorganic nanoparticles, gold is the metal of choices for breast cancer treatment because of bio-modification and facile bioconjugation. Currently, spherical gold nanoparticles are the main nanostructures that have been demonstrated in laserinduced photothermal therapy due to ease of conjugation to antibodies, photostability, lack of toxicity, and ease of fabrication (4). Many researchers believe that the laserbased thermotherapy with gold nanoparticles could be more effective than the current radiation-based treatments, with fewer adverse effects (5). It has been demonstrated that formation of gold nano-clusters on cell membranes increases the efficiency of bubble formation resulting in damage of breast cancer cells at a relatively low laser fluence of 3-5 mJ/cm2(6). Significant and progressive approaches in the treatment of breast cancer have been realized in the last decade. Despite improvements in breast cancer treatment, the death rate among women over fifty years old is high because the malignant cells are resistant to existing therapies (7). Existing energy-based therapies can be classified into five categories: microwave ablation, cryoablation, radiofrequency ablation, high intensity focused ultrasound ablation and laser ablation (8). Compared to other techniques, laserbased therapy can be used as a protein denaturing agent in targeted cells. The photothermal therapies have a lot of advantages, such as less pain, effectiveness, low cost and capability of improving quality of life with less scaring and no incision. However, laser-based techniques tend to cause substantial damage to surrounding tissues. In the context of this background, breast cancer vestiges an inveterate disease by present treatment approaches. Cancers are assumed to arise from a succession of consecutive transmutations that take place due to chromosomal inconsistency (9,10). Although, the laser-irradiated gold nanoparticles have been used by several researchers (11-14), but there exists a great uncertainty regarding the killing of healthy cells. To clarify this problem, nanophotolysis approach for selective killing of malignant cells is applied. In previous studies, the nanophotolysis approach is adopted to selectively damage breast cancer cells (15,16).

    In the present study, the gold nanoparticles with a radius of 50 nm could penetrate into tumor 1.22 cm in depth. Short laser pulse of 40 ns with 10 nm nanoaprticle radius could penetrate into tumor 1.14 cm in depth. Bubbles with a radius of 9 μm could kill breast cancer cells without damaging healthy cells.

    Materials and methods

    Flow chart (Figure 1) describes the way out of targeted therapy to breast cancer cells. Gold nanoparticles are irradiated by short pulse laser. When the laser fluence (F) is greater than the binding energy of gold atoms, electrons will be knocked out and the remaining ions will repel each other. The movement of electrons and ions depend on the absorbed energy during laser irradiation. If the energy of ions is sufficient to overcome the repulsive forces, ions in the form of nanobullets will strike on breast cancer and damage it completely.

    Laser interaction with gold nanoparticles

    The gold nanoparticles were irradiated with a short laser pulse of energy, EL, (17). where (A) is the amplitude of wave, (ω) is the wave vector, and (z) is the propagating direction.

    At a threshold (Fth) of laser fluence, the electrons come out from the surface and the remaining ions will exert repulsion, resulting in Coulomb explosion. Ions in the form of nanobullets emanate with a large pressure to hit the tumor and make a cluster of gold nanoparticles in the vicinity of the tumor cells. Penetration of nanopartilces into tumor and formation of cavitation bubbles are shown inFigure 2.

    Penetration of gold nanobullets in tissues

    Irradiance of laser in gold nanoparticles is described by the equation (17),

    Here, (f) is the laser fluence inside the medium (gold nanoparticles) at depth (z) of gold nanoparticles.

    Figure 2 Schematic diagram of short pulse laser interaction with gold nanoparticles.

    The irradiance (f0) is equal to the intensity (I0) of the incident radiation and accumulation factor (k) is the attenuation of the laser light intensity. Intensity is given by the penetration depth (δ) of tumor. Accumulation factor k is derived as a function of the diffuse reflectance (Rd) of laser light from gold surface.

    The diffuse reflectance (Rd) depends on the penetration depth (δ) and the absorption coefficient (μa),

    Putting values of k in equation [5]

    Here (Fth) is the threshold laser fluence, (N) is the number of ions, (T) is the temperature, (Rp) is the radius of nanoparticles, (tp) is laser pulse duration, and (μ) is the absorption coefficient.

    Spherical model of bubble dynamics

    In order to discuss the surface tension, the liquid viscosity and compressibility of the liquid inside tumor, Brujan’s equation (a spherical model of bubble dynamics) is used, which calculates the bubble radius. The motion of bubble is defined as (19),

    Here, (H) is the change in enthalpy, (R) is the bubble radius, (C0) is sound speed in medium, and dot denotes time derivative. Enthalpy (H) is defined as,

    Here, (B) and (n) are constants obtained from the Tait equation to derive above equation (20). The pressure at the interface of bubble is given by,

    where (R0) is the bubble radius, k is the specific heat ratio at constant volume and pressure, P0is the pressure inside the bubble, σ is the surface tension, and η is the viscosity.

    Initial conditions are required to solve the equation [8]. An initial condition forcan be obtained by putting the given initial condition for R andin the incompressible limit C∞→∞. Assuming the laser energy absorbed by the gold nanoparticles during the laser ablation is used to increase the temperature of liquid surrounding the breast cancer, the relation of the bubble radius produced due to gold nanoparticles is given by,

    where (F) is the laser fluence (15 mJ/cm2), (Fth) is threshold laser fluence required to emanate gold ions from the gold surface, (ρcl) is the critical density (322 kg/m3) of liquid inside the tumor, (σabs) is the absorption cross section (2.93×10—15m2) of gold nanoparticles of radius 60 nm, and (Ecl) is the internal energy (2,000 kJ/kg) of liquid.

    Threshold fluence of laser is defined by (21),

    Figure 3 Dependence of tumor depth on laser pulse width. The inset figure has been taken (with permission) from the previous study (22).

    where (Rnp) is nanoparticles radius (30 nm), (Cnp) (0.13 kJ/kg-K), (ρnp) (19,300 kg/m3) and (T) (647 K) are the specific heat density, volume, and temperature at the critical point of liquid in tumor, respectively.

    Solving equation [11] by using equation [12].

    Results

    Figure 3depicts the tumor depth as a function of the laser pulse duration. The nanosecond pulse durations were chosen to ionize the gold nanostructure and determine the threshold level for selective damage of abnormal cells in the breast cancer. For short pulse duration of 5-40 ns, penetration depth in tumor increases from 1.14 to 1.22 cm. The gold nanoparticles of 10, 20, 30, 40 and 50 nm in radius could penetrate into tumor 1.14, 1.155, 1.189, 1.20, and 1.22 cm in depth respectively. The maximum penetration depth in tumor can be obtained with nanoparticles of 50 nm radius. As the radius of nanoparticles increases, penetration of gold ions in the tumor goes on increasing. It is due to the increasing density of nanoparticle per unit volume.

    Figure 4 Dependence of penetration depth for different radius of nanoparticles on laser fluence. The inset figure has been taken (with permission) from the previous study (22).

    Laser irradiation by spherical gold nanoparticles of different radii with tumor depth is shown inFigure 4. The results showed that the increase in laser fluence causes penetration of gold ions in tumor depth. For 10 nm gold nanoparticles radius, the penetration depth of tumor is 1.504 cm. As the radius of particle decreases, tumor depth also increases. This is due to the large density of gold nanoparticles. Increase in the nanoparticle’s radius requires more energy from laser irradiation. Due to large radius, nanoparticles will go deep inside the tumor.

    When a gold nanoparticles cluster of 10 nm radius is irradiated by laser pulse duration of 10 ns, a bubble with a radius of 4 μm is produced inside breast cancer. The bubble radius increases from 4 to 9 μm with an increase in pulse duration in the range of 10 to 30 ns as shown inFigure 5. Such an increase in the bubble radius may be sufficient to damage the cancerous cells with a radius of 8-13 μm. Bubble radius is greater than the size of cell radius because it loses energy as it goes inside the tumor. As the laser pulse duration goes beyond its maximum limit up to 30 ns, there is a linear increase in the size of bubble. It is due to the interaction of cavitations bubble with the malignant cells (22,23). These malignant cells absorb energy produced by bubble propagation. As the cluster size increases up to 30 nm, it causes an enhancement in the number of nanobullets.

    Figure 5 Short pulse laser interaction with gold nanoparticle cluster for bubble formation.

    Results (Figure 6) showed that for a small laser fluence of 5 mJ/cm2, the laser interaction with a gold nanocluster of radius 10 nm causes an increase in surface tension of liquid in tumor. This produces contraction of vapors and therefore a bubble of smaller radius has no effect on the tumor cells of large size. Since the Coulomb repulsive forces between the gold ions are dominant over electrostatic forces of attraction, gold ions (nanobullets) will hit the tumor and produce a bubble of only 4 μm radius. Therefore laser fluence in this range is below the clinically useful threshold.

    Discussion

    For nanoparticles of 50 nm radius, the maximum penetration depth is obtained up to 1.22 cm (Figure 3) in the tumor which is the best fit for stage 2 or stage 3 breast cancer patients (23). Further increase in the pulse duration does not affect on tumor cells. This finding could be explained by that just few pulses of high laser energy for a short duration may kill the malignant cells via melting, fragmentation, and further increase in pulse duration may not make a sufficient damage. Our findings are in agreement to other experimental data (22).

    As the particle radius increases up to 50 nm, tumor depth increases to 1.5199 cm inFigure 4and similar kind of response is observed from other experimental findings (24). From these results, it can be concluded that the major damping mechanism during nanosecond short pulse irradiation is the liquid compressibility in the depth of the tumor.

    Figure 6 Relation among laser fluence, cluster size and bubble radius.

    The maximum number of ions (nanobullets) ejecting from the gold atom could produce bubble with a radius of 9 μm in breast cancer cells (Figure 5). Such size of bubble radius is comparable with the cell radius of 8-13 μm. Radius of gold nanoparticles in this range (30 nm) is utilized so that the healthy cells surrounding the tumor cells may not be affected. This bubble radius is suitable to enlarge the cell membrane to damage it.

    Laser fluence at the maximum level of 15 mJ/cm2hits the cluster size of radius 30 nm and produces the maximum number of nanobullets (Figure 6). These bullets hit the tumor and generate bubbles with a radius of 9 μm. Such fluence level and bubble size provide high selectivity of killing the breast cancer cells (24,25).

    Selective nanophotolysis technique using gold nanoparticles and short laser pulse duration is theoretically investigated. Gold nanoparticles with radius of 10, 20, 30, 40, and 50 nm could penetrate into tumor 1.14, 1.155, 1.189, 1.20 and 1.22 cm in depth respectively. Short laser pulse of 40 ns with 10 nm nanoaprticle radius could penetrate into tumor 1.14 cm in depth. Bubble with a radius of 9 μm can effectively kill the breast cancer cells without damaging the healthy ones. Gold nanoparticles with increasing radius and bubble formation for selective damaging of breast cancer cells are successfully probed. It is possible to control the extent of cellular injury in a tumor volume by controlling the size of bubbles. In this mode, gold nanoparticles of 10-50 nm radius and bubble with a radius of 9 μm can effectively kill the breast cancer cells without damaging thesurrounding healthy tissues.

    Acknowledgements

    Disclosure:The authors would like to thank for the financial support by by Fund of the Ministry of Higher Education (MOHE) Malaysia and Universiti Teknologi Malaysia (UTM) Skudai, Johor, Malaysia under Grant No Q.J130000.2526.02H93/-03H78.

    1. Pattani VP, Tunnell JW. Nanoparticle-mediated photothermal therapy: A comparative study of heating for different particle types. Lasers Surg Med 2012;44:675-84.

    2. Huang X, Jain PK, El-Sayed IH, et al, Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 2008;23:217-28.

    3. Yu MK, Park J, Jon S. Targeting strategies for multifunctional nanoparticles in cancer Imaging and therapy. Theranostics 2012;2:3-44.

    4. Zhao Z, Wu F. Minimally-invasive thermal ablation of early-stage breast cancer: A systemic review. Eur J Surg Oncol 2010;36:1149-55.

    5. Letfullin RR, Joenathen C, George TF. Laser-induced explosion of gold nanoparticles: potential role for nanophotothermolysis of cancer. Nanomedicine (Lond) 2006;1:473-80.

    6. Zharov VP, Galitovsky V, Viegas M. Photothermal guidance of selective photo-thrmolysis with nanoparticles. Proc SPIE 2004;7:291-300.

    7. Pustovalov V, Zahrov V. Threshold parameters of selective nanophothermolysis with Gold nanoparticles. Int. Conference BIOS 2008. San-Jose. 2008. USA. Proc. SPIE, 2008;6854:39.

    8. Sun JM, Gerstman BS, Li B. Bubble dynamics and shock waves generated by laser absorption of a photoacoustic sphere. J Appl Phys 2000;13:2352-62.

    9. Marsh M, Schelew E, Wolf S, et al. Gold nanoparticles for cancer treatment. PHYS 483 — Queen’s University, Kingston, March 29, 2009.

    10. Al-Hajj M, Wicha MS, Benito-Hernandez A. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003;100:3983-8.

    11. Ashiq MGB, Saeed MA, Noorddin Ibrahim, et al, Laser induced Coulomb explosion of gold nanoparticles: application of nanophotolysis for Breast cancer. J Int Pulse laser Appl Adv Phys 2012;2:1-3.

    12. Zharov VP, Letfullin RR, Galitovskaya EN. Microbubblesoverlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters. J Phys D: Appl Phys 2005;38:2571-81.

    13. Huang X, Qian W, El-Sayed IH. The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Surg Med 2007;39:747-53.

    14. Cianfrocca M, Goldstein L J, Prognostic and predictive factors in early-stage breast cancer, Oncologist 2004;9:606-16.

    15. Ashiq MGB, Ibrahim N, Shahid M, et al. Novel nanophotolysis technique for breast cancer therapy. Modern Physics Letters B 2012;26:1250147-55.

    16. Ashiq MGB, Saeed NA, Ibrahim N, et al. Numerical study of nanophotolysis approach for breast cancer. Modern Physics Letters B 2012;26:1250187-94.

    17. Annou R, Tripathi VK. Femtosecond laser pulse induced coulomb explosion. 34th EPS Conf. Plasma Phys 2007;31F:5,108.

    18. Barton TG, Foth HJ, Christ M, et al. Interaction of holmium laser radiation and cortical bone: ablation and thermal damage in a turbid medium. Appl Opt 1997;36:32-43.

    19. Brujan EA. Numerical investigation on the dynamics of cavitation nanobubbles. Microfluid Nanofluid 2011;1:511-17.

    20. Tait PG. eds. Physics and Chemistry of the Voyage of HMS Challenger. London: HMSO, 1888.

    21. Letfullin RR, George TF, Duree GC. Ultra short laser pulse heating of nanoparticles: comparison of theoretical approaches. Adv Opt Technol 2008;1:450-58.

    22. Matjaz L, Perhavec T, Nemes K, et al. Ablation and thermal depths in VSP Er:YAG laser skin resurfacing. J Laser Health Acad 2010;1:56-71.

    23. Zharov VP, Galitovsky V, Viegas M. Photothermal detection of local thermal effects during selective nanophotothermolysis. Appl Phy Lett 2003;83:4897-99.

    24. Letfullin RR, Joenathan C, George TF, et al. Laserinduced thermal explosion of nanoparticles: potential role for nanaophotothermolysis of cancer. Nanomedicine (Lond) 2006;1:473-80.

    25. Pustovalov VK. Theoretical study of heating of spherical nanoparticle in media by short laser pulses. Chemical Physics 2005;30:103-8.

    Cite this article as:Ashiq MGB, Saeed MA, Tahir BA, Ibrahim N, Nadeem M. Breast cancer therapy by laser-induced Coulomb explosion of gold nanoparticles. Chin J Cancer Res 2013;25(6):756-761. doi: 10.3978/j.issn.1000-9604.2013.12.08

    10.3978/j.issn.1000-9604.2013.12.08

    Submitted Jan 02, 2013. Accepted for publication Jul 30, 2013.

    99国产综合亚洲精品| 宅男免费午夜| av有码第一页| 亚洲人成电影免费在线| 最新美女视频免费是黄的| 成人永久免费在线观看视频| 免费在线观看影片大全网站| 长腿黑丝高跟| 国产av精品麻豆| tocl精华| 亚洲在线自拍视频| 亚洲精品国产区一区二| АⅤ资源中文在线天堂| 一区在线观看完整版| 老司机福利观看| 国产熟女xx| 女人被躁到高潮嗷嗷叫费观| 在线天堂中文资源库| 叶爱在线成人免费视频播放| 最近最新免费中文字幕在线| 欧美中文日本在线观看视频| 国产人伦9x9x在线观看| 亚洲熟女毛片儿| 黄色女人牲交| 又大又爽又粗| 亚洲精品国产一区二区精华液| 亚洲最大成人中文| av欧美777| 国产伦人伦偷精品视频| 精品午夜福利视频在线观看一区| 中文字幕av电影在线播放| 多毛熟女@视频| 国产91精品成人一区二区三区| 一区二区日韩欧美中文字幕| 久久久久久大精品| 一个人观看的视频www高清免费观看 | av片东京热男人的天堂| 久久久久久亚洲精品国产蜜桃av| 午夜久久久久精精品| 亚洲av成人一区二区三| 国产视频一区二区在线看| 妹子高潮喷水视频| 91成人精品电影| 婷婷六月久久综合丁香| 国产精品九九99| cao死你这个sao货| 99精品久久久久人妻精品| 久久精品国产99精品国产亚洲性色 | 久久久久国产一级毛片高清牌| 久久影院123| 亚洲av成人一区二区三| 好看av亚洲va欧美ⅴa在| 亚洲电影在线观看av| 久久国产精品影院| 村上凉子中文字幕在线| 欧美老熟妇乱子伦牲交| 国产一区二区三区在线臀色熟女| 丝袜美腿诱惑在线| 成人免费观看视频高清| 久久人妻福利社区极品人妻图片| 欧美激情高清一区二区三区| 午夜福利视频1000在线观看 | 国产一级毛片七仙女欲春2 | 亚洲国产精品999在线| 巨乳人妻的诱惑在线观看| 成人三级黄色视频| 巨乳人妻的诱惑在线观看| 99re在线观看精品视频| 日韩免费av在线播放| 亚洲少妇的诱惑av| 精品国产乱码久久久久久男人| 可以在线观看的亚洲视频| 人人澡人人妻人| 在线观看66精品国产| avwww免费| 国产伦人伦偷精品视频| 人妻久久中文字幕网| 咕卡用的链子| 国产又爽黄色视频| 久久人妻熟女aⅴ| 国产成人欧美在线观看| 免费无遮挡裸体视频| 午夜a级毛片| 大型av网站在线播放| 中出人妻视频一区二区| 久久久久国产精品人妻aⅴ院| 亚洲国产精品sss在线观看| 国产一区二区三区在线臀色熟女| 国产成人欧美在线观看| 免费无遮挡裸体视频| 日韩精品免费视频一区二区三区| 亚洲av电影在线进入| 免费女性裸体啪啪无遮挡网站| 两个人免费观看高清视频| 国产精品野战在线观看| 99国产精品99久久久久| 午夜两性在线视频| 精品电影一区二区在线| 亚洲国产欧美日韩在线播放| 欧美日韩黄片免| 国产男靠女视频免费网站| 一级a爱片免费观看的视频| 日韩免费av在线播放| 欧美av亚洲av综合av国产av| 男女下面进入的视频免费午夜 | 老司机深夜福利视频在线观看| 亚洲色图av天堂| 久久婷婷成人综合色麻豆| 亚洲成人精品中文字幕电影| 亚洲激情在线av| 久久久国产精品麻豆| 亚洲一码二码三码区别大吗| 亚洲人成电影免费在线| 免费久久久久久久精品成人欧美视频| 国产成人欧美在线观看| 一边摸一边抽搐一进一出视频| 国产真人三级小视频在线观看| 亚洲精品中文字幕一二三四区| 熟女少妇亚洲综合色aaa.| 欧美激情久久久久久爽电影 | 欧美一级a爱片免费观看看 | 欧美+亚洲+日韩+国产| 久久精品人人爽人人爽视色| 久久久国产成人精品二区| 日韩国内少妇激情av| 国产xxxxx性猛交| 一级片免费观看大全| 高清在线国产一区| 精品国产亚洲在线| 变态另类丝袜制服| 欧美成人免费av一区二区三区| 757午夜福利合集在线观看| 婷婷六月久久综合丁香| 麻豆国产av国片精品| 一级毛片精品| 97人妻精品一区二区三区麻豆 | av福利片在线| 超碰成人久久| 国产精品,欧美在线| 久久午夜亚洲精品久久| 看片在线看免费视频| 久久欧美精品欧美久久欧美| 免费女性裸体啪啪无遮挡网站| 一卡2卡三卡四卡精品乱码亚洲| 亚洲专区国产一区二区| 视频区欧美日本亚洲| 免费不卡黄色视频| 一级a爱视频在线免费观看| 免费av毛片视频| 国产欧美日韩一区二区精品| 亚洲va日本ⅴa欧美va伊人久久| 婷婷六月久久综合丁香| 一进一出抽搐动态| 色老头精品视频在线观看| 国产高清激情床上av| 禁无遮挡网站| 欧美 亚洲 国产 日韩一| 两个人免费观看高清视频| 给我免费播放毛片高清在线观看| 真人做人爱边吃奶动态| 久久人人97超碰香蕉20202| 久久精品人人爽人人爽视色| 午夜久久久在线观看| 久久国产精品影院| 国产精品自产拍在线观看55亚洲| 亚洲avbb在线观看| 国产一区二区三区视频了| 亚洲av美国av| 亚洲五月天丁香| 操出白浆在线播放| 一区在线观看完整版| 淫妇啪啪啪对白视频| 变态另类成人亚洲欧美熟女 | 男女下面插进去视频免费观看| 波多野结衣一区麻豆| 国产1区2区3区精品| 国产野战对白在线观看| 欧美成人一区二区免费高清观看 | 免费女性裸体啪啪无遮挡网站| 日本在线视频免费播放| 亚洲伊人色综图| 欧美成人性av电影在线观看| 窝窝影院91人妻| 午夜福利18| 中国美女看黄片| 人妻丰满熟妇av一区二区三区| 亚洲精品在线观看二区| 丝袜人妻中文字幕| 亚洲国产欧美网| 国产精品香港三级国产av潘金莲| 午夜福利视频1000在线观看 | 亚洲av熟女| 国产片内射在线| 亚洲成人久久性| 性色av乱码一区二区三区2| 成人三级做爰电影| 亚洲中文字幕日韩| 免费观看人在逋| 久久久久久久久免费视频了| 国产成人系列免费观看| 久99久视频精品免费| 91在线观看av| 亚洲第一青青草原| 欧美黄色淫秽网站| 黑人巨大精品欧美一区二区mp4| 亚洲中文av在线| 成人三级做爰电影| 18禁观看日本| 久久天躁狠狠躁夜夜2o2o| 啦啦啦韩国在线观看视频| 此物有八面人人有两片| 电影成人av| 黑人欧美特级aaaaaa片| 好男人电影高清在线观看| 叶爱在线成人免费视频播放| 黄片播放在线免费| 啦啦啦免费观看视频1| 日韩高清综合在线| 亚洲国产日韩欧美精品在线观看 | 高清黄色对白视频在线免费看| 亚洲成av人片免费观看| 91精品国产国语对白视频| 欧美日本亚洲视频在线播放| 视频在线观看一区二区三区| 久久国产亚洲av麻豆专区| 美女大奶头视频| www.www免费av| 日日爽夜夜爽网站| 午夜a级毛片| 久久久国产成人免费| 国产熟女xx| 亚洲视频免费观看视频| 亚洲一区高清亚洲精品| 亚洲欧美日韩另类电影网站| 免费看美女性在线毛片视频| 91老司机精品| 黄色女人牲交| 少妇的丰满在线观看| 一级a爱视频在线免费观看| 久久精品人人爽人人爽视色| 一卡2卡三卡四卡精品乱码亚洲| 99久久久亚洲精品蜜臀av| 日日干狠狠操夜夜爽| 免费观看精品视频网站| 国产野战对白在线观看| 国产精华一区二区三区| 午夜日韩欧美国产| 丰满的人妻完整版| 首页视频小说图片口味搜索| 好男人电影高清在线观看| 人成视频在线观看免费观看| 久久久精品国产亚洲av高清涩受| 熟妇人妻久久中文字幕3abv| 变态另类丝袜制服| 一卡2卡三卡四卡精品乱码亚洲| 国产精品综合久久久久久久免费 | 欧美一级a爱片免费观看看 | 亚洲自拍偷在线| 日本a在线网址| 免费在线观看黄色视频的| 欧美黑人欧美精品刺激| 精品国产乱码久久久久久男人| 别揉我奶头~嗯~啊~动态视频| 久久久久久久久免费视频了| 悠悠久久av| 成在线人永久免费视频| 欧美色欧美亚洲另类二区 | 国产精品久久久久久精品电影 | 长腿黑丝高跟| tocl精华| 国产成人免费无遮挡视频| 国产亚洲精品久久久久久毛片| 免费av毛片视频| a在线观看视频网站| 国产成人av激情在线播放| 欧美日本亚洲视频在线播放| bbb黄色大片| 久久精品国产综合久久久| 人人妻人人爽人人添夜夜欢视频| 成人三级做爰电影| 久久久国产欧美日韩av| 非洲黑人性xxxx精品又粗又长| 一边摸一边做爽爽视频免费| 高清黄色对白视频在线免费看| 麻豆一二三区av精品| 午夜福利一区二区在线看| 国产区一区二久久| 国产精品久久久久久亚洲av鲁大| 欧美人与性动交α欧美精品济南到| 久久久久国产精品人妻aⅴ院| 女性生殖器流出的白浆| 精品一区二区三区av网在线观看| 国产精品久久久人人做人人爽| 免费不卡黄色视频| 嫩草影视91久久| 一本久久中文字幕| 欧美绝顶高潮抽搐喷水| 国产精品自产拍在线观看55亚洲| 色播在线永久视频| av有码第一页| 亚洲色图综合在线观看| 欧美激情 高清一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 波多野结衣av一区二区av| 麻豆国产av国片精品| 精品不卡国产一区二区三区| 人成视频在线观看免费观看| 激情在线观看视频在线高清| 久久中文字幕一级| 咕卡用的链子| 久久久精品欧美日韩精品| 午夜免费鲁丝| 人人妻人人爽人人添夜夜欢视频| 最近最新中文字幕大全电影3 | 男女床上黄色一级片免费看| 高清在线国产一区| 欧美午夜高清在线| 亚洲av电影不卡..在线观看| 亚洲色图av天堂| 午夜福利欧美成人| 少妇粗大呻吟视频| 宅男免费午夜| 91国产中文字幕| 欧美最黄视频在线播放免费| 婷婷精品国产亚洲av在线| 满18在线观看网站| 人妻久久中文字幕网| 丝袜美足系列| 久久人人精品亚洲av| 日韩欧美免费精品| 高清在线国产一区| 午夜视频精品福利| 制服丝袜大香蕉在线| 亚洲avbb在线观看| 亚洲精品国产区一区二| 麻豆av在线久日| 亚洲国产精品合色在线| 高清黄色对白视频在线免费看| 国产熟女xx| 国产亚洲欧美在线一区二区| 看片在线看免费视频| 亚洲精品美女久久久久99蜜臀| 午夜成年电影在线免费观看| av欧美777| 女人被狂操c到高潮| 欧美一区二区精品小视频在线| 1024视频免费在线观看| 亚洲欧美精品综合一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 精品日产1卡2卡| 亚洲成人精品中文字幕电影| 国产成人欧美在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕色久视频| 亚洲成人精品中文字幕电影| 国产单亲对白刺激| 亚洲成人精品中文字幕电影| 操美女的视频在线观看| 91成人精品电影| 国内精品久久久久久久电影| 97碰自拍视频| 免费在线观看亚洲国产| 免费看a级黄色片| 国产精品秋霞免费鲁丝片| 日韩免费av在线播放| 久久香蕉激情| 欧美亚洲日本最大视频资源| tocl精华| 欧美一区二区精品小视频在线| 在线观看日韩欧美| 一进一出抽搐gif免费好疼| 禁无遮挡网站| 夜夜看夜夜爽夜夜摸| 亚洲一码二码三码区别大吗| 欧美性长视频在线观看| 免费看美女性在线毛片视频| 美国免费a级毛片| 视频区欧美日本亚洲| 中文字幕久久专区| 亚洲精品美女久久av网站| 九色国产91popny在线| 欧美黑人精品巨大| 午夜成年电影在线免费观看| 国产欧美日韩一区二区三| 校园春色视频在线观看| 国产成人系列免费观看| 久久久久久亚洲精品国产蜜桃av| 久久人人精品亚洲av| 免费在线观看亚洲国产| 日本五十路高清| 亚洲人成电影免费在线| 18禁观看日本| 国产精品秋霞免费鲁丝片| 999久久久国产精品视频| 国产熟女午夜一区二区三区| 999精品在线视频| 亚洲成av人片免费观看| ponron亚洲| 男人操女人黄网站| 成人av一区二区三区在线看| 操出白浆在线播放| 精品电影一区二区在线| 国产精品美女特级片免费视频播放器 | 99国产综合亚洲精品| 亚洲国产欧美网| 午夜福利免费观看在线| 亚洲国产日韩欧美精品在线观看 | 亚洲欧美激情综合另类| 韩国精品一区二区三区| 性少妇av在线| 亚洲成人精品中文字幕电影| 成年女人毛片免费观看观看9| 午夜免费成人在线视频| 性少妇av在线| 亚洲欧美日韩无卡精品| 久久久国产成人精品二区| 久久国产乱子伦精品免费另类| 精品一区二区三区四区五区乱码| 精品人妻1区二区| 亚洲人成伊人成综合网2020| 午夜影院日韩av| 女人精品久久久久毛片| 91成人精品电影| 在线av久久热| 成人三级黄色视频| svipshipincom国产片| 日韩精品免费视频一区二区三区| svipshipincom国产片| 久久婷婷人人爽人人干人人爱 | 国产一区二区激情短视频| 啦啦啦观看免费观看视频高清 | 好看av亚洲va欧美ⅴa在| 99国产综合亚洲精品| 好看av亚洲va欧美ⅴa在| 性色av乱码一区二区三区2| 国产精品国产高清国产av| 色精品久久人妻99蜜桃| 每晚都被弄得嗷嗷叫到高潮| 国产麻豆69| 此物有八面人人有两片| 亚洲一区高清亚洲精品| 亚洲国产看品久久| 国产成人啪精品午夜网站| avwww免费| 亚洲精品国产色婷婷电影| 他把我摸到了高潮在线观看| 夜夜躁狠狠躁天天躁| 天堂动漫精品| 黑人操中国人逼视频| 国产精品日韩av在线免费观看 | 亚洲,欧美精品.| 国产av一区在线观看免费| 国产av一区二区精品久久| 亚洲第一电影网av| 美女高潮喷水抽搐中文字幕| 啦啦啦观看免费观看视频高清 | 国产精品99久久99久久久不卡| 日韩大码丰满熟妇| 精品国产亚洲在线| tocl精华| 波多野结衣高清无吗| aaaaa片日本免费| 91成人精品电影| 大码成人一级视频| 婷婷六月久久综合丁香| 黑人欧美特级aaaaaa片| av有码第一页| 亚洲一区二区三区不卡视频| 51午夜福利影视在线观看| 国产精品1区2区在线观看.| 久久精品成人免费网站| 国产一区二区三区视频了| 美女 人体艺术 gogo| 亚洲国产精品999在线| 一卡2卡三卡四卡精品乱码亚洲| 国产主播在线观看一区二区| 成人18禁高潮啪啪吃奶动态图| 久久中文看片网| 啦啦啦观看免费观看视频高清 | 成人永久免费在线观看视频| 亚洲aⅴ乱码一区二区在线播放 | 亚洲午夜理论影院| 制服丝袜大香蕉在线| 欧美不卡视频在线免费观看 | 亚洲性夜色夜夜综合| 欧美性长视频在线观看| 欧美成人一区二区免费高清观看 | 非洲黑人性xxxx精品又粗又长| 国产成人系列免费观看| 高清在线国产一区| 免费高清视频大片| 91在线观看av| 亚洲黑人精品在线| 老司机靠b影院| bbb黄色大片| 村上凉子中文字幕在线| 亚洲国产精品久久男人天堂| 中文字幕人妻丝袜一区二区| 精品卡一卡二卡四卡免费| 亚洲av第一区精品v没综合| 亚洲欧美精品综合一区二区三区| 99精品久久久久人妻精品| 亚洲精品一区av在线观看| 成年女人毛片免费观看观看9| 久热这里只有精品99| 国产在线精品亚洲第一网站| 久久久久久大精品| 亚洲国产精品合色在线| 亚洲五月婷婷丁香| 国产精品综合久久久久久久免费 | 午夜福利高清视频| 精品无人区乱码1区二区| 黑人巨大精品欧美一区二区蜜桃| 一级作爱视频免费观看| 在线观看www视频免费| 亚洲五月天丁香| 日韩精品中文字幕看吧| 亚洲无线在线观看| 看免费av毛片| 十八禁网站免费在线| 国产成人av激情在线播放| 黄色视频不卡| 波多野结衣巨乳人妻| 中文字幕人妻丝袜一区二区| 啦啦啦观看免费观看视频高清 | 50天的宝宝边吃奶边哭怎么回事| 男女做爰动态图高潮gif福利片 | 两性午夜刺激爽爽歪歪视频在线观看 | av天堂久久9| 国产欧美日韩一区二区三| 国内久久婷婷六月综合欲色啪| 中文字幕人成人乱码亚洲影| 欧美成人免费av一区二区三区| 国产精品久久久av美女十八| 少妇的丰满在线观看| 国产精品久久久av美女十八| 亚洲第一欧美日韩一区二区三区| 人人妻人人澡欧美一区二区 | 免费看a级黄色片| 夜夜夜夜夜久久久久| 亚洲伊人色综图| 久久久国产成人精品二区| 97人妻精品一区二区三区麻豆 | 久久性视频一级片| 一区二区三区激情视频| 99香蕉大伊视频| 国产精品久久久av美女十八| 久久人妻av系列| 亚洲人成77777在线视频| 激情在线观看视频在线高清| 大香蕉久久成人网| 神马国产精品三级电影在线观看 | 久99久视频精品免费| 天天躁狠狠躁夜夜躁狠狠躁| 欧美大码av| 国产成人精品在线电影| 亚洲色图av天堂| 久久香蕉激情| 男女下面进入的视频免费午夜 | 91在线观看av| 十八禁人妻一区二区| 一进一出抽搐gif免费好疼| 午夜福利成人在线免费观看| 免费高清视频大片| 又黄又粗又硬又大视频| 男人的好看免费观看在线视频 | 在线观看免费视频日本深夜| 精品欧美国产一区二区三| 久久国产乱子伦精品免费另类| 亚洲国产精品久久男人天堂| 久久久国产精品麻豆| 欧美不卡视频在线免费观看 | 一本久久中文字幕| 国产成人系列免费观看| 中文字幕av电影在线播放| 1024视频免费在线观看| 亚洲成人精品中文字幕电影| 精品国内亚洲2022精品成人| 脱女人内裤的视频| 色播亚洲综合网| 午夜免费成人在线视频| 黄色a级毛片大全视频| 免费人成视频x8x8入口观看| 人人妻,人人澡人人爽秒播| 午夜久久久久精精品| 黄频高清免费视频| 精品电影一区二区在线| 中文字幕最新亚洲高清| 亚洲欧美一区二区三区黑人| 国产精品综合久久久久久久免费 | 国产xxxxx性猛交| 成人精品一区二区免费| 久久久久国内视频| 丁香欧美五月| 一区二区三区国产精品乱码| 亚洲精品久久国产高清桃花| 97人妻精品一区二区三区麻豆 | 9热在线视频观看99| 极品人妻少妇av视频| 人人妻人人爽人人添夜夜欢视频| 美女国产高潮福利片在线看| 99久久国产精品久久久| 99热只有精品国产| 手机成人av网站| 97超级碰碰碰精品色视频在线观看| 91精品三级在线观看| 97人妻天天添夜夜摸| 久久久久久亚洲精品国产蜜桃av| 国产黄a三级三级三级人| 女同久久另类99精品国产91| 国产精品亚洲av一区麻豆| 久久香蕉国产精品| 黄网站色视频无遮挡免费观看| 亚洲av电影不卡..在线观看| 天天添夜夜摸|