• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of Monodisperse Silica Spheres Based on Improved St?ber Method and Their Mechanism of Formation

    2017-09-03 08:40:08,,,,
    關(guān)鍵詞:硅酸分散性二氧化硅

    , , , ,

    (1. School of Renewable Energy, Shenyang Institute of Engineering, Shenyang 110136, China; 2. College of Biology Engineering, Beijing University of Chemical Technology, Beijing 100029, China)

    材料科學(xué)

    Preparation of Monodisperse Silica Spheres Based on Improved St?ber Method and Their Mechanism of Formation

    DINGYanbo1,WANGCunxu1,BIXiaoguo1,ZHANGDong1,

    LIYucai1,SONGShiwei1,WANGJian1,WANGGang1,WANGHan1,LIULiying1,XUZhao1,ZHAOZiqing2

    (1. School of Renewable Energy, Shenyang Institute of Engineering, Shenyang 110136, China; 2. College of Biology Engineering, Beijing University of Chemical Technology, Beijing 100029, China)

    In this paper, monodispersed spherical silica particles were prepared by sol-gel hydrolysis of tetraethoxy silane (TEOS) in alcohol-water mixed solvent using ammonia as catalyst by improved St?ber method. Effect of the concentration of TEOS, the type of solvents, the concentration of ammonia, the particle diameter and morphology of silica were investigated. Scanning electron microscopy to characterize the structure and morphology of the silica microspheres, the result shows that the hydrolysis of TEOS is control step in SiO2preparation and the diameter of SiO2increased as the concentration of ammonia increased.

    monodisperse; Silica; formation mechanism

    0 Introduction

    Silica microspheres with high mechanical strength, good liquidity are widely used in chromatographic column packing, structure of ceramic materials, coatings, cosmetics, printing ink additives, etc.[1-2]. Beside, the silica has a non-toxic, high biological activity. The surface of the silicon hydroxyl group is very suitable as a modified bridge which suitable for variety of functionalization[3]due to their great potential application value in the fields of composite materials, catalysis, sensors, biomedical etc. In addition, after E. Yablonovitch's concept of photonic crystal, the dielectric function in space can change the mode of photon state in materials[4], which received wide attention of scientists interested of photonic crystals. The existence of photonic band gap in photonic crystals has produced a lot of new physical properties and phenomena, thus showing a very broad development and application prospects. The photonic crystal has become the hot research focus of physics and materials science, and developing rapidly at present.

    1In the preparation of many photonic crystals, the process of preparing the photonic crystal by the colloidal crystal template method is considered as the most simple and effective, and also has the most development and application prospect[5]. However, one of the most challenging problems in the preparation of photonic crystals by this process is the large area preparation of ordered thin film photonic crystals.

    Monodispersed silica microspheres prepared by self-assembly have been extensively application in the field of photonic crystal, data storage, optoelectronics which attracting a wide range of scientists interested[6]. There are many preparation methods of silica microspheres, such as micro emulsion method, plasma, chemical vapor deposition, etc. However, micro emulsion method needs large amounts of organic matter during the preparation process[7]. The recycling is much more troublesome, high cost and may cause pollution to the environment, the plasma method and chemical vapor deposition methods require specific device, high energy consumption[8]. On the basis of St?ber method using alcohol as solvent to make silicon alkoxide under ammonia catalytic hydrolytic condensation, then preparing silica microspheres through a post-processing, which not only simple in process, but also low cost, and can get good monodispersity products[9]. In this paper, based on the St?ber method for preparing silica microspheres, broadening the range of particle size of particles, the different alcohol solvent for the effect of silica particle size and dispersion under ammonia catalyst and its mechanism are discussed systematically.

    1 Experimental section

    Reagents used were anhydrous ethanol C2H5OH(A.R.), isopropyl alcohol CH3CH(OH)CH3(A.R.),butanol CH3CH2CH2CH2OH(A.R.), ammonia NH3·H2O(A.R.), tetraethyl orthosilicate (C2H5O)4Si (TEOS) (A.R.).Water used in all experiments was purified with a resistivity greater than 18ΩM/cm.

    The improved St?ber method was used in this experiment. At first adding water into the reactor, then adding ethanol and ammonia solution into water, stirring for about 5 min.Finally, adding drops of TEOS slowly into reactor, constant temperature react about 5 hours to make the TEOS complete hydrolysis. The silica colloidal particles can easily obtain after TEOS sufficiently hydrolyzed. The improved St?ber method can avoid the larger initial concentration of TEOS which would make a good reproducibility of sample preparation. The particle size and morphology of silica microspheres can also be more precise control.

    At the end of reaction, the product was spin-evaporated at 70 ℃ and 60 r/min, cleaned with ethanol until the pH was 7, dried in an oven to obtain SiO2samples Monodispersed silica microspheres was ultrasonic for 20 min in ethanol, take a certain amount of dispersed droplets on the aluminum film after drying, The silica microspheres was measured by scanning electron microscope (SEM) of Philips S-4800 type field-scanning microscope.

    2 Results and discussion

    2.1 Effect of Ethylorthosilicate and Formation Mechanism of Silica Microsphere

    This experiment studied the adding amounts of ethylorthosilicate on silica microspheres. Fig.1 shows morphologies of silica microspheres with the concentrations of TEOS varying. The SEM micrographs of SiO2microspheres with the addition of 10% TEOS shown on Fig.1a. The SiO2particle size is 326 nm with smooth surface, high sphericity, uniform particle size and good monodispersity. Fig.1b shows the SEM micrographs of SiO2microspheres with the addition of 12% TEOS. The particle size of SiO2is 297 nm, the SiO2particle size is uniform, the monodispersity is good and the sphericity is high. Fig.1c shows the SEM micrographs of SiO2microspheres with 14% TEOS addition. It can be seen that SiO2is also spherical with smooth surface, but the particle size is not uniform and a double-size distribution occurs, obviously. The hydrolysis of ethylorthosilicate is the controlling step of the whole reaction. Once the supply of ethylorthosilicate exceeds its hydrolytic capacity, the monodisperse balance of the system will be destroyed, which will could not accord with the requirement of colloidal crystals self-assembly. TEOS addition should be controlled within 14% during the preparation of SiO2microspheres. Monodispersed SiO2synthesis of the main components of the alkyl silicates, short-chain alcohol, a certain concentration of ammonia and ultra-pure water, orthosilicate alkyl ester hydrolysis and polycondensation reaction principles usually described by the following reactions[10].

    (1)

    (2)

    (3)

    R in Equation is alkyl groups CxH2x+1, in (1) hydrolysis reaction, alcohol-based functional groups (RO-) are replaced by (OH-) functional groups, and then with (2) and (3) the polycondensation reaction, generate Si-O-Si, at the same time water and alcohol generate. Water and alcohol generating, Simultaneously. All these reactions are reversible. The reverse reactions of these reactions are hydrolysis and alcoholysis, respectively. The polycondensation can take place in both acidic and basic conditions. The adverse reactions of these are hydrolyzed and alcoholysis reactions, and the condensation reaction can react in both acidic or alkaline cases.

    (a) TEOS 10%; (b) TEOS 12%; (c) TEOS 14%.

    The polycondensation reaction begins with H+or OH-reacting rapidly with the hydrolyzate to form a charged intermediate followed by an electrically neutral silicon group which slowly attacks the charged intermediate. As with the hydrolysis reaction, the rate of polycondensation reaction also depends on the steric effect and the transition state of the charged state, in alkali catalyzed reaction, due to the formation and nucleation of orthosilicic acid, and then grow to form monodispersed spherical colloidal microspheres.

    2.2 Effects of Solvent on Particle Size of Silica Microspheres

    Fig.2a shows the SEM micrographs of SiO2microspheres prepared by using ethanol as solvent. It can be seen from the figure that the silica microspheres are spherical and have high sphericity, uniform particle size distribution and good monodispersity. Fig.2b shown the SiO2microspheres morphology prepared with isopropanol as solvent. SEM photographs can clearly see that the preparation of silica is spherical, particle size distribution is also very uniform, but the sphericity is not as high as with ethanol as solvent. SEM photographs shown in the Fig.2c demonstrate that the use of ethylene glycol as solvent to prepare SiO2microspheres due to no spherical silica particles and agglomeration seriously. This may be due to the alkyl chain of isopropanol is longer than the alkyl chain of ethanol, the faster reaction rate in the isopropanol solvent. When ethylene glycol used as solvent, the viscosity is larger. The polarity is small due to the large surface tension. Which leads to large steric hindrance during hydrolysis, so it is easy to agglomerate during hydrolysis.

    (a) Ethanol; (b) Isopropanol; (c) Ethylene glycol.

    While ethanol is a kind of solvent that dissolves in water and dissolves in TEOS, it can be mixed with water and ammonia in any proportion. The reactants and water can be evenly mixed and can participate in the reaction better during the reaction. The prepared silica has better dispersibility and smoother surface.

    2.3 Ammonia concentration on the influence of silica microspheres

    Fig.3 is a scanning electron micrograph of silica microspheres prepared at different ammonia concentrations. Fig.3a shows that the particle size of the prepared SiO2microspheres is 142 nm when the ammonia concentration is 6%. Fig.3b shows the particle diameter of the prepared SiO2microsphere is 310 nm when the ammonia concentration become 9%. Fig.3c shows the particle size of the prepared SiO2microspheres is 384 nm when the ammonia concentration enhance up to 12%. Fig.3d shows the particle size of the prepared SiO2microspheres is 423 nm when the ammonia concentration increase up to 15%. SiO2microspheres particle size increases gradually with the increasing of ammonia concentration. In addition, ammonia is not only the catalyst for the hydrolysis of ethyl orthosilicate, but also the morphology regulator of SiO2microspheres, which can’t form SiO2microspheres without ammonia. The mechanism of the preparation of monodisperse silica colloidal particles by TEOS hydrolysis under the catalysis of aqueous ammonia shown as following[11]:

    Normally, a small amount of deionized water added into the TEOS and a reaction occurs, but the reaction rate is very slow and the gel is particularly prone to be formed. The addition of aqueous ammonia plays a catalytic role. there are has four-alkoxy -OR(-OC2H5) bonding around the silicon atom in the TEOS molecules has four-alkoxy -OR(-OC2H5) with it. In the presence of a basic catalyst (NH4OH), the OH-nucleophilic attack on the silicon nucleus causes the silicon nucleus to be negatively charged and causes the electron cloud to shift to the OR-group on the other side, so that the Si-O bond become weakened and broken, and hydrolysis occurs. Hydrolysis of monomer between Si-OH, the Si-OH group and the Si-R group undergo dehydration or dealcoholysis polymerization reaction. Forming Si-O-Si chain, Si-O-Si chain between the continuous cross-linking, synthesizing granular SiO2aggregates ultimately.

    (a) ammonia 6% 142 nm; (b) ammonia 9% 310 nm; (c) ammonia 12% 384 nm; (d) ammonia 15% 423 nm.

    In the presence of a basic catalyst (NH4OH), with the small radius, OH-ions attack negatively, which directly causes nucleon attack on the silicon nucleus and causes the silicon nucleus to be negatively charged and the electron cloud shifting to the other side of the OR-group, so that the Si-O bond of the group is weakened and cleaved out of the OR-to complete the hydrolysis reaction. Under the condition of alkali catalysis, TEOS hydrolysis belongs to the nucleophilic reaction mechanism of OH-ion attacking silicon nucleus directly, the intermediate process is little, and OH-ion radius is small, so the hydrolysis rate is faster. Silicon nucleus in the middle of the process obtains a negative charge, therefore if there are acceptor groups such as -OH or -OSi which are easy to attract electrons around the silicon nucleus, the induction can stabilize the negative charge and facilitate the hydrolysis of TEOS. In the alkaline catalysis system, the hydrolysis rate is higher than the polymerization rate, and the hydrolysis of TEOS is relatively complete. Therefore, it is considered that the polymerization is carried out in the multidimensional direction under the condition of complete hydrolysis, which forms a short chain cross linking structure. The internal polymerization of the intercalated structure strengthens the cross linking between short chains and forms unstable microcrystalline nuclei. The microcrystal nucleus has small volume and large diffusion coefficient, and the surface has many negative charges and is susceptible to background solution ionization species so that continue growing.Silicon nuclei in the middle process to obtain a negative charge, therefore, there exist acceptor groups such as-OH or-O-Si are easy to attract electrons around the silicon nucleus which is beneficial to the hydrolysis of TEOS due to its induction can stabilize the negative charge and is conducive.

    3 Conclusion

    In the process of silicon dioxide growth, TEOS concentration, the type of solvent, the concentration of ammonia have very important influence in the property of silica, such as particle size, morphology. Silica particle size will become larger with the increases amount of TEOS in the system. However, the TEOS concentration is too high will lead to less monodispersibility or double particle size distribution. The amount of TEOS addition should be controlled within 14%. The particle size distribution of silica microspheres was broadened with the more carbon chain alcohols. The morphology and particle size of SiO2prepared by using ethanol as solvent were superior. The particle size of the silica microspheres is larger as the ammonia concentration increasing. The diameter of silica microspheres will distribution under excessive ammonia, and the best pH value is about 9.

    [ 1 ]VEVEL O D,JEDE T A,LOBO R F,et al. Porous silica via colloidal crystallization[J]. Nature, 1997,389:447-448.

    [ 2 ]STEIN A. Sphere templating methods for periodic porous colloids[J]. Microporous and Mesoporous Mater, 2001,44:227.

    [ 3 ]NIELSEN K H,ORZOL D K,KOYNOV S, et al. Large area,low cost anti-reflective coating for solar glasses[J]. Sol Energy Mater Sol Cells, 2014,128:283-288.

    [ 4 ]YBLONOVITCH E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics[J]. Phys Rev Lett, 1987,58:2059-2062.

    [ 5 ]LIU Y,SHEN J,LI X G,et al. Effect of hydrophobicity on the vacuum-contamination resistance and laser damage threshold of sol-gel silica coating[J]. Chin J Inorg Chem, 2013,29:1339-1344.

    [ 6 ]MORI T,HASEGAWA K,HATANO T,et al. Surface-relief gratings with high spatial frequency fabricated using direct glass imprinting process[J]. Opt Lett, 2008,33:428-430.

    [ 7 ]HU Q F,LI G,WANG J H. The sediment method prepares the high strength white carbon black[J]. Non-metallic Mineral, 2000,23(6):23-24.

    [ 8 ]GAN L M,ZHANG K,CHEW C H. Preparation of silica nanoparticles from sodium orthosilicate in inverse microemulsions[J]. Colloids Surf A:Physicochemical and Engineering Aspects. 1996,110:199-200.

    [ 9 ]STBER W,FINK A. Controlled growth of monodisperse silica spheres in the micron size range[J]. Colloid & Interface Sci, 1968,26:626.

    [10]MATSOUKAS T,GULARI E. A growth model for silica particles from alkoxides[J]. Colloid lnterface Sci, 1989,132:13.

    [11]ASSINK R A,BRUEE D, KAY J. LDRD final report on gas separation by fullerene membranes[J]. Non-Crystal Solids, 1996(9):359-371.

    1673-5862(2017)03-0281-05

    基于改進(jìn)的St?ber法制備單分散二氧化硅微球及其形成機(jī)理探討

    丁艷波1, 王存旭1, 畢孝國1, 張 東1, 李昱材1, 宋世巍1, 王 健1, 王 剛1, 王 晗1, 劉麗瑩1, 徐 昭1, 趙子青2

    (1. 沈陽工程學(xué)院 新能源學(xué)院, 沈陽 110136; 2. 北京化工大學(xué) 生物工程學(xué)院, 北京 100029)

    使用改進(jìn)的St?ber法,在醇水混合物中,以氨水作催化劑,正硅酸乙酯(TEOS)作為硅源,通過溶膠-凝膠水解工藝制備單分散的二氧化硅微球。研究了正硅酸乙酯的濃度、溶劑類型、氨水濃度、二氧化硅微球粒徑和形貌的影響。采用掃描電子顯微鏡對(duì)所制備的二氧化硅微球進(jìn)行結(jié)構(gòu)和形貌的表征,結(jié)果表明正硅酸乙酯的濃度越大,二氧化硅微球的粒徑越大。氨水的濃度增加,二氧化硅微球的粒徑增大,單分散性較好。

    單分散性; 二氧化硅; 形成機(jī)理

    date: 2017-01-20.

    TQ016 Document code: A

    10.3969/ j.issn.1673-5862.2017.03.004

    Supported: Fund of Liaoning Provincial Education Department under Grant (L2014516,L2015377,L2015370, L201610) .

    Biography: DING Yanbo(1981-),female, was born in Wuhan of Hubei Province, lecturer of Shenyang Institute of Engineering,Doctor.

    猜你喜歡
    硅酸分散性二氧化硅
    三硅酸鎂的制備方法及應(yīng)用
    云南化工(2021年10期)2021-12-21 07:33:36
    攪拌對(duì)聚羧酸減水劑分散性的影響
    納米SiO2粉體在水泥液相中的分散性
    姜黃提取物二氧化硅固體分散體的制備與表征
    中成藥(2018年2期)2018-05-09 07:19:43
    CdO對(duì)硅酸三鈣形成的影響及其固溶效應(yīng)
    氨基官能化介孔二氧化硅的制備和表征
    sPS/PBA-aPS共混體系的相容性及分散性研究
    中國塑料(2016年4期)2016-06-27 06:33:40
    異丙腎上腺素在硅酸鉍離子交換薄層上的選擇性分離與測(cè)定
    色譜(2015年6期)2015-12-26 01:57:36
    齒科用二氧化硅纖維的制備與表征
    介孔二氧化硅制備自修復(fù)的疏水棉織物
    97超碰精品成人国产| 2018国产大陆天天弄谢| 大片免费播放器 马上看| 国产日韩欧美视频二区| 国产精品国产av在线观看| 日本黄大片高清| 日韩中字成人| 色视频在线一区二区三区| 欧美精品亚洲一区二区| 久久久久久久亚洲中文字幕| 大话2 男鬼变身卡| 午夜激情久久久久久久| 中文乱码字字幕精品一区二区三区| 新久久久久国产一级毛片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人午夜精彩视频在线观看| 九九在线视频观看精品| 一本—道久久a久久精品蜜桃钙片| 嫩草影院入口| 男女午夜视频在线观看 | 精品久久久精品久久久| av在线老鸭窝| 肉色欧美久久久久久久蜜桃| 亚洲综合色网址| 99久久精品国产国产毛片| 日日啪夜夜爽| 全区人妻精品视频| 中文精品一卡2卡3卡4更新| 性色avwww在线观看| 99久久人妻综合| 大香蕉久久网| 亚洲美女视频黄频| 精品久久久精品久久久| 久久国产精品男人的天堂亚洲 | 99热6这里只有精品| 青春草视频在线免费观看| 亚洲欧美一区二区三区黑人 | 在线 av 中文字幕| 国产av一区二区精品久久| 中文天堂在线官网| 亚洲欧洲精品一区二区精品久久久 | 国产成人精品久久久久久| 成人国产av品久久久| 免费久久久久久久精品成人欧美视频 | 精品亚洲成a人片在线观看| 国产成人精品在线电影| 国产 精品1| 久久久久久久国产电影| 亚洲av电影在线进入| 日韩精品有码人妻一区| 国语对白做爰xxxⅹ性视频网站| 妹子高潮喷水视频| 免费大片黄手机在线观看| 国产 一区精品| 亚洲情色 制服丝袜| 少妇熟女欧美另类| 亚洲精品一二三| 蜜臀久久99精品久久宅男| 国产高清国产精品国产三级| 国产精品久久久久久久久免| 国产高清不卡午夜福利| 欧美精品国产亚洲| 在线免费观看不下载黄p国产| 日韩一区二区视频免费看| 22中文网久久字幕| 国产精品女同一区二区软件| 中文字幕亚洲精品专区| 国产有黄有色有爽视频| 色哟哟·www| 日韩 亚洲 欧美在线| 久久这里有精品视频免费| av网站免费在线观看视频| 日韩av免费高清视频| 久久久久精品性色| 国产成人一区二区在线| 国产精品无大码| 人人妻人人添人人爽欧美一区卜| 丝瓜视频免费看黄片| 夫妻性生交免费视频一级片| 高清av免费在线| 国产黄色视频一区二区在线观看| 人妻一区二区av| 欧美精品一区二区免费开放| 亚洲高清免费不卡视频| 亚洲三级黄色毛片| 一级片免费观看大全| 日韩制服骚丝袜av| 亚洲欧美成人精品一区二区| 久久精品熟女亚洲av麻豆精品| 欧美97在线视频| 午夜福利乱码中文字幕| 午夜视频国产福利| 久久女婷五月综合色啪小说| 日韩av在线免费看完整版不卡| 精品国产乱码久久久久久小说| 亚洲国产欧美在线一区| 精品少妇久久久久久888优播| 美女国产高潮福利片在线看| 18禁动态无遮挡网站| 亚洲丝袜综合中文字幕| 国产精品.久久久| 亚洲精品久久久久久婷婷小说| 日日撸夜夜添| 国产综合精华液| 国产片特级美女逼逼视频| 久久精品aⅴ一区二区三区四区 | 在线观看免费日韩欧美大片| 18禁在线无遮挡免费观看视频| 伊人久久国产一区二区| 99国产综合亚洲精品| 精品久久蜜臀av无| 国产精品99久久99久久久不卡 | 日韩视频在线欧美| 午夜av观看不卡| 亚洲欧美日韩卡通动漫| 国产乱人偷精品视频| 你懂的网址亚洲精品在线观看| 中文精品一卡2卡3卡4更新| 国产成人aa在线观看| 日韩在线高清观看一区二区三区| 国产麻豆69| 亚洲四区av| 少妇的逼水好多| 国产精品偷伦视频观看了| 亚洲精品av麻豆狂野| 高清在线视频一区二区三区| 亚洲av国产av综合av卡| 午夜91福利影院| 日韩视频在线欧美| 欧美人与性动交α欧美精品济南到 | 亚洲精品国产色婷婷电影| 青春草国产在线视频| 久久久久国产网址| 国产亚洲欧美精品永久| 国产精品久久久久久久久免| 亚洲成色77777| 永久免费av网站大全| 在线观看一区二区三区激情| 国产白丝娇喘喷水9色精品| 精品熟女少妇av免费看| 丝袜人妻中文字幕| 久久人人爽人人爽人人片va| 热99国产精品久久久久久7| 亚洲伊人色综图| 国产成人精品福利久久| 欧美亚洲 丝袜 人妻 在线| 91久久精品国产一区二区三区| 亚洲国产色片| 欧美少妇被猛烈插入视频| 性色avwww在线观看| 精品99又大又爽又粗少妇毛片| 欧美激情 高清一区二区三区| a级毛片在线看网站| 亚洲精品一二三| 日本免费在线观看一区| 亚洲精品,欧美精品| 中国国产av一级| a级毛片黄视频| 在线观看一区二区三区激情| 欧美日韩综合久久久久久| 国产黄频视频在线观看| 亚洲国产欧美在线一区| 9191精品国产免费久久| 中文字幕亚洲精品专区| 色网站视频免费| 国产福利在线免费观看视频| 丝袜人妻中文字幕| 一区二区日韩欧美中文字幕 | 久久国产精品大桥未久av| 22中文网久久字幕| 老司机影院毛片| 亚洲丝袜综合中文字幕| 波野结衣二区三区在线| 国产精品一国产av| 多毛熟女@视频| 午夜91福利影院| 女的被弄到高潮叫床怎么办| 赤兔流量卡办理| 日本免费在线观看一区| 极品人妻少妇av视频| 激情五月婷婷亚洲| 国产精品久久久久成人av| 久久久久久人人人人人| 欧美变态另类bdsm刘玥| 天堂中文最新版在线下载| 精品久久久久久电影网| 亚洲,一卡二卡三卡| 三级国产精品片| 免费人成在线观看视频色| 成人亚洲欧美一区二区av| 久久这里只有精品19| 两个人看的免费小视频| 最近2019中文字幕mv第一页| 久久精品熟女亚洲av麻豆精品| 免费女性裸体啪啪无遮挡网站| 又大又黄又爽视频免费| 久久综合国产亚洲精品| 欧美精品亚洲一区二区| 久久久久久久亚洲中文字幕| 欧美最新免费一区二区三区| 最新中文字幕久久久久| xxxhd国产人妻xxx| 在线观看www视频免费| 中国美白少妇内射xxxbb| 母亲3免费完整高清在线观看 | 最近中文字幕2019免费版| 日本wwww免费看| 看免费av毛片| 久热久热在线精品观看| 久久久久久久久久成人| 亚洲精品,欧美精品| 久久久久人妻精品一区果冻| 国产成人aa在线观看| 久热这里只有精品99| 国产永久视频网站| 有码 亚洲区| 男人爽女人下面视频在线观看| 成年女人在线观看亚洲视频| 久久人妻熟女aⅴ| 少妇人妻久久综合中文| 一二三四中文在线观看免费高清| 亚洲精品456在线播放app| 99国产精品免费福利视频| 国产精品偷伦视频观看了| 久久ye,这里只有精品| 少妇熟女欧美另类| 国产成人午夜福利电影在线观看| 亚洲av国产av综合av卡| 激情五月婷婷亚洲| 久久精品夜色国产| 亚洲人成网站在线观看播放| 久久久亚洲精品成人影院| 伦理电影免费视频| 亚洲人与动物交配视频| 日韩在线高清观看一区二区三区| 国产黄频视频在线观看| 日韩成人av中文字幕在线观看| 国产69精品久久久久777片| 熟女av电影| 国产精品无大码| 国精品久久久久久国模美| av线在线观看网站| videosex国产| 女人精品久久久久毛片| 国产精品久久久久成人av| 男人添女人高潮全过程视频| 视频在线观看一区二区三区| 青春草亚洲视频在线观看| 国产无遮挡羞羞视频在线观看| 日本黄色日本黄色录像| 看非洲黑人一级黄片| 久久国产亚洲av麻豆专区| 中文字幕免费在线视频6| 日韩熟女老妇一区二区性免费视频| 少妇人妻 视频| 99九九在线精品视频| 新久久久久国产一级毛片| 大话2 男鬼变身卡| 国产片内射在线| 久久久久久人妻| 人人妻人人澡人人爽人人夜夜| 爱豆传媒免费全集在线观看| 亚洲精品日本国产第一区| 男女无遮挡免费网站观看| 久久免费观看电影| 亚洲精品国产色婷婷电影| 妹子高潮喷水视频| 亚洲国产日韩一区二区| 最黄视频免费看| 美女内射精品一级片tv| 亚洲国产精品国产精品| 国产av码专区亚洲av| 五月玫瑰六月丁香| 国产精品久久久久久精品电影小说| 午夜免费观看性视频| 18在线观看网站| 黄色怎么调成土黄色| 欧美 日韩 精品 国产| 日韩,欧美,国产一区二区三区| 免费播放大片免费观看视频在线观看| 中文字幕av电影在线播放| 99久国产av精品国产电影| 亚洲av在线观看美女高潮| 国产在线视频一区二区| 日本黄大片高清| 国产精品三级大全| 亚洲精品第二区| 欧美老熟妇乱子伦牲交| 久久精品国产自在天天线| 国产精品女同一区二区软件| 成人18禁高潮啪啪吃奶动态图| 色婷婷久久久亚洲欧美| 97在线人人人人妻| 在线天堂最新版资源| 精品午夜福利在线看| 中文字幕精品免费在线观看视频 | 中国三级夫妇交换| 五月天丁香电影| 午夜福利,免费看| 日日撸夜夜添| 国产老妇伦熟女老妇高清| 97超碰精品成人国产| 精品一区二区免费观看| 色婷婷久久久亚洲欧美| 欧美变态另类bdsm刘玥| 国产精品无大码| 美女内射精品一级片tv| 午夜福利乱码中文字幕| 大香蕉久久成人网| 午夜福利视频精品| 久久久a久久爽久久v久久| 成人毛片a级毛片在线播放| 国产精品一区二区在线不卡| 蜜桃国产av成人99| 亚洲成色77777| 国产精品免费大片| 在线观看www视频免费| 看十八女毛片水多多多| 国产亚洲欧美精品永久| 国产无遮挡羞羞视频在线观看| 国产精品一区二区在线观看99| 搡女人真爽免费视频火全软件| 成年人午夜在线观看视频| 亚洲精品一二三| 极品人妻少妇av视频| 丝袜脚勾引网站| 亚洲精品一二三| 草草在线视频免费看| 亚洲精品日本国产第一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产有黄有色有爽视频| 精品一区在线观看国产| 狠狠精品人妻久久久久久综合| 国产免费一级a男人的天堂| 黑人欧美特级aaaaaa片| 精品亚洲成国产av| 中文欧美无线码| 9191精品国产免费久久| 国产精品不卡视频一区二区| 亚洲av成人精品一二三区| 国产精品久久久久久精品电影小说| 99re6热这里在线精品视频| 一本—道久久a久久精品蜜桃钙片| 久久久久国产精品人妻一区二区| 国产欧美亚洲国产| 日韩三级伦理在线观看| 美女视频免费永久观看网站| 亚洲第一区二区三区不卡| 久久午夜综合久久蜜桃| 亚洲伊人色综图| 国产精品 国内视频| 亚洲欧美日韩卡通动漫| 久久国产精品男人的天堂亚洲 | 亚洲精品中文字幕在线视频| 日韩熟女老妇一区二区性免费视频| 日韩三级伦理在线观看| 天堂俺去俺来也www色官网| 亚洲经典国产精华液单| 免费久久久久久久精品成人欧美视频 | 建设人人有责人人尽责人人享有的| 在线天堂中文资源库| 各种免费的搞黄视频| 麻豆精品久久久久久蜜桃| 人人妻人人澡人人爽人人夜夜| 国产激情久久老熟女| 纯流量卡能插随身wifi吗| 日韩熟女老妇一区二区性免费视频| 2018国产大陆天天弄谢| 在线观看www视频免费| 99国产综合亚洲精品| 男女国产视频网站| 99久久人妻综合| 丝袜人妻中文字幕| 国产精品久久久久久av不卡| 精品人妻在线不人妻| 国产欧美日韩综合在线一区二区| 大香蕉97超碰在线| 99re6热这里在线精品视频| 桃花免费在线播放| 啦啦啦啦在线视频资源| 美女脱内裤让男人舔精品视频| 狂野欧美激情性xxxx在线观看| 亚洲图色成人| 中文天堂在线官网| 久久 成人 亚洲| 久久精品aⅴ一区二区三区四区 | av网站免费在线观看视频| 亚洲欧美日韩卡通动漫| 久久久精品免费免费高清| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美一区二区三区国产| 90打野战视频偷拍视频| 国产高清国产精品国产三级| 新久久久久国产一级毛片| 国产精品成人在线| 国产亚洲精品久久久com| 国产在线视频一区二区| 国国产精品蜜臀av免费| 高清毛片免费看| 日产精品乱码卡一卡2卡三| 亚洲国产最新在线播放| 人妻一区二区av| 一级片'在线观看视频| 久久久久久久国产电影| 日韩av在线免费看完整版不卡| 亚洲欧美清纯卡通| 91精品三级在线观看| 中文精品一卡2卡3卡4更新| 精品99又大又爽又粗少妇毛片| 亚洲精品久久久久久婷婷小说| 亚洲欧美清纯卡通| 精品人妻熟女毛片av久久网站| 国产精品人妻久久久影院| 女人被躁到高潮嗷嗷叫费观| 精品人妻偷拍中文字幕| 亚洲精品av麻豆狂野| 另类亚洲欧美激情| 日日撸夜夜添| 国产一级毛片在线| 男女啪啪激烈高潮av片| 最后的刺客免费高清国语| 久久鲁丝午夜福利片| 九色成人免费人妻av| 亚洲国产精品国产精品| 久久99蜜桃精品久久| 五月天丁香电影| 久久国产精品大桥未久av| 青青草视频在线视频观看| 日韩精品免费视频一区二区三区 | 精品久久久精品久久久| 欧美日韩视频高清一区二区三区二| 在线观看国产h片| 老熟女久久久| 制服诱惑二区| 少妇人妻精品综合一区二区| 永久网站在线| 亚洲高清免费不卡视频| 国产成人一区二区在线| 国产男女内射视频| 国产乱人偷精品视频| 99热国产这里只有精品6| 狂野欧美激情性bbbbbb| 香蕉丝袜av| 一区二区三区四区激情视频| 国产精品人妻久久久久久| 久久人人爽人人爽人人片va| 乱人伦中国视频| 亚洲精品,欧美精品| 国产精品久久久久久精品电影小说| 免费av不卡在线播放| 在线观看国产h片| 日韩电影二区| av片东京热男人的天堂| 18禁观看日本| 香蕉国产在线看| 日韩 亚洲 欧美在线| 亚洲欧美一区二区三区黑人 | 精品国产国语对白av| 国产一区二区三区综合在线观看 | 国产午夜精品一二区理论片| 精品久久蜜臀av无| 97在线人人人人妻| 99香蕉大伊视频| 久久精品久久久久久久性| 国产永久视频网站| 国产精品熟女久久久久浪| 一级毛片黄色毛片免费观看视频| 黄色毛片三级朝国网站| 不卡视频在线观看欧美| 精品一区在线观看国产| 久久婷婷青草| 大码成人一级视频| 91成人精品电影| 日本wwww免费看| 亚洲美女搞黄在线观看| 成人手机av| 天堂俺去俺来也www色官网| freevideosex欧美| 欧美精品亚洲一区二区| 亚洲一码二码三码区别大吗| 精品久久久精品久久久| 国产精品一区二区在线观看99| 国产综合精华液| 国产精品不卡视频一区二区| 欧美少妇被猛烈插入视频| 久久狼人影院| 精品久久蜜臀av无| 涩涩av久久男人的天堂| 日韩不卡一区二区三区视频在线| 免费看av在线观看网站| av在线观看视频网站免费| 亚洲欧美一区二区三区国产| 男女下面插进去视频免费观看 | 免费女性裸体啪啪无遮挡网站| av国产久精品久网站免费入址| 五月开心婷婷网| 嫩草影院入口| 国产精品.久久久| 午夜福利视频精品| 国产在线免费精品| 免费大片18禁| 日韩在线高清观看一区二区三区| 久久久精品94久久精品| 亚洲国产看品久久| av又黄又爽大尺度在线免费看| 日本91视频免费播放| 精品一区二区免费观看| 亚洲av在线观看美女高潮| 国产极品粉嫩免费观看在线| 亚洲国产欧美日韩在线播放| 免费观看a级毛片全部| 久久久久久人人人人人| 日韩中字成人| 自线自在国产av| 成人国产麻豆网| 内地一区二区视频在线| 亚洲色图 男人天堂 中文字幕 | 亚洲,欧美,日韩| 成人18禁高潮啪啪吃奶动态图| 97超碰精品成人国产| av天堂久久9| 热99久久久久精品小说推荐| 91久久精品国产一区二区三区| 另类亚洲欧美激情| 丰满乱子伦码专区| 赤兔流量卡办理| 搡老乐熟女国产| 尾随美女入室| 国产精品女同一区二区软件| 欧美激情 高清一区二区三区| 亚洲精品国产色婷婷电影| 久久毛片免费看一区二区三区| 黑人欧美特级aaaaaa片| 国产在线视频一区二区| 91精品伊人久久大香线蕉| 最近中文字幕2019免费版| 国产精品嫩草影院av在线观看| av网站免费在线观看视频| 日韩 亚洲 欧美在线| 国产精品国产三级专区第一集| 少妇人妻精品综合一区二区| 1024视频免费在线观看| 麻豆乱淫一区二区| 久久99蜜桃精品久久| 啦啦啦啦在线视频资源| av免费观看日本| 纯流量卡能插随身wifi吗| 视频区图区小说| av黄色大香蕉| 亚洲成国产人片在线观看| 国产高清三级在线| 中文精品一卡2卡3卡4更新| 亚洲精品久久成人aⅴ小说| 亚洲情色 制服丝袜| 看免费成人av毛片| av卡一久久| 插逼视频在线观看| 国产精品嫩草影院av在线观看| 久久久久久久久久久久大奶| 久久人人爽人人片av| 蜜臀久久99精品久久宅男| 啦啦啦啦在线视频资源| 日韩中字成人| 黑人巨大精品欧美一区二区蜜桃 | 午夜精品国产一区二区电影| 亚洲av成人精品一二三区| 新久久久久国产一级毛片| 国产精品人妻久久久影院| 日韩欧美一区视频在线观看| 国产精品欧美亚洲77777| kizo精华| 精品少妇久久久久久888优播| 国产欧美亚洲国产| 精品卡一卡二卡四卡免费| 欧美日韩一区二区视频在线观看视频在线| 欧美人与性动交α欧美软件 | 亚洲国产色片| av网站免费在线观看视频| 少妇人妻精品综合一区二区| 免费人妻精品一区二区三区视频| 蜜桃国产av成人99| 少妇人妻 视频| 久久久久久久亚洲中文字幕| 男女边吃奶边做爰视频| 午夜福利,免费看| 免费观看无遮挡的男女| 最近中文字幕2019免费版| 曰老女人黄片| 亚洲精品,欧美精品| 久久久久久久国产电影| 99久久中文字幕三级久久日本| 免费人成在线观看视频色| 国产高清国产精品国产三级| 欧美日本中文国产一区发布| 99久久综合免费| 亚洲欧美一区二区三区黑人 | 国产精品久久久久久久久免| 国产精品秋霞免费鲁丝片| 国产日韩欧美在线精品| 午夜久久久在线观看| 国产伦理片在线播放av一区| 国产1区2区3区精品| 一级毛片黄色毛片免费观看视频| 成年人午夜在线观看视频| 最新的欧美精品一区二区| 欧美 日韩 精品 国产| 我的女老师完整版在线观看| 夜夜爽夜夜爽视频| 成人18禁高潮啪啪吃奶动态图| 岛国毛片在线播放| 久久国内精品自在自线图片| 18在线观看网站| 狠狠精品人妻久久久久久综合| 亚洲国产精品专区欧美| 男人添女人高潮全过程视频|