• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental hydrodynamic study of the Qiantang River tidal bore*

    2013-06-01 12:29:58HUANGJing黃靜
    水動力學研究與進展 B輯 2013年3期
    關鍵詞:黃靜陳剛

    HUANG Jing (黃靜),

    College of Civil Engineering, Tongji University, Shanghai 200090, China, E-mail: 1jhuang@#edu.cn

    PAN Cun-hong (潘存鴻)

    Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, China

    KUANG Cui-ping (匡翠萍)

    College of Civil Engineering, Tongji University, Shanghai 200090, China

    ZENG Jian (曾劍), CHEN Gang (陳剛)

    Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, China

    Experimental hydrodynamic study of the Qiantang River tidal bore*

    HUANG Jing (黃靜),

    College of Civil Engineering, Tongji University, Shanghai 200090, China, E-mail: 1jhuang@#edu.cn

    PAN Cun-hong (潘存鴻)

    Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, China

    KUANG Cui-ping (匡翠萍)

    College of Civil Engineering, Tongji University, Shanghai 200090, China

    ZENG Jian (曾劍), CHEN Gang (陳剛)

    Zhejiang Institute of Hydraulics and Estuary, Hangzhou 310020, China

    (Received April 8, 2013, Revised May 20, 2013)

    To study the hydrodynamics of tidal bore, a physical modeling study is carried out in a rectangular flume with considerations of the tidal bore heights, the propagation speeds, the tidal current velocities, the front steepness, and the bore shapes. After the validation with the field observations, the experimental results are analyzed, and it is shown that: (1) the greater initial ebb velocity or the larger initial water depth impedes the tidal bore propagation, (2) the maximum bore height appears at an initial ebb velocity in the range of 0.5 m/s-1.5 m/s, (3) when the Froude number exceeds 1.2, an undular boreappears, after it exceeds 1.3, a breaking bore occurs, and after it exceeds 1.7, the bore is broken.

    rectangular flume, initial flow condition, tidal bore height, bore shapes, propagation speed

    Introduction

    The tidal bore is a phenomenon happened in estuaries, where the tide forms a wave traveling up a river or a narrowing bay in the direction opposite to the river or bay’s current with a high velocity as a moving hydraulic jump. It occurs in at least 450 estuaries in the world, such as the Severn River in England, the Seine River in France, the Amazon River in Brazil and the Hooghly River in India[1], among which the tidal bore in the Qiantang River Estuary in China is the strongest.

    The Qiantang River Estuary is a large tidal and funnel-shaped estuary. Through the Qiantang River Estuary an average discharge of about 952 m3/s[2]flows downstream, via the Hangzhou Bay into the East China Sea (see Fig.1). The Hangzhou Bay is about 100 km wide at its mouth (Luchaogang-Zhenhai cross-section), and it narrows to 20 km wide at the head of the bay, Ganpu cross-section, about 85 km away from the mouth with an increasing tidal range of up to 75%[3], the maximum tidal range of 9.0 m[3], and the flood tide accelerates as a result. At the upstream reach of Zhapu, there is a large sand bar of 130 km long and 10 m high above the river bottom along the channel axis[4], for which the water depth reduces sharply, and consequently the incoming tidal waves deform severely due to the enhanced shallow-water effect and finally the tidal bore develops, i.e., a sudden increase in the water level[4]. The geographic map of the Qiantang River Estuary is shown in Fig.1.

    The tidal bore is an attracted research topic. Simpson et al.[5]measured the water level, the velocity, the Reynolds stress and the turbulent energy of the tidal bore in the Dee River Estuary, UK. Wolanskia et al.[6]studied the hydrodynamics of the undular tidalbore in the Daly River Estuary, Australia, with the field observations. Chanson[7,8]studied the turbulence beneath the undular bore, and performed the experiment in a rectangular horizontal channel to analyze the flow field, the effect of its mixing and diffusion of the undular bore. In China, Pan et al.[9]set up a 2-D numerical model with the well balanced Godunovtype scheme, and applied the model to study the tidal bore in the Qiantang River Estuary. They[10]also analyzed the characteristics of the tidal bore in the Qiantang River Estuary with the field data, and then built a 2-D mathematical model with the Kinetic Flux Vector Splitting (KFVS) scheme to successfully simulate the formation, the evolution and the dissipation of the Qiantang River tidal bore. Xie et al.[11]studied the hydrodynamic characteristics of the tidal bore in the Qiantang River Estuary with the field measurements. Yang et al.[12]generated tidal bores in the laboratory flume to measure the tidal bore heights, the propagation speeds and the tidal current velocities.

    Fig.1 Geographic map of the Qiantang River Estuary

    The flume experiment is widely applied in the studies of the tidal bore for it not only can simulate the various initial flow conditions but also can obtain exact measurements of the hydrodynamic data of the tidal bores and the bore fronts. However, most of the experimental studies were conducted in a still water before the tidal bore arrives, unlike in the real cases where the upstream water flows to the sea with a certain velocity. Furthermore, the existing experimental studies were seldom validated by the detailed field measurements.

    In this study, the tidal bores with the different bore heights are generated in the glass rectangular flume under various initial flow conditions with respect to the water depths and the ebb velocities before the tidal bore arrives. In the experiments, the propagation speeds, the velocities, the heights, the shapes and the front steepness of the tidal bores are measured. The experimental results are validated by the field data measured at Yanguan reach in the Qiantang River Estuary in October, 2010[11]. The vertical distribution of the velocity and the correlations of the propagation speeds, the heights, the Froude number, the front steepness of the tidal bores are analyzed in the context of the hydrodynamics of the tidal bore for the designs and constructions of hydraulic structures in the Qiantang River Estuary.

    1. Flume experimental model set-up

    In this research, the measurements are made in a glass rectangular flume of 50 m in length, 1.2 m in width, 0.6 m in depth, and with zero bottom slope, equipped with the sluice gates at both ends, which can be raised and lowered. The transverters are installed to control the flows of the water pumps by changing their frequencies. By this means, it is possible to specify any desired initial conditions for the water depths and the ebb velocities. The ebb flows can be generated by lowering the sluice gate at the upstream end of the flume, whereas the tidal bores with a base flow can be generated by increasing the frequencies of the downstream transverter[13].

    Fig.2 Layout of the gauge positions (“+” and “Δ” denote the locations of the observed bore heights and velocities respectively)

    The tidal bore in the Qiantang River Estuary is formed by the rapid upstream narrowing, the shoaling, and the sharp deformation of the tidal wave[2]. The tidal bore is affected by the tide and the water depth before the tidal bore arrives. With the installation, the initial water depths and the ebb velocities before the tidal bore arrives and the tidal bore heights can be adjusted as the key parameters of the experiment with an undistorted model of the scale of 1 to 25 based on the gravity similarity criteria[14]. Totally 123 cases are considered in the flume experiment (see Table 1). Fig.2(a) is the schematic picture of the glass flume.

    There are two video cameras mounted to measure the tidal bore front steepness (Camera 1#) with a glassfilm of 1.5 m long by 0.5 m high with 0.01 m uniform-space grids (see Fig.2(c)) and to capture the bore shapes (Camera 2#). 16 capacitive wave-height sensors are used to collect the tidal bore heights, and 6 Acoustic Doppler Velocimeters (ADV) at the different water depths of 0.125 m, 0.625 m,h /2,h,(H+ 2 h-0.25)/2and (H + h-0.25)(whereH andh denote the tidal bore height and the initial water depth, respectively) are installed to measure the velocities. The sampling interval is 0.01 s. The gauge positions are shown in Fig.2(b).

    Table 1 Experimental parameters of initial water depths, initial ebb velocities and tidal bore heights with a model scale of 1 to 25

    Fig.3 Comparisons of the experimental tidal bore heights with the prototype data in 2010 at YG01 station

    2. Model validation

    The prototype data collected in October 2010[11]at Yanguan reach, where the tidal bore is the strongest, are chosen to validate the model in this research.

    Fig.4 Comparisons of the distributions of experimental velocities in the vertical direction with the field data in 2010 at YG01 station

    The Percentage model Bias (PB), defined as Eq.(1), is adopted for the error analysis[15].

    whereD represents the measured data, andMdenotes the corresponding test results. The results are considered as: excellent whenPB<10%, very good when 10% ≤PB <20%, good when20% ≤PB≤40%and poor whenPB>40%[15].

    The comparisons of the experimental results andthe field data measured at YG01 station (see Fig.1) in Yanguan reach[11]show that the tidal bore heights in the flume experiment agree well with the on-site observations (see Fig.3, whereζdenotes the water level) with the PB values of 0.14 % and 7.28 % for the two cases, and the distributions of the experimental velocities beneath the tidal bore fronts in the vertical direction are close to those at YG01 station (see Fig.4) with the PB values of 4.46 % and 3.38 % for the two cases. The good agreements show that the flume model can adequately reflect the characteristics of the actual tidal bore and be used to study the tidal bore in the Qiantang River Estuary.

    Fig.5 Relationship between H and vunder various initial water depths (the maximum initial ebb velocity under the initial water depth of 1.25 m is about 1.20 m/s, and that under the initial water depth of 2.0 m is 1.85 m/s)

    3. Results and discussions

    3.1 Tidal bore height

    The tidal bore height is one of the indicators of the strength of the tidal bore, which increases with the increasing bore height. Figure 5 shows the relationship between H and vunder various initial water depths. It indicates that the maximum bore height appears at 0.5 m/s-1.5 m/s of the initial ebb velocity under various initial water depths (see Fig.5).

    3.2 Propagation speed of the tidal bore

    From the continuity and momentum equations, the propagation speed of the tidal bore can be expressed as[10]

    where C is the propagation speed of the tidal bore,h andvrepresent the initial water depth and the ebb velocity before the tidal bore arrives, respectively,H is the tidal bore height,η=H/ his the bore strength, andgis the gravity acceleration (see Fig.6). The calculated values of the bore propagation speeds agree well with those obtained in the flume experiment (see Fig.7(a)) with the relative error ranging from -10 % to 10 % (see Fig.7(b)).

    Fig.6 Definitions of the tidal bore

    Fig.7 Comparison of the calculated Cand the experimental results

    Our experimental results show that Cincreases linearly withHunder different initial water depths (see Fig.8) according to C=A1H +B1(where A1

    and B1are listed in Table 2). And at the same ebb velocity before the tidal bore arrives, the bore propagation speed increases with the increase of the bore height, but the tidal bore with the same bore height decelerates when the initial ebbvelocity increases(seeFig.8).

    Yanget al.[12]measured thetidal boreheights, the propagation speeds, and the tidal current velocities in the stationary initial water body in the concrete rectangular flume of 50 m long, 4 m wide and 1.2 m high, and came up with a relationship between the propa gation spe ed an d th e bore heig ht under the initial waterdepthof2.5m,expressedas C=1.448 H+4.874(R=0.98)(see Fig.9). Correspondingly, our experimentalresultcanbeexpressedasC= 1.319 H +5.116(R =0.98)(see Fig.9). It is evidentthat our result is similar to the result obtained by Yang et al.[12]when the initial flow is stationary.

    Fig.8 Relationship between C and Hunder various initial flow conditions (the maximum initial ebb velocity under the initial water depth of 1.25 m is about 1.20 m/s, and that under the initial water depth of 2.0 m is 1.85 m/s)

    Fig.9 Comparison of our experimental result and the result by Yang et al.[12]under h =2.5 m when v=0 m/s

    Fig.11 Relationship between C and u′′(u ′=( H + h)/H-vh/ H )

    3.3 Distribution of the velocity beneath the tidal bore front in the vertical direction

    On the arrival of the tidal bore, the flow in the research region is immediately controlled by the flood tide instead of the initial ebb flow (see Fig.4). The distribution of the velocity beneath the tidal bore front in the vertical direction assumes a parabolic curve. And the minimum velocity in the vertical direction occurs near the bottom due to the bottom resistance, whereas the maximum velocity of the undular bore with the bore height of about 1.1 m appears at the relative water depth of 0.3-0.8 and that of the brokenbore with the bore height larger than 1.8 m occurs at the relative water depth in the range of 0.5-0.8, and the distributions of the experimental velocities beneath the tidal bore fronts in the vertical direction under the initial water depth of 2.5 m with various initial ebb velocities are shown in Fig.12.

    Table 2 Values of the constant coefficients in the formulas of C=A1H +B1and C= A2[( H +h)/H-vh/ H]+B2

    Table 2 Values of the constant coefficients in the formulas of C=A1H +B1and C= A2[( H +h)/H-vh/ H]+B2

    v (m/s)11=+ C AH B 1A1BRelative efficient(R) 0 1.936 4.143 0.98 0.5 2.193 2.924 0.98 1.0 1.895 2.931 0.96 1.5 1.913 2.408 0.99 2.0 1.886 2.064 0.98 2 2 = [( + )//]+ C A u H h H vh H B -v (m/s) 2 A 2 BRelative efficient (R) 0 1.0349 0.0853 0.97 0.5 1.0787 –1.1398 0.99 1.0 1.0437 –1.3717 0.98 1.5 1.0569 –1.9827 0.98 2.0 1.1667 –3.3037 0.97

    The velocity of the tidal bore with the same bore height decreases with the increase of the initial ebb velocity under the constant initial water depth, whereas when the initial ebb velocity is fixed, the velocity in the longitudinal direction decreases with the increase of the initial water depth before the tidal bore arrives (see Fig.13), due to the impediment of the upstream ebb flow to the flood tide.

    3.4 Strength and Froude number of the tidal bore

    The Froude number(Fr)of the tidal bore can be calculated by[1]

    When v =0 m/s,Fr is linear withη, and their relationship can be expressed asFr=0.724η+1.305 (R =0.95)(see Fig.14). It is nearly the same as Fr= 0.744η+0.953(R=0.99)derived by Yang et al.[12](see Fig.14). Besides, under various initial flow conditions in this study, their relationships are also linear as Fr=0.884η+0.901(R =0.95)(see Fig.15).

    Fig.12 Distributions of experimental velocities beneath the tidal bore fronts in the vertical direction under h=2.5 m

    3.5 Tidal bore shape

    The tidal bore may assume various shapes during its propagation. When the tidal bore height is small, the undular bore appears with the series of the propelled waves (see Fig.16(a)) which is possibly caused bythe predominance of surface tension forces. But with a large bore height, the waves begin to break, and the breaking bore propagates in the channel (see Fig.16(b)). As soon as the tidal bore height is large enough, the bore is broken (see Fig.16(c)).

    Fig.13 Distributions of experimental velocities beneath the tidal bore fronts with H =1.8 m in the vertical direction

    Fig.14 Relationship between Fr and η (η= H/ h)when v=0 m/s and the comparison with Yang et al.[12]

    Fig.15 Relationship between Fr and ηunder various initial flow conditions

    Fig.16 Shapes of the tidal bores and their fronts under h= 2.0 m when v=0.5 m/s (tidal bore shapes in the right figures and bore fronts in the left figures)

    3.6 Steepness of the tidal bore frontAccording to the flat-bottom assumption, we have?D/?x= ?ζ/?x, Eq.(5) becomes

    whereδrepresents the front steepness of the tidal bore,ζand Ddenote the water level and the total water depth respectively,uis the depth-averaged velocity in the longitudinal direction,t is the time, and

    Table 3 Comparison of the experimental δand the calculatedδwith H =1.5 m

    Fig.17 Correlation between Fr with δ

    The comparison shows that the measured steepness of the tidal bore fronts is very close to the calculated results by Eq.(6) (see Table 3), with the relative error ranging from -3.57 % to 12.82 %, the averaged relative error of 4.96 %. And Frhas a positively linear relationship withδ, asFr=1.393δ+0.903 (R =0.91)(see Fig.17), whileδis also linear with ηas δ=0.415η+0.115(R=0.87)(see Fig.18). As soon as the front steepness exceeds 0.5, the water surface of the tidal bore is totally broken.

    Fig.18 Correlation between δwithη

    4. Conclusions

    The tidal bores with the different bore heights are generated in the rectangular glass flume under various initial flow conditions with respect to the water depths and the ebb velocities before the tidal bore arrives. The propagation speeds, the velocities, and the bore heights of the tidal bores are measured, whilst the front steepness and the shapes of the tidal bores are captured. With the model scale of 1 to 25, the experimental results agree well with the field observed data at Yanguan reach in the Qiantang River Estuary.

    The experimental results are analyzed, and the following conclusions can be reached.

    (1) At the time of the tidal bore arrival, the flow in the research region is immediately controlled by the flood tide instead of the initial ebb flow. The minimum velocity in the vertical direction appears near the bottom for the large bottom resistance, while the maximum velocity mostly occurs in places from the middle layer to the surface layer.

    The initial flow condition before the tidal bore arrives has a great impact on the tidal bore, i.e., the maximum bore height appears at the initial ebb velocity of 0.5 m/s-1.5 m/s, and the propagation of the tidal bore with the same bore height decelerates with the increase of the initial ebb velocity, the velocity of the tidal bore with the same bore height decreases with the increase of the initial ebb velocity in the constant initial water depth, whereas at a fixed initial ebb velocity, the velocity decreases with the increase of the initial water depth.

    (2) The bore height,Fr, and the front steepness can all serve as the indicators for the tidal bore strength. The front slope of the tidal bore becomes steeper with the increasing bore strength, and the water surface is more broken with a largerFr . The tidal bore propagates faster with a larger bore height under the same initial ebb velocity.

    (3) Tidal bore may assume various shapes during its propagation, i.e., the undular bore appears whenthe bore strength is greater than 0.3 withFr up to 1.2, the breaking bore occurs when the bore strength exceeds 0.5 with Frabove 1.3, and when the bore strength is greater than 0.8 withFrabove 1.7, the bore is broken.

    Acknowledgement

    We acknowledge the editor and three reviewers for their comments and suggestions to significantly improve the quality of the paper.

    [1] CHANSON H. Tidal bores, aegire, eagre, mascaret, pororoca: Theory and observations[M]. Singapore: World Scientific, 2011, 37-92.

    [2] PAN C., HUANG W. Numerical modeling of suspended sediment transport affected by tidal bore in Qiantang Estuary[J]. Journal of Coastal Research, 2010, 26(6): 1123-1132.

    [3] PAN C., LIN B. and MAO X. Case study: Numerical modeling of the tidal bore on the Qiantang River, China[J]. Journal of Hydraulic Engineering, ASCE, 2007, 133(2): 130-138.

    [4] LIN Bing-yao. Characteristics of the tidal bore in the Qiantang River[M]. Beijing, China: China Ocean Press, 2008, 40, 87, 170(in Chinese).

    [5] SIMPSON J. H., FISHER N. R. and WILES P. Reynolds stress and TKE production in an estuary with a tidal bore[J]. Estuarine, Coastal and Shelf Science, 2004, 60(4): 619-627.

    [6] WOLANSKI E., WILLIAMS D. and SPAGNOL S. et al. Undular tidal bore dynamics in the Daly Estuary, Northern Australia[J]. Estuarine, Coastal and Shelf Science, 2004, 60(4): 629-636.

    [7] CHANSON H. Physical modelling of the flow field in all undular tidal bore[J]. Journal of Hydraulic Resea- rch, 2005, 43(3): 234-244.

    [8] KOCH C., CHANSON H. Turbulent mixing beneath an undular tidal bore[J]. Journal of Coastal Research, 2008, 24(4): 999-1007.

    [9] PAN Cun-hong, DAI Shi-qiang and CHEN Sen-mei. Numerical simulation for 2D shallow water equations by using Godunov-type scheme with unstructured mesh[J]. Journal of Hydrodynamics Ser. B, 2006, 18(4): 475-480.

    [10] PAN Cun-hong, LU Hai-yan and ZENG Jian. Characteristic and numerical simulation of tidal bore in Qiantang River[J]. Hydro-Science and Engineering, 2008, (2): 1-9(in Chinese).

    [11] XIE Dong-feng, PAN Cun-hong and LU Bo et al. Study on the hydrodynamic characteristics of the tidal bore on the Qiantang Estuary[J]. Chinese Journal of Hydro- dynamics, 2012, 27(5): 501-508(in Chinese).

    [12] YANG Huo-qi, PAN Cun-hong and ZHOU Jian-jiong et al. Experiment study on hydraulic properties of tidal bore[J]. Water Resources and Power, 2008, 26(4): 136-138(in Chinese).

    [13] HUANG Jing, LI Zui-sen and PAN Cun-hong et al. Application of Bore 2010 Control System to the flume experiment on the tidal bore[J]. Advances in Science and Technology of Water Resources Supplement, 2012, 32(S2): 28-30(in Chinese).

    [14] HUANG Jing, PAN Cun-hong and CHEN Gang et al. Experimental simulation and validation of the tidal bore in the flume[J]. Hydro-Science and Engineering, 2013, (2): 1-8(in Chinese).

    [15] ALLEN J. I., SOMERFIELD P. J. and GILBERT F. J. Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models[J]. Journal of Marine Systems, 2007, 64(3): 3-14.

    10.1016/S1001-6058(11)60387-X

    * Project supported by the National Natural Science Foundation of China (Grant No. 51109188), the National Key Basic Research Program of China (973 Program, Grant No. 2012CB957704) and the Ministry of Water Resources’ Special Funds for Scientific Research on Public Causes (Grant No. 201001072).

    Biography: HUANG Jing (1985-), Female, Ph. D. Candidate

    PAN Cun-hong, E-mail:panch@zjwater.gov.cn

    猜你喜歡
    黃靜陳剛
    Hard-core Hall tube in superconducting circuits
    Characterization of topological phase of superlattices in superconducting circuits
    Theoretical design of thermal spin molecular logic gates by using a combinational molecular junction
    SU(3)spin–orbit coupled fermions in an optical lattice
    家庭消毒, 你真的做對了嗎
    祝您健康(2020年5期)2020-05-14 13:27:48
    Recent advances in Ga-based solar-blind photodetectors?
    黃靜作品
    “三數”求解大揭秘
    比較法在《小企業(yè)會計》教學中的應用
    智富時代(2017年5期)2017-06-22 08:51:13
    武漢城市職業(yè)學院學生作品(二)
    免费观看av网站的网址| 有码 亚洲区| 亚洲国产精品成人综合色| 日本欧美国产在线视频| 亚洲av成人精品一区久久| 久久鲁丝午夜福利片| 亚洲激情五月婷婷啪啪| 国产亚洲最大av| 国语对白做爰xxxⅹ性视频网站| 国产欧美日韩一区二区三区在线 | 美女xxoo啪啪120秒动态图| 精品一区二区三区视频在线| 欧美97在线视频| 白带黄色成豆腐渣| 26uuu在线亚洲综合色| 国产精品精品国产色婷婷| 国产成人aa在线观看| 免费少妇av软件| 插逼视频在线观看| 爱豆传媒免费全集在线观看| 国产精品熟女久久久久浪| av在线app专区| 看十八女毛片水多多多| 99久久精品热视频| 亚洲精品国产av成人精品| 久久精品国产亚洲av天美| 国产成人freesex在线| 国产黄频视频在线观看| 久久人人爽av亚洲精品天堂 | 日韩欧美一区视频在线观看 | h日本视频在线播放| 精华霜和精华液先用哪个| 久久人人爽av亚洲精品天堂 | 国产成人一区二区在线| 哪个播放器可以免费观看大片| 偷拍熟女少妇极品色| 国产精品国产三级国产专区5o| 看黄色毛片网站| 交换朋友夫妻互换小说| a级毛片免费高清观看在线播放| 久久久久精品性色| 国产精品人妻久久久久久| 日韩av在线免费看完整版不卡| 一边亲一边摸免费视频| 欧美xxxx性猛交bbbb| 精品视频人人做人人爽| 日韩av在线免费看完整版不卡| 国国产精品蜜臀av免费| 99热这里只有是精品在线观看| 赤兔流量卡办理| 国产乱人视频| 丰满乱子伦码专区| 午夜激情福利司机影院| 久久久久久久久久成人| 国内揄拍国产精品人妻在线| 亚洲va在线va天堂va国产| 久久久久久久久久久丰满| 人人妻人人澡人人爽人人夜夜| 久久久久精品久久久久真实原创| 久久久久九九精品影院| 国产成人精品一,二区| 寂寞人妻少妇视频99o| 亚州av有码| 国产黄片视频在线免费观看| 日日摸夜夜添夜夜爱| 欧美老熟妇乱子伦牲交| 色网站视频免费| 岛国毛片在线播放| 亚洲精品视频女| 亚洲国产av新网站| 寂寞人妻少妇视频99o| 我的老师免费观看完整版| 成人午夜精彩视频在线观看| 国内精品美女久久久久久| 亚洲av成人精品一二三区| 国产av国产精品国产| 国产精品久久久久久精品古装| 欧美日本视频| 午夜福利在线观看免费完整高清在| 看非洲黑人一级黄片| 亚洲美女视频黄频| 免费观看性生交大片5| 亚洲精品第二区| 亚洲不卡免费看| 国产成人午夜福利电影在线观看| 波野结衣二区三区在线| 2022亚洲国产成人精品| 国产精品国产三级国产av玫瑰| 18禁在线播放成人免费| 99久久精品国产国产毛片| 欧美日韩亚洲高清精品| 日韩一区二区视频免费看| 黄色日韩在线| 国产一区二区三区av在线| 日韩av免费高清视频| 日本一二三区视频观看| 欧美日韩在线观看h| 亚洲av.av天堂| 国产精品女同一区二区软件| 一二三四中文在线观看免费高清| 国产精品一区www在线观看| 国产视频内射| 麻豆精品久久久久久蜜桃| 亚洲精品一区蜜桃| 亚洲无线观看免费| 国产精品.久久久| 欧美日韩一区二区视频在线观看视频在线 | 晚上一个人看的免费电影| 亚洲不卡免费看| 新久久久久国产一级毛片| 午夜视频国产福利| 三级经典国产精品| 亚洲天堂av无毛| 国产视频首页在线观看| 亚洲国产精品成人久久小说| 狠狠精品人妻久久久久久综合| 成人亚洲精品一区在线观看 | 日韩强制内射视频| 简卡轻食公司| 五月开心婷婷网| 高清日韩中文字幕在线| 亚洲欧美日韩另类电影网站 | 免费观看在线日韩| 一级二级三级毛片免费看| 三级国产精品片| 免费看光身美女| 日韩制服骚丝袜av| 午夜激情福利司机影院| .国产精品久久| 丰满人妻一区二区三区视频av| 最近中文字幕高清免费大全6| 韩国av在线不卡| 亚洲图色成人| 国产永久视频网站| 一区二区av电影网| 丰满少妇做爰视频| 亚洲人成网站高清观看| 插逼视频在线观看| 一区二区三区精品91| 可以在线观看毛片的网站| 亚洲电影在线观看av| 国内揄拍国产精品人妻在线| av女优亚洲男人天堂| 久久精品国产亚洲av天美| 少妇高潮的动态图| 男的添女的下面高潮视频| 97超视频在线观看视频| 一本久久精品| 高清毛片免费看| 亚洲av二区三区四区| 99久久中文字幕三级久久日本| 一级毛片我不卡| 超碰97精品在线观看| 亚洲av中文字字幕乱码综合| 成人高潮视频无遮挡免费网站| 网址你懂的国产日韩在线| 九九久久精品国产亚洲av麻豆| 亚洲色图综合在线观看| 中文乱码字字幕精品一区二区三区| 欧美精品一区二区大全| 又粗又硬又长又爽又黄的视频| 国产成人aa在线观看| 亚洲精品国产av蜜桃| 一个人看视频在线观看www免费| 哪个播放器可以免费观看大片| 天美传媒精品一区二区| 最近的中文字幕免费完整| 久久久久久久亚洲中文字幕| 国产黄片美女视频| 成人国产麻豆网| 一级二级三级毛片免费看| 在线 av 中文字幕| 男女那种视频在线观看| 九九在线视频观看精品| 亚洲伊人久久精品综合| 国产av国产精品国产| 在线亚洲精品国产二区图片欧美 | 日韩国内少妇激情av| 国产精品成人在线| 国产精品三级大全| 亚洲四区av| 联通29元200g的流量卡| 欧美精品人与动牲交sv欧美| 国产欧美另类精品又又久久亚洲欧美| videossex国产| 99热这里只有精品一区| 日韩国内少妇激情av| av免费观看日本| 日本爱情动作片www.在线观看| 国产精品一二三区在线看| 91精品一卡2卡3卡4卡| freevideosex欧美| 有码 亚洲区| 高清欧美精品videossex| 亚洲不卡免费看| 久久久久国产网址| 亚洲激情五月婷婷啪啪| 国产黄a三级三级三级人| 好男人在线观看高清免费视频| 在线观看一区二区三区激情| 人人妻人人澡人人爽人人夜夜| 日韩欧美精品v在线| 男女国产视频网站| 黄色视频在线播放观看不卡| 中文字幕久久专区| 国产熟女欧美一区二区| 精品国产乱码久久久久久小说| 黄色怎么调成土黄色| 乱系列少妇在线播放| 男人添女人高潮全过程视频| 大陆偷拍与自拍| 久久99蜜桃精品久久| 综合色av麻豆| 少妇 在线观看| 亚洲av成人精品一区久久| 久久热精品热| 深爱激情五月婷婷| 一级av片app| 不卡视频在线观看欧美| 美女主播在线视频| 国精品久久久久久国模美| 天堂俺去俺来也www色官网| 亚洲人成网站在线观看播放| 22中文网久久字幕| 啦啦啦在线观看免费高清www| 亚洲色图综合在线观看| 久热久热在线精品观看| 十八禁网站网址无遮挡 | 高清毛片免费看| 成人免费观看视频高清| 婷婷色综合大香蕉| 国产成人a∨麻豆精品| 狠狠精品人妻久久久久久综合| 国产成人精品福利久久| 视频区图区小说| 精品少妇久久久久久888优播| 国产精品蜜桃在线观看| 成人高潮视频无遮挡免费网站| 欧美日韩精品成人综合77777| 午夜免费鲁丝| 男人狂女人下面高潮的视频| kizo精华| 日韩欧美精品v在线| 国产精品精品国产色婷婷| 国产视频内射| 欧美成人午夜免费资源| 国产探花在线观看一区二区| 免费看不卡的av| 国产精品久久久久久久电影| 亚洲美女视频黄频| 日本av手机在线免费观看| 久久人人爽人人片av| 免费看不卡的av| 亚洲精品,欧美精品| 国产综合精华液| 超碰97精品在线观看| 国产欧美亚洲国产| 亚洲国产精品专区欧美| 2021少妇久久久久久久久久久| 高清日韩中文字幕在线| 欧美性感艳星| 中文字幕免费在线视频6| 五月开心婷婷网| 亚洲一级一片aⅴ在线观看| av在线播放精品| 中文字幕亚洲精品专区| 亚洲成色77777| 高清日韩中文字幕在线| 一区二区三区乱码不卡18| 尤物成人国产欧美一区二区三区| 美女脱内裤让男人舔精品视频| 国产一区亚洲一区在线观看| 国产淫片久久久久久久久| 国产伦在线观看视频一区| 亚洲美女视频黄频| 六月丁香七月| 欧美日韩亚洲高清精品| 人人妻人人澡人人爽人人夜夜| 国产精品一及| 午夜福利视频1000在线观看| 久久久a久久爽久久v久久| 永久免费av网站大全| 国产亚洲午夜精品一区二区久久 | 三级男女做爰猛烈吃奶摸视频| 99久久中文字幕三级久久日本| 亚洲欧美中文字幕日韩二区| 日韩电影二区| 久久久亚洲精品成人影院| 成人漫画全彩无遮挡| 狠狠精品人妻久久久久久综合| 大香蕉久久网| 精品一区二区免费观看| 日韩免费高清中文字幕av| 亚洲在线观看片| 日韩欧美 国产精品| 丰满乱子伦码专区| 青春草国产在线视频| 美女被艹到高潮喷水动态| 日产精品乱码卡一卡2卡三| 国产综合精华液| 内地一区二区视频在线| 亚洲电影在线观看av| 大片电影免费在线观看免费| 国产精品国产三级国产专区5o| 免费大片黄手机在线观看| 国产精品av视频在线免费观看| 国产亚洲av嫩草精品影院| 国产伦精品一区二区三区四那| 亚洲欧美精品专区久久| 一个人观看的视频www高清免费观看| 亚洲国产精品国产精品| 插逼视频在线观看| 国产黄频视频在线观看| 久久久精品94久久精品| 国产亚洲一区二区精品| 亚洲欧美日韩东京热| 久久99蜜桃精品久久| 亚州av有码| 亚洲最大成人手机在线| 香蕉精品网在线| 国产精品一区二区三区四区免费观看| 最近最新中文字幕免费大全7| 老司机影院成人| 午夜视频国产福利| 免费高清在线观看视频在线观看| 美女xxoo啪啪120秒动态图| 久热久热在线精品观看| 最近中文字幕2019免费版| 777米奇影视久久| 国产精品一二三区在线看| av在线亚洲专区| 精品人妻偷拍中文字幕| 综合色丁香网| 亚洲精品一区蜜桃| 亚洲电影在线观看av| 亚洲精品国产成人久久av| 美女高潮的动态| 国产精品久久久久久久电影| 激情五月婷婷亚洲| 国产91av在线免费观看| 国产永久视频网站| 毛片一级片免费看久久久久| 久热这里只有精品99| 男女下面进入的视频免费午夜| 99久国产av精品国产电影| 日韩在线高清观看一区二区三区| 精品久久久久久久久亚洲| 亚洲最大成人手机在线| 日韩视频在线欧美| 日韩人妻高清精品专区| 久久精品久久精品一区二区三区| 蜜桃久久精品国产亚洲av| 国产免费福利视频在线观看| 国产精品精品国产色婷婷| 亚洲久久久久久中文字幕| 夫妻性生交免费视频一级片| 久久久国产一区二区| 女的被弄到高潮叫床怎么办| 亚洲电影在线观看av| 久久久精品欧美日韩精品| 国产在线一区二区三区精| 日韩av在线免费看完整版不卡| 久久精品久久精品一区二区三区| 欧美一级a爱片免费观看看| 国产黄色免费在线视频| 亚洲欧美日韩卡通动漫| 国产成人精品一,二区| 2021天堂中文幕一二区在线观| 成人无遮挡网站| 免费av观看视频| 亚洲国产av新网站| 国产美女午夜福利| 亚洲色图av天堂| 国产精品人妻久久久影院| 欧美3d第一页| 国产有黄有色有爽视频| 99九九线精品视频在线观看视频| 中文字幕免费在线视频6| 日韩一本色道免费dvd| 亚洲,一卡二卡三卡| 成年女人在线观看亚洲视频 | 人妻系列 视频| 成人亚洲欧美一区二区av| 青春草亚洲视频在线观看| 日日啪夜夜爽| 日韩一本色道免费dvd| 一二三四中文在线观看免费高清| 日韩电影二区| 久久国产乱子免费精品| 国产老妇伦熟女老妇高清| 日韩国内少妇激情av| 国产成人福利小说| 国产在线一区二区三区精| 91午夜精品亚洲一区二区三区| av国产久精品久网站免费入址| 免费av观看视频| 九九久久精品国产亚洲av麻豆| 中文乱码字字幕精品一区二区三区| 欧美激情国产日韩精品一区| 97超视频在线观看视频| 少妇熟女欧美另类| 美女脱内裤让男人舔精品视频| 噜噜噜噜噜久久久久久91| 97在线人人人人妻| 国产精品福利在线免费观看| 99久国产av精品国产电影| 国产白丝娇喘喷水9色精品| 成人特级av手机在线观看| 中文在线观看免费www的网站| 国产高清不卡午夜福利| 少妇裸体淫交视频免费看高清| 日韩电影二区| 最新中文字幕久久久久| 国产中年淑女户外野战色| 亚洲av二区三区四区| 一级二级三级毛片免费看| 天堂网av新在线| 99热网站在线观看| 美女视频免费永久观看网站| 国产永久视频网站| 婷婷色综合www| 看十八女毛片水多多多| 亚洲最大成人av| 在线观看一区二区三区激情| 久久久久精品久久久久真实原创| 久久精品国产亚洲网站| 亚洲国产高清在线一区二区三| 一二三四中文在线观看免费高清| 特大巨黑吊av在线直播| 日韩av不卡免费在线播放| 午夜老司机福利剧场| 亚洲精品一二三| 国产av不卡久久| 极品少妇高潮喷水抽搐| 亚洲精品成人久久久久久| 欧美xxxx性猛交bbbb| 中文字幕亚洲精品专区| 精品人妻偷拍中文字幕| 亚洲欧美清纯卡通| 99久久九九国产精品国产免费| 噜噜噜噜噜久久久久久91| 欧美97在线视频| 七月丁香在线播放| 欧美日韩亚洲高清精品| 婷婷色麻豆天堂久久| 美女cb高潮喷水在线观看| 成人高潮视频无遮挡免费网站| 国产视频首页在线观看| 亚洲av中文av极速乱| 亚洲欧美日韩卡通动漫| 色5月婷婷丁香| 国产男人的电影天堂91| 精品人妻一区二区三区麻豆| 哪个播放器可以免费观看大片| 97精品久久久久久久久久精品| 成年女人看的毛片在线观看| 亚洲精品影视一区二区三区av| 国产成人午夜福利电影在线观看| 亚洲av福利一区| 中文在线观看免费www的网站| 亚洲成人中文字幕在线播放| 青春草国产在线视频| 欧美精品人与动牲交sv欧美| 亚洲欧美清纯卡通| 黄色日韩在线| 免费观看无遮挡的男女| 搞女人的毛片| 国产亚洲最大av| 欧美潮喷喷水| 我的女老师完整版在线观看| 中文字幕免费在线视频6| 国产精品偷伦视频观看了| 国产 精品1| 亚洲欧美精品自产自拍| videossex国产| 成人免费观看视频高清| 69人妻影院| 国产成人a区在线观看| 一区二区av电影网| 国产精品久久久久久久久免| 亚洲真实伦在线观看| 久久久久国产精品人妻一区二区| 日韩欧美 国产精品| 久久久久网色| av.在线天堂| 久久久久九九精品影院| 欧美日韩综合久久久久久| 精品久久久久久久末码| h日本视频在线播放| 丝袜美腿在线中文| 久久鲁丝午夜福利片| 国精品久久久久久国模美| 国产一区二区三区综合在线观看 | 草草在线视频免费看| 丝瓜视频免费看黄片| 26uuu在线亚洲综合色| 晚上一个人看的免费电影| 欧美日韩视频精品一区| 青春草国产在线视频| 午夜福利在线在线| 久久人人爽人人片av| 婷婷色麻豆天堂久久| 亚洲欧美日韩另类电影网站 | 国产黄片美女视频| 69人妻影院| www.av在线官网国产| 黄色怎么调成土黄色| 内射极品少妇av片p| 国产综合精华液| 国产伦在线观看视频一区| 久久人人爽av亚洲精品天堂 | 成人亚洲精品一区在线观看 | 一级毛片电影观看| 亚洲av中文字字幕乱码综合| 亚洲精品国产成人久久av| 国产精品国产av在线观看| 丰满乱子伦码专区| 精品久久久久久久人妻蜜臀av| 一级毛片电影观看| 波多野结衣巨乳人妻| 久久ye,这里只有精品| 久久亚洲国产成人精品v| 激情 狠狠 欧美| 久久久欧美国产精品| 久久久精品欧美日韩精品| 在线播放无遮挡| 一级二级三级毛片免费看| av在线亚洲专区| 最近中文字幕高清免费大全6| 天天一区二区日本电影三级| 亚洲精品久久午夜乱码| 国产精品99久久久久久久久| 日韩成人av中文字幕在线观看| www.av在线官网国产| 亚洲精品影视一区二区三区av| 波野结衣二区三区在线| 成人无遮挡网站| 精品熟女少妇av免费看| 在线 av 中文字幕| 天天躁夜夜躁狠狠久久av| 免费黄色在线免费观看| 久久99精品国语久久久| 热re99久久精品国产66热6| 深夜a级毛片| 中文字幕制服av| 久久久成人免费电影| 97在线人人人人妻| 国产精品国产三级国产av玫瑰| 亚洲天堂国产精品一区在线| 国产精品无大码| 少妇 在线观看| 免费看a级黄色片| 如何舔出高潮| www.色视频.com| 国产高清三级在线| 一级a做视频免费观看| 国产成人午夜福利电影在线观看| 欧美一区二区亚洲| 少妇高潮的动态图| 欧美成人一区二区免费高清观看| 免费观看在线日韩| 国产 精品1| 神马国产精品三级电影在线观看| 久久人人爽人人片av| 97人妻精品一区二区三区麻豆| 高清毛片免费看| 亚州av有码| 日韩一区二区视频免费看| 久久久精品欧美日韩精品| 一个人看视频在线观看www免费| 毛片女人毛片| 久久久久久九九精品二区国产| 免费在线观看成人毛片| 精华霜和精华液先用哪个| 亚洲精品一区蜜桃| 亚洲自偷自拍三级| 欧美变态另类bdsm刘玥| 99九九线精品视频在线观看视频| 一个人看视频在线观看www免费| av国产精品久久久久影院| 国产白丝娇喘喷水9色精品| av国产久精品久网站免费入址| 日本黄大片高清| 亚洲精品成人av观看孕妇| 日本午夜av视频| 精品亚洲乱码少妇综合久久| 欧美精品国产亚洲| 亚洲精品一二三| 毛片一级片免费看久久久久| 日本-黄色视频高清免费观看| 免费黄色在线免费观看| 日本午夜av视频| 在线观看人妻少妇| 久久久久久久午夜电影| 一个人看视频在线观看www免费| 嫩草影院入口| 制服丝袜香蕉在线| 亚洲欧美日韩另类电影网站 | 欧美日韩综合久久久久久| 色婷婷久久久亚洲欧美| 汤姆久久久久久久影院中文字幕| 蜜桃亚洲精品一区二区三区| 99久久精品热视频| 男人添女人高潮全过程视频| 偷拍熟女少妇极品色| 一个人看的www免费观看视频| 大香蕉97超碰在线| freevideosex欧美| 亚洲精品国产av蜜桃| 精品午夜福利在线看| 久久亚洲国产成人精品v| av卡一久久| 久久久久久九九精品二区国产| 免费看日本二区| 国产精品久久久久久精品电影|