• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Intein-mediated purification system: mechanism and applications

    2013-05-28 05:28:08SarrasetrerrahmeneShuhuaTan
    科學(xué)時代·上半月 2013年4期

    Sarra setrerrahmene Shuhua Tan

    Abstract:The incorporation of self-cleaving protein elements into a variety of fusion-based purification systems; has been an important development in the area of recombinant protein purification. The self-cleaving capability of these tags has recently been combined with additional purification tags to generate novel and convenient protein purification methods. This review elucidates the properties of intein, the mechanism of the intein-based protein splicing and the progress of intein-based protein purification procedures, and recent advances in the applications of intein.

    Keywords: self-cleaving; fusion; protein purification; intein.

    Introduction

    A major benefit resulting from the advent of recombinant DNA technology has been the large-scale production of proteins of medical or industrial importance. While production of heterologous proteins in bacterial hosts has been implemented successfully in the biotechnology industry; the large variability of recombinant protein in their expression, solubility, stability, and functionality, makes a difficulty for their large-scale analyses and production.

    When expressing and purifying large quantities of soluble protein, expression difficulties often include poor yield and the formation of insoluble aggregates, consequently, advances in recombinant protein expression tried to find solutions for these problems, starting by the development of better expression systems and host strains, improving mRNA stability, host-specific codon optimization, arriving to the use of secretory pathways, post-translational modification, co-expression with chaperones, and decreasing the amount of proteolytic degradation. However, no other technology has been as effective in improving the expression, solubility, and production of biologically active proteins as the addition of fusion tags, especially for difficult-to-express proteins.

    Genetically engineered fusion tags can be defined as exogenous amino acid sequences with a high affinity for a specific biological or chemical ligand (1;2).they allow the purification of virtually any protein without any prior knowledge of its biochemical properties. They can improve the variable yield and poor solubility of many recombinant proteins. On the other hand, adding fusion tags has been reported to result in changes in protein conformation, poor yields, loss or alteration of biological activity, and toxicity of the target protein. For this reason, it is desirable to remove the tag from the target protein after expression (3; 4). To enable removal of the tag, a linker region is typically included between the tag and the native protein sequence.

    By using a self-cleaving intein affinity tag in protein purification, the need for proteolytic cleavage of purified fusion proteins can be eliminated thus enabling purification of native recombinant protein in a single chromatographic step, the structure and properties of this self-cleaving element have been investigated by a number of research groups. Successful studies have now established that this splicing element is academically and industrially valuable in protein purification.

    Definition

    The term” Inteins” is derived from ‘INTervening protEINS, because they are intervening sequences embedded in a host protein precursor sequence; inteins are capable of post-translational self-excision from a host-intein precursor protein through a process known as "protein splicing" (5).

    Inteins are genetically similar to self-splicing introns, and both can self-excise from the precursor sequences. In contrast to introns which excise themselves at the precursor RNA level , inteins are transcribed and translated together with their host protein and only at the protein level they excise themselves from the host protein. The two portions of the host protein separated by the intein are called exteins (6).

    From the discovering of the first intein in 1987 until now, over 350 inteins have been identified in a wide variety of proteins from bacteria and archaea to eukaryotes.14 most known inteins are confined to DNA metabolic functions or pathways. These include DNA polymerase, helicases, gyrases, RecA recombinase, ribonucleotide reductases, among others. Inteins generally share low sequence similarity, but have a high degree of similarity in structure, self-excision mechanism, and evolution.

    Intein structure

    All inteins consist of three domains (7): two self-splicing (N- and C-terminus domains) and an endonuclease domain play a crucial role in the spread of inteins. These are known as large inteins. The mini-inteins are formed only by the two self-splicing domains:

    1. The N-terminal splicing domain: formed by the 2 conserved motif A and B and two additional motifs characterized by Pietrokovski (N2 and N4)

    1.1. Motif A: is the N end splice junction, it contains the chemically essential Ser or Cys residue (8). 1.2. Motif B: protein splicing suggests an N -- 0 acyl shift of serine or threonine residues at the splice sites with the assistance of a histidine residue, and suggests the conserved histidine at the C splice junction . The seventh residue in motif B is invariably a histidine and might fulfill the required function.

    2. The C-terminal splicing domain: ends at the aa following the C end of the inteins. The C- terminal splice junction area is composed of two motifs (F and G) that are either consecutive or separated by one or two aa. 2.1. Motif F: contains an aromatic residue on both sides of several acidic and hydrophobic residues. 2.2. Motif G: is characterized by the three conserved C-terminal splice junction residues preceded by four hydrophobic residues and contains the first extein residue following the intein.

    3. The DOD endonuclease: The endonuclease activity involves the central blocks C, D, E, and H Blocks C and E are the dodecapeptide motifs required for endonuclease activity. 3.1. Motif D contains the conserved basic amino acid Lys and a Pro residue, and maintains the distance between blocks C and E 3.2. Motif H, composed by19 amino acid motif, found between blocks E and F Block H is characterized by one or more Ser or Thr residues in positions 1–3, a central hydrophobic region containing several Leu and a Gly at position 18 followed by ahydrophobic residue.

    In fact, only one His in Block B, two Gly in Block C (excluding inteins lacking this block) and one Asn in Block G are present in all inteins (Figure1)

    Figure 1: large and mini-intein structure

    Mechanism of intein-based protein splicing

    Protein splicing is a post-translational processing event. The mechanism of splicing is now very well established and understood (9). Intein-mediated protein splicing pathway consists of four nucleophilic displacement reaction steps, coordinately arranged in vivo (10). Resulting in peptide bond cleavage at both intein–extein splice junctions, and ligation of the flanking sequences to yield a mature extein and an excised intein (11;12). The four displacement reaction steps are:

    1. Activation of the N-terminus of the intein by an N-O shift for serine or N-S shift for the cysteinethat leads to an ester or thioester intermediate. This rearrangement leads to the N-extein binding to the oxygen of a serine or to the sulfur of a cysteine residue at the splice junction.

    2. Transesterification between the ester or thioester on intein N-terminus and the nucleophilic residue of the C-extein, this reaction generates a branched protein intermediate.

    3. peptide bond cleavage and excision of the intein, this cleavage occur via an aminosuccinimide intermediate for the intein having an asparagine residues at their C-terminus; or via an aminoglutarimide for intein posecing an glutamine terminus (13).

    4. spontaneous S-Nacyl rearrangement of the ligation product from the ester or thioester to a stable amide bond between the two exteins. These 4 steps of protein splicing are so rapid that the precursor protein is rarely observed.

    most inteins begin with Cys or Ser, and end with His-Asn, while some inteins begin with Ala, Gln, and Pro or end with Asp and Gln. C- exteins usually begin with Cys, Ser or Thr. These conserved splice junction residues are directly involved in protein splicing mechanism .substitution of Asp for the Gln which resides at the C-terminus of some inteins can moderately improve the rate and extent of protein splicing(14). However, when the penultimate His is mutated to Ala, protein splicing is prevented.This indicates the important role of the conserved penultimate His residue in Asn cyclization.it has been showed that this histidine serves as a proton donor to the carbonyl oxygen of the terminal Asn (15; 16).

    Application of inteins in biotechnology

    Recombinant protein purification has benefited lot from the applications of protein splicing. Any desired gene can be cloned to the N or C terminus of an intein gene, and expressed in frame to the intein tag (17). The creation of self-cleaving protein elements that can be combined with conventional affinity column has generated an effective self-cleaving affinity tags which have the ability to release a target protein fused (18; 19) Either C or N-terminally to the tag, in response to a simple chemical or physical stimulus. The specificity of the cleaving reaction allows the affinity tag to be removed without the addition of expensive protease and prevents unwanted cleaving. On other hand, the cleaving reaction can be induced while the tagged target is bound to the affinity column, thus eliminating the need for other step to remove the cleaved tag. To facilitate the release of the recombinant protein from the intein and prevent its modification by the reducing agent, random mutation of naturally intein has been done to select a mini-intein with pH-sensitive C-terminal cleavage. These mini-inteins inteins have been incorporated into a commercial purification kit (IMPACT-TWINTM, NewEngland Biolabs).

    This IMPACT-TWINTM use a mutated intein (substitution of Asn454 with Ala), which exhibites N-terminal cleavage at the presence of 1,4-dithiothreitol (DTT) orβ-mercaptoethanol at low temperatures and over a broad pH range (5.5–9.0). The C-terminus was combined with a chitin binding domain to make protein purification simpler and more convenient than the conventional purification system (20). Chitin binding domain (CBD) was the first used affinity tag, later other tags have been developed such as ELP (21), cellulosebinding domain(22), polyhistidine(23),glutathione S-transferase ,FLAG-tag(24), and maltose-binding protein .Using this purification system the whole process could be completed within 2 days. The final purity of target protein was in general more than 95% and the yield was similar to the yield from conventional affinity purification methods , studies have also shown that the bioactivities of the target proteins were identical to those isolated using the conventional procedures(25;26).

    Despite its distinct advantages, this purification method still has several problems, such as relatively low yield and low reproducibility of the protocol. The intein-based purification system is still limited to laboratory scale because of the high cost of the affinity matrices (27; 28). In addition to the application in protein purification, the generation of greenfluorescent protein mini-intein fusion system has simplified the process of optimizing the expression of fusion by direct correlation between the cell fluorescence level and protein yield (29).The green fluorescent protein has also been used as a reporter system for protein-protein interactions, and high-throughput drug screening. On other hand, Intein expression system has been successfully applied in cytotoxic proteins synthesis. The cytotoxic protein is inactivated in vivo by its fusion to an intein, and the pH-controllable splicing of intein is proceeded in vitro to liberate the active cytotoxic protein. this technic has been succefuly used to express the cytotoc proteinI-Tev in E.coli .Intein systeme has been also used by Daugelat & Jacobs (30) in epitope mapping and antigen screening.

    Conclusion

    The remarkable self-cleaving property of intein can have numerous novel applications in downstream processing; with the intein-mediated fusion protein production system, a protein with an affinity tag can be purified in a single chromatographic step.

    In this paper we have provided an overall picture of the principles, characteristics, and mechanisms of various intein systems and their potential applications in downstream processing, especially protein expression and purification. We expect that it will be a useful contribution for researchers interested in the intein system.

    References

    1. Lichty J, Malecki JL, Agnew HD, Michelson-Horowitz DJ, Tan S. (2005) Comparison of affinity tags for protein purification. Protein Expr. Purif. 41 98–105.

    2. Hunt I (2005) From gene to protein: a review of new and enabling technologies for multi-parallel protein expression. Protein Expr. Purif. 40:1–22.

    3. Arnau J, Lauritzen C, Petersen GE, Pedersen, J. (2006) Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif.48 (1):1–13.

    4. Esposito D, Chatterjee DK. (2006) Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotechnol. 17(4):353–8.

    5. Cooper AA, Stevens TH. (1995) Protein splicing: self-splicing of genetically mobile elements at the protein level. Trends Biochem. Sci.20:351–56

    6. Dujon B. (1989) Group I introns as mobile genetic elements: facts and mechanistic speculations.Gene82:91–114.

    7. Liu X (2000) Protein-splicing intein: genetic mobility, origin, and evolution. Annu. Rev. Genet.34:61–76.

    8. Koonin,E.V. (1995) Trends Biochem Sci, 20, 141–142.

    9. Paulus H (2000) Protein splicing and related forms of protein autoprocessing. Annu Rev Biochem 69:447–96.

    10. Perler FB (2005) Protein splicing mechanisms and applications. IUBMB Life 57:469–476.

    11. Perler FB and AdamE (2000) Protein splicing and its application. Curr Opin Biotechnol 11:377–383.

    12.Anraku Y, Mizutani R and SatowY (2005) Protein splicing: its discovery and structural insight into novel chemical mechanisms. IUBMB Life 57:563–574.

    13. Paulus H (2000) Protein splicing and related forms of protein autoprocessing. Annu. Rev. Biochem.69:447–96

    14. SouthworthMW, Benner J and Perler FB (2000) An alternative protein splicing mechanism for inteins lacking an N-terminal nucleophile. EMBO J19:5019–5026.

    15. Mills KV, Manning JS, Garcia AM and Wuerdeman LA (2004) Protein splicing of aPyrococcus abyssiintein with a C-terminal glutamine. JBiol Chem 279:20685–20691.

    16. Ding Y, XuMQ, Ghosh I, Chen X, Ferrandon S, Lesage G,et al. (2003) Crystal structure of a mini-intein reveals a conserved catalytic module involved in side chain cyclization of asparagine during protein splicing. JBiol Chem278:39133–39142 .

    17. Chong S, Montello GE, Zhang A, Can-tor EJ, Liao W, et al. (1998) Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step.Nucleic Acids Res.26:5109–15.

    18. Ma J, Cooney CL (2004) Application of vortex flow adsorption technology to intein-mediated recovery of recombinant human alpha1-antitrypsin. Biotechnol Prog 20:269-276.

    19. Sharma S, Zhang A, Wang H, Harcum SW, Chong S (2003)Study of protein splicing and intein-mediated peptide bond cleavage under high-cell-density conditions. Biotechnol Prog 19:1085-1090

    20. IMPACT-CN System (2006) Instructional manual #E6950S. New England Biolabs, Beverly, MA.

    21. Banki MR, Feng L and Wood DW (2005) Simple bioseparations using self-cleaving elastin-like polypeptide tags. Natural Methods2:659–661.

    22. Starokadomskyy PL, Okunev OV, Irodov DM and KordiumVA (2008) Utilization of protein splicing for purification of the human growth hormone. Mol Biol42:966–972.

    23. Chatterjee S, Schoepe J, Lohmer S and Schomburg D (2005) High level expression and single-step purification of hexahistidine-tagged l-2- hydroxyisocaproate dehydrogenase making use of a versatile expression vector set.Protein Expr Purif39:137–143.

    24. Einhauer A and Jungbauer A (2001)The FLAG peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods 49:455–465.

    24. Sun ZY, Chen JY, Yao HW, Liu LL, Wang J, Zhang Jet al (2005) Use of Ssp dnaB derived mini-intein as a fusion partner for production of recombinant human brain natriuretic peptide in Escherichia coli. Protein Expr Purif43:26–32.

    25. Yu RJ,Xie QL,Dai Y,Gao Y,Zhou THandHong A, (2006) Intein-mediatedrapid purification and characterization of a novel recombinant agonist for VPAC2.Peptides27:1359–1366.

    26. Yu RJ, Xie QL, Dai Y, Gao Y, Zhou T Hand Hong A (2006) Intein-mediatedrapid purification and characterization of a novel recombinant agonist for VPAC2.Peptides27:1359–1366.

    27. Sharma SS, Zhang A, Wang H, HarcumSW and Chong S, Study of protein splicing and intein-mediated peptide bond cleavage under high-cell-density conditions. Biotechnol Prog19:1085–1090 (2003).

    28. Sharma SS, Chong S and HarcumSW (2006) Intein-mediated protein purification of fusion proteins expressed under high-cell density conditions inE. coli. J Biotechnol125:48–56.

    29. Zhang A, Gonzalez SM, Cantor EJ, Chong S (2001) Construction of a mini-intein fusion system to allow both direct mon-itoring of soluble protein expression and rapid purification of target proteins. Gene 275:241–252.

    30. Daugelat S, Jacobs WR Jr (1999)The Mycobacterium tuberculosis recA intein can be used in an ORFTRAP to select for open reading frames. Protein Sci.8:644–653

    Unit: State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.

    Corresponding author:

    Shuhua Tan, Ph.D. State Key Laboratory of Natural Medicines China Pharmaceutical university .Nanjing 210009. E-mail: tohike@hotmail.com.Tel: 86-25-83271012

    伊人久久精品亚洲午夜| 国产精华一区二区三区| 国产视频一区二区在线看| 久久伊人香网站| 久久久久国内视频| 欧美成人a在线观看| 日韩欧美免费精品| АⅤ资源中文在线天堂| 少妇丰满av| 日本五十路高清| 在线观看免费视频日本深夜| 国产一区二区在线观看日韩| 9191精品国产免费久久| 中出人妻视频一区二区| 午夜福利视频1000在线观看| 18美女黄网站色大片免费观看| 国产精品爽爽va在线观看网站| 久久精品影院6| 久久中文看片网| 久久精品国产自在天天线| 午夜影院日韩av| 身体一侧抽搐| 中文字幕av在线有码专区| 校园春色视频在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲国产精品成人综合色| 久久精品综合一区二区三区| 麻豆国产97在线/欧美| 少妇被粗大猛烈的视频| 日本五十路高清| 午夜福利18| av国产免费在线观看| 黄色女人牲交| 久久精品国产自在天天线| 无遮挡黄片免费观看| 国产野战对白在线观看| 国产三级中文精品| 欧美日韩黄片免| 婷婷精品国产亚洲av| 国产熟女xx| 亚洲av中文字字幕乱码综合| 天堂影院成人在线观看| 国产精品久久电影中文字幕| 国产亚洲欧美98| 在线免费观看不下载黄p国产 | 国产高清视频在线观看网站| 99国产极品粉嫩在线观看| 成人av一区二区三区在线看| 在线天堂最新版资源| 国产白丝娇喘喷水9色精品| 欧美激情久久久久久爽电影| 久久久久久久久中文| 最近最新中文字幕大全电影3| 国产69精品久久久久777片| 成人av在线播放网站| 毛片一级片免费看久久久久 | 午夜福利在线观看免费完整高清在 | 亚洲av日韩精品久久久久久密| 国产高清视频在线观看网站| 久久这里只有精品中国| 午夜福利18| 日本五十路高清| 国产爱豆传媒在线观看| 午夜福利在线观看免费完整高清在 | 国产成人av教育| 国产成人影院久久av| 亚洲av一区综合| 99在线人妻在线中文字幕| 久久精品国产亚洲av香蕉五月| 人人妻,人人澡人人爽秒播| 国产三级中文精品| 亚洲成人中文字幕在线播放| avwww免费| 欧美在线黄色| 九九久久精品国产亚洲av麻豆| 久久精品夜夜夜夜夜久久蜜豆| 久久精品国产自在天天线| 18禁黄网站禁片免费观看直播| 91午夜精品亚洲一区二区三区 | 欧美最新免费一区二区三区 | 久久精品久久久久久噜噜老黄 | 美女 人体艺术 gogo| 久99久视频精品免费| 能在线免费观看的黄片| 别揉我奶头~嗯~啊~动态视频| av女优亚洲男人天堂| 成年人黄色毛片网站| 99热这里只有是精品在线观看 | 国产视频一区二区在线看| 成人高潮视频无遮挡免费网站| 老司机深夜福利视频在线观看| 国语自产精品视频在线第100页| 久久精品国产亚洲av涩爱 | 小说图片视频综合网站| 又黄又爽又免费观看的视频| 国产精品亚洲美女久久久| 在线播放无遮挡| 国产伦在线观看视频一区| 成人永久免费在线观看视频| 国产伦一二天堂av在线观看| 亚洲中文日韩欧美视频| 免费一级毛片在线播放高清视频| 精品久久久久久久人妻蜜臀av| 成人精品一区二区免费| 窝窝影院91人妻| 啦啦啦韩国在线观看视频| 美女被艹到高潮喷水动态| 国产精品野战在线观看| 黄色丝袜av网址大全| 久久久久精品国产欧美久久久| 在线播放国产精品三级| 亚洲在线自拍视频| 一本精品99久久精品77| 99久久成人亚洲精品观看| 午夜福利成人在线免费观看| 成人一区二区视频在线观看| 赤兔流量卡办理| netflix在线观看网站| 真人做人爱边吃奶动态| 免费一级毛片在线播放高清视频| 18+在线观看网站| 99国产精品一区二区三区| 又紧又爽又黄一区二区| 午夜福利在线观看免费完整高清在 | 久久九九热精品免费| 好男人在线观看高清免费视频| 久久99热6这里只有精品| 成熟少妇高潮喷水视频| 99久国产av精品| 亚洲欧美精品综合久久99| 黄色丝袜av网址大全| 99热这里只有是精品50| 免费av观看视频| 亚洲无线观看免费| 久久香蕉精品热| 国产午夜福利久久久久久| 亚洲第一区二区三区不卡| 婷婷精品国产亚洲av在线| 日韩欧美三级三区| 91久久精品国产一区二区成人| 国产美女午夜福利| 99热这里只有是精品50| 国产毛片a区久久久久| 在线天堂最新版资源| 久久人人精品亚洲av| 亚洲精品色激情综合| 听说在线观看完整版免费高清| 国产av不卡久久| 亚洲av成人av| 亚洲精品色激情综合| 欧美精品国产亚洲| 免费高清视频大片| 欧美一区二区国产精品久久精品| 少妇裸体淫交视频免费看高清| 欧美成人a在线观看| 欧美色视频一区免费| 国产人妻一区二区三区在| 性欧美人与动物交配| 亚洲在线自拍视频| 国产伦精品一区二区三区四那| 久久久精品大字幕| 亚洲欧美日韩高清在线视频| 亚洲成av人片在线播放无| 少妇熟女aⅴ在线视频| 三级男女做爰猛烈吃奶摸视频| 午夜福利高清视频| 午夜福利在线在线| 久久精品久久久久久噜噜老黄 | 久久久久久久午夜电影| 日韩欧美免费精品| 天天躁日日操中文字幕| 亚洲最大成人手机在线| 色视频www国产| 在线播放国产精品三级| 窝窝影院91人妻| 欧美日韩瑟瑟在线播放| 国产精品久久久久久亚洲av鲁大| 亚洲美女黄片视频| 男女下面进入的视频免费午夜| 丰满的人妻完整版| 一二三四社区在线视频社区8| 成年女人永久免费观看视频| 听说在线观看完整版免费高清| 日本a在线网址| 欧美色视频一区免费| 国产精品久久久久久久久免 | 成人欧美大片| 亚洲无线观看免费| 国内精品美女久久久久久| 日韩免费av在线播放| 精品人妻1区二区| 69av精品久久久久久| 国产亚洲av嫩草精品影院| 久久精品国产99精品国产亚洲性色| 尤物成人国产欧美一区二区三区| 国产色婷婷99| 好看av亚洲va欧美ⅴa在| 搞女人的毛片| 欧美+亚洲+日韩+国产| 九九久久精品国产亚洲av麻豆| 丰满人妻一区二区三区视频av| 亚洲熟妇中文字幕五十中出| 亚洲欧美日韩高清专用| 国产成人a区在线观看| 国产白丝娇喘喷水9色精品| 少妇被粗大猛烈的视频| 国产高清有码在线观看视频| 少妇人妻精品综合一区二区 | 丝袜美腿在线中文| 亚洲人成伊人成综合网2020| 小蜜桃在线观看免费完整版高清| 老熟妇仑乱视频hdxx| a级毛片免费高清观看在线播放| 能在线免费观看的黄片| 又黄又爽又刺激的免费视频.| 757午夜福利合集在线观看| 国产真实伦视频高清在线观看 | 黄色视频,在线免费观看| 午夜福利视频1000在线观看| 高潮久久久久久久久久久不卡| 久久精品91蜜桃| 成人特级av手机在线观看| x7x7x7水蜜桃| 在线观看舔阴道视频| 婷婷精品国产亚洲av在线| 欧美一区二区国产精品久久精品| 亚洲最大成人手机在线| 乱码一卡2卡4卡精品| 三级男女做爰猛烈吃奶摸视频| 草草在线视频免费看| 中亚洲国语对白在线视频| 国产精品亚洲av一区麻豆| 在线国产一区二区在线| 国产一区二区三区视频了| 国产欧美日韩一区二区三| 日本 欧美在线| 国产精品久久久久久久久免 | 国产三级在线视频| 长腿黑丝高跟| 久久午夜亚洲精品久久| www.熟女人妻精品国产| 又紧又爽又黄一区二区| 97人妻精品一区二区三区麻豆| 成人特级av手机在线观看| 久99久视频精品免费| 看片在线看免费视频| 亚洲精品在线美女| 亚洲熟妇熟女久久| 日本撒尿小便嘘嘘汇集6| 欧美区成人在线视频| 极品教师在线免费播放| 国产在线男女| 国产高清视频在线观看网站| 久久久久精品国产欧美久久久| 国产野战对白在线观看| 中文字幕精品亚洲无线码一区| 欧美最新免费一区二区三区 | 看免费av毛片| 欧美黄色片欧美黄色片| 成熟少妇高潮喷水视频| 午夜福利在线在线| 一进一出抽搐动态| 国产精品一区二区性色av| 欧美成人性av电影在线观看| 亚洲成av人片在线播放无| 在线免费观看的www视频| 成年女人毛片免费观看观看9| 老熟妇仑乱视频hdxx| 一边摸一边抽搐一进一小说| 99久久九九国产精品国产免费| 90打野战视频偷拍视频| 国产成人a区在线观看| 一a级毛片在线观看| 午夜激情福利司机影院| 日韩免费av在线播放| 国产成人影院久久av| 少妇熟女aⅴ在线视频| 国产精品爽爽va在线观看网站| 国产在线精品亚洲第一网站| 久久精品国产自在天天线| 国内精品久久久久久久电影| 大型黄色视频在线免费观看| 成人av在线播放网站| 99视频精品全部免费 在线| 69人妻影院| 免费av观看视频| 长腿黑丝高跟| 国产av一区在线观看免费| 亚洲自拍偷在线| 狂野欧美白嫩少妇大欣赏| 亚洲 欧美 日韩 在线 免费| 丝袜美腿在线中文| 欧美激情久久久久久爽电影| 亚洲性夜色夜夜综合| 欧美一级a爱片免费观看看| 黄色女人牲交| 欧美国产日韩亚洲一区| 搡女人真爽免费视频火全软件 | 国产精品精品国产色婷婷| 国产精品电影一区二区三区| 亚洲av成人av| 啦啦啦观看免费观看视频高清| 日韩欧美一区二区三区在线观看| 国产久久久一区二区三区| 久久国产乱子免费精品| 久久精品国产99精品国产亚洲性色| 在线观看av片永久免费下载| 好男人在线观看高清免费视频| 欧美区成人在线视频| 丝袜美腿在线中文| 99久久九九国产精品国产免费| 我要搜黄色片| 午夜精品一区二区三区免费看| av在线观看视频网站免费| 国产精品久久久久久人妻精品电影| 丰满人妻熟妇乱又伦精品不卡| 成人av一区二区三区在线看| 狠狠狠狠99中文字幕| www.熟女人妻精品国产| 日本黄大片高清| 淫秽高清视频在线观看| 国产成人欧美在线观看| 亚洲av二区三区四区| 亚洲av.av天堂| 精品无人区乱码1区二区| 99视频精品全部免费 在线| 深夜精品福利| 精品一区二区三区视频在线| 91在线观看av| 日韩欧美精品v在线| 男女之事视频高清在线观看| 国产色爽女视频免费观看| 免费无遮挡裸体视频| 国产免费av片在线观看野外av| 97热精品久久久久久| 最近最新中文字幕大全电影3| 亚洲中文字幕日韩| 国产精品免费一区二区三区在线| 禁无遮挡网站| 夜夜躁狠狠躁天天躁| 在线a可以看的网站| eeuss影院久久| 69av精品久久久久久| 亚洲久久久久久中文字幕| 国内少妇人妻偷人精品xxx网站| 亚洲av二区三区四区| 丁香欧美五月| 久久天躁狠狠躁夜夜2o2o| 日本一本二区三区精品| 欧美三级亚洲精品| 亚洲av免费在线观看| 一级作爱视频免费观看| 免费看光身美女| 日韩欧美国产一区二区入口| 极品教师在线免费播放| 色综合欧美亚洲国产小说| 国产伦在线观看视频一区| 国产真实伦视频高清在线观看 | 国产不卡一卡二| 国模一区二区三区四区视频| 久久久久久久亚洲中文字幕 | 亚洲五月婷婷丁香| 国产高清三级在线| 成人av一区二区三区在线看| 欧美性猛交黑人性爽| 欧美黄色淫秽网站| 日本成人三级电影网站| 麻豆国产97在线/欧美| 亚洲欧美日韩高清专用| 国产精品野战在线观看| av在线观看视频网站免费| 极品教师在线免费播放| 亚洲欧美激情综合另类| 18+在线观看网站| 最好的美女福利视频网| 乱人视频在线观看| 国产精品美女特级片免费视频播放器| 中文在线观看免费www的网站| 久久久久免费精品人妻一区二区| 免费在线观看影片大全网站| 欧美午夜高清在线| 国产精品久久视频播放| 亚洲av电影不卡..在线观看| 91在线观看av| 每晚都被弄得嗷嗷叫到高潮| 亚洲,欧美精品.| 桃红色精品国产亚洲av| 蜜桃久久精品国产亚洲av| 国产精品亚洲美女久久久| 亚洲精品亚洲一区二区| 国产高清视频在线观看网站| 一区二区三区免费毛片| 在线播放国产精品三级| 在线天堂最新版资源| 亚洲av美国av| 成人性生交大片免费视频hd| 真人做人爱边吃奶动态| 日韩欧美国产一区二区入口| 国产精品精品国产色婷婷| 久久久国产成人精品二区| 黄色一级大片看看| 两个人的视频大全免费| 久久久久久大精品| 久久精品国产99精品国产亚洲性色| 久久久久国产精品人妻aⅴ院| 在线免费观看的www视频| 97超级碰碰碰精品色视频在线观看| 国产精品1区2区在线观看.| 麻豆国产97在线/欧美| 狂野欧美白嫩少妇大欣赏| 小蜜桃在线观看免费完整版高清| 久久国产乱子伦精品免费另类| 亚洲五月婷婷丁香| a在线观看视频网站| 极品教师在线视频| 国产精品久久久久久久电影| 国产精品日韩av在线免费观看| 久久精品国产99精品国产亚洲性色| 日韩中文字幕欧美一区二区| 一个人免费在线观看的高清视频| 亚洲人成网站在线播| 女同久久另类99精品国产91| 噜噜噜噜噜久久久久久91| 别揉我奶头 嗯啊视频| 亚洲成人久久性| av在线天堂中文字幕| 乱码一卡2卡4卡精品| 少妇人妻一区二区三区视频| 嫩草影院入口| 亚洲欧美日韩高清在线视频| 精品人妻视频免费看| 俺也久久电影网| 18+在线观看网站| 国产一区二区在线观看日韩| 国产av在哪里看| 亚洲av美国av| 精品国产亚洲在线| 精品久久久久久久久av| 亚洲av免费高清在线观看| 韩国av一区二区三区四区| 国产一区二区在线观看日韩| 亚洲成av人片免费观看| 欧美日韩国产亚洲二区| 国产精品免费一区二区三区在线| 亚洲精品456在线播放app | 欧美最黄视频在线播放免费| 男女下面进入的视频免费午夜| 国产中年淑女户外野战色| 欧美激情久久久久久爽电影| 亚洲内射少妇av| 91麻豆av在线| 国产一级毛片七仙女欲春2| 噜噜噜噜噜久久久久久91| 亚洲人成网站在线播| 伦理电影大哥的女人| 日本精品一区二区三区蜜桃| 成人鲁丝片一二三区免费| 麻豆成人av在线观看| 午夜亚洲福利在线播放| 国产精品一区二区免费欧美| 国产真实伦视频高清在线观看 | 久久6这里有精品| 亚洲在线自拍视频| 日本与韩国留学比较| 精品久久久久久久末码| 91九色精品人成在线观看| 精品久久久久久久久av| 亚洲欧美精品综合久久99| 全区人妻精品视频| 床上黄色一级片| 亚洲第一欧美日韩一区二区三区| 国产午夜福利久久久久久| 天美传媒精品一区二区| 又黄又爽又刺激的免费视频.| 国产野战对白在线观看| 一本一本综合久久| 少妇高潮的动态图| 国产av不卡久久| 特大巨黑吊av在线直播| 亚洲成人久久性| 毛片一级片免费看久久久久 | 嫁个100分男人电影在线观看| 伦理电影大哥的女人| 国产精品精品国产色婷婷| 真人做人爱边吃奶动态| 五月玫瑰六月丁香| 国产v大片淫在线免费观看| 中文字幕av成人在线电影| 一区二区三区免费毛片| 中文字幕高清在线视频| 丰满的人妻完整版| 欧美丝袜亚洲另类 | 中文资源天堂在线| 久久久久久国产a免费观看| 亚洲第一电影网av| 村上凉子中文字幕在线| 亚洲成av人片免费观看| 国产乱人伦免费视频| 极品教师在线免费播放| 欧美一级a爱片免费观看看| av欧美777| 国产成人欧美在线观看| 国产爱豆传媒在线观看| a在线观看视频网站| 少妇熟女aⅴ在线视频| 亚洲狠狠婷婷综合久久图片| 脱女人内裤的视频| 色综合亚洲欧美另类图片| 99热这里只有是精品在线观看 | 我要搜黄色片| 小蜜桃在线观看免费完整版高清| 91麻豆精品激情在线观看国产| 精品日产1卡2卡| 中文字幕av成人在线电影| 嫩草影院入口| 亚洲午夜理论影院| 国产精品一及| 老司机福利观看| 亚洲乱码一区二区免费版| 久久久色成人| 精品不卡国产一区二区三区| 少妇裸体淫交视频免费看高清| 窝窝影院91人妻| 丰满的人妻完整版| 蜜桃亚洲精品一区二区三区| 一进一出抽搐gif免费好疼| a在线观看视频网站| 网址你懂的国产日韩在线| 一区二区三区四区激情视频 | 国产aⅴ精品一区二区三区波| 男女下面进入的视频免费午夜| 女人被狂操c到高潮| 嫩草影视91久久| 一进一出抽搐动态| 日韩免费av在线播放| 久9热在线精品视频| 看十八女毛片水多多多| 我要看日韩黄色一级片| 啦啦啦韩国在线观看视频| 国产精品一及| 亚洲精品乱码久久久v下载方式| 亚洲欧美日韩无卡精品| 国内精品久久久久久久电影| 国内少妇人妻偷人精品xxx网站| 久久久久九九精品影院| av天堂中文字幕网| 丝袜美腿在线中文| 国产探花极品一区二区| av在线天堂中文字幕| 99久久99久久久精品蜜桃| 久久精品综合一区二区三区| 啦啦啦韩国在线观看视频| 久久精品影院6| av在线老鸭窝| 国产精品,欧美在线| 色尼玛亚洲综合影院| 色噜噜av男人的天堂激情| 欧美中文日本在线观看视频| 人人妻,人人澡人人爽秒播| 欧美xxxx性猛交bbbb| 久久热精品热| 午夜精品久久久久久毛片777| 色哟哟哟哟哟哟| 最近在线观看免费完整版| 精品一区二区三区人妻视频| 在现免费观看毛片| 国内精品美女久久久久久| 国产精品嫩草影院av在线观看 | 极品教师在线视频| 日韩欧美国产一区二区入口| 成人性生交大片免费视频hd| 身体一侧抽搐| 99riav亚洲国产免费| 在线观看66精品国产| 亚洲aⅴ乱码一区二区在线播放| 日韩国内少妇激情av| 超碰av人人做人人爽久久| netflix在线观看网站| 制服丝袜大香蕉在线| 搞女人的毛片| 日本a在线网址| 亚洲欧美日韩东京热| 亚洲七黄色美女视频| 日本熟妇午夜| 免费人成视频x8x8入口观看| 久久国产精品影院| 精品欧美国产一区二区三| 一进一出抽搐gif免费好疼| 中文字幕精品亚洲无线码一区| 每晚都被弄得嗷嗷叫到高潮| 日韩亚洲欧美综合| 亚洲一区二区三区色噜噜| 午夜精品久久久久久毛片777| 每晚都被弄得嗷嗷叫到高潮| bbb黄色大片| 久久欧美精品欧美久久欧美| xxxwww97欧美| 亚洲成人精品中文字幕电影| 中出人妻视频一区二区| 青草久久国产| 欧美日韩黄片免| 国产淫片久久久久久久久 | 少妇人妻一区二区三区视频| 国产精品伦人一区二区| 婷婷六月久久综合丁香| 亚洲天堂国产精品一区在线| 精品午夜福利在线看| 日日夜夜操网爽| 舔av片在线| 欧美激情久久久久久爽电影| 国模一区二区三区四区视频| 国产亚洲精品久久久久久毛片| 美女cb高潮喷水在线观看| 精品一区二区三区人妻视频| 午夜激情福利司机影院|