方田君,王素云
(1.蘭州交通大學(xué)數(shù)理與軟件工程學(xué)院,甘肅蘭州 730070;2.蘭州城市學(xué)院數(shù)學(xué)學(xué)院,甘肅蘭州 730070)
一類非經(jīng)典反應(yīng)擴(kuò)散方程的指數(shù)吸引子
方田君1,王素云2
(1.蘭州交通大學(xué)數(shù)理與軟件工程學(xué)院,甘肅蘭州 730070;2.蘭州城市學(xué)院數(shù)學(xué)學(xué)院,甘肅蘭州 730070)
利用一種新方法證明了一類非經(jīng)典反應(yīng)擴(kuò)散方程當(dāng)非線性項(xiàng)是任意階多項(xiàng)式增長(zhǎng)時(shí)的指數(shù)吸引子的存在性.
非經(jīng)典反應(yīng)擴(kuò)散方程;指數(shù)吸引子;任意階多項(xiàng)式增長(zhǎng)
考慮如下非經(jīng)典反應(yīng)擴(kuò)散方程指數(shù)吸引子的存在性:
非經(jīng)典反應(yīng)擴(kuò)散方程廣泛出現(xiàn)在非牛頓流體,土壤力學(xué)及熱傳導(dǎo)理論等領(lǐng)域.關(guān)于方程(1)中項(xiàng)-Δ的物理解釋,可見文獻(xiàn)[1].文獻(xiàn)[1]為建立這類方程提供了一個(gè)一般的框架,文獻(xiàn)[2-4]討論了該問題全局吸引子的存在性.最近文獻(xiàn)[5]中給出了一種證明指數(shù)吸引子存在性的充分必要條件,本文利用該方法討論了當(dāng)非線性項(xiàng)f是任意階多項(xiàng)式增長(zhǎng)時(shí),非經(jīng)典反應(yīng)擴(kuò)散方程的指數(shù)吸引子的存在性問題.
首先,給出本文中的一些記號(hào):
[1] Aifantis E C. On the Problem of Diffusion in Solids [J]. Acta Mech, 1980, 37: 265-296.
[2] Sun C Y, Wang S Y, Zhong C K. Global attractors for a nonclassical diffusion equation [J]. Acta Math Sinica: English Series, 2007, DOI: 10.1007/s10114-005-0909-6.
[3] Wang S Y, Li D S, Zhong C K. On the dynamics of a class of nonclassical parabolic equation [J]. Math Appl, 2004, 317: 565-582.
[4] Ma Q Z, Zhong C K. Global attractors of strong solutions to nonclassical diffusion equations [J]. 蘭州大學(xué)學(xué)報(bào): 自然科學(xué)版, 2004, 40(5): 7-9.
[5] Li Y J, Wu H Q, Zhao T G. Necessary and sufficient conditions for the existence of exponential attractors for semigroup and applications [J]. Nonlinear Anal, 2012, 75: 6297-6305.
[6] 王素云. 動(dòng)力系統(tǒng)中一類非經(jīng)典反應(yīng)擴(kuò)散方程[D]. 蘭州: 蘭州大學(xué), 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 2005: 1-67.
[7] Zhong C K, Yang M H, Sun C Y. The Existence of Global Attractors for the Norm-to-weak Continuous Semigroupand its Application to the Nonlinear Reaction-diffusion Equations [J]. Journal of Differential Equations, 2006, 223(2): 367-399.
The Exponential Attractors for a Non-classical Reaction-diffusion Equation
FANG Tianjun1, WANG Suyun2
(1. College of Mathematics, Physics and Software Engineering, Lanzhou Jiaotong University, Lanzhou, China 730070; 2. School of Mathematics, Lanzhou City College, Lanzhou, China 730070)
The existence of exponential attractors for a non-classical reaction-diffusion equation is proved in this paper. When the nonlinearity is a polynomial growth of arbitrary order, corresponding conclusions will be drawn.
Non-classical Reaction-diffusion; Exponential Attractors; Polynomial Growth of Arbitrary Order
O175.8
A
1674-3563(2013)03-0052-04
10.3875/j.issn.1674-3563.2013.03.009 本文的PDF文件可以從xuebao.wzu.edu.cn獲得
(編輯:王一芳)
2012-11-07
國(guó)家自然科學(xué)基金(11261027)
方田君(1987- ),女,甘肅蘭州人,碩士研究生,研究方向:運(yùn)籌學(xué)與控制論