• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    QTL mapping of starch granule size in common wheat using recombinant inbred lines derived from a PH82-2/Neixiang 188 cross

    2013-05-08 08:24:48NnFengZhonghuHeYongZhngXinchunXiYnZhng
    The Crop Journal 2013年2期

    Nn Feng,Zhonghu He,b,Yong Zhng,Xinchun Xi,Yn Zhng,*

    aInstitute of Crop Science,National Wheat Improvement Center/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences(CAAS),Beijing 100081,China

    bInternational Maize and Wheat Improvement Center(CIMMYT)China Office,c/o CAAS,Beijing 100081,China

    QTL mapping of starch granule size in common wheat using recombinant inbred lines derived from a PH82-2/Neixiang 188 cross

    Nan Fenga,Zhonghu Hea,b,Yong Zhanga,Xianchun Xiaa,Yan Zhanga,*

    aInstitute of Crop Science,National Wheat Improvement Center/The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences(CAAS),Beijing 100081,China

    bInternational Maize and Wheat Improvement Center(CIMMYT)China Office,c/o CAAS,Beijing 100081,China

    A R T I C L E I N F O

    Article history:

    Received 25 February 2013

    Received in revised form 15 May 2013

    Accepted 28 May 2013

    Available online 10 July 2013

    Triticum aestivum

    QTL

    Starch granule size distribution

    A-type starch granule

    B-type starch granule

    Starch is a crucial component determining the processing quality of wheat(Triticum aestivum L.)-based products.Wheat starch generally contains A-type and B-type starch granules,having different effects on starch properties and end-use qualities.In the present study,240 recombinant inbred lines(RILs)derived from a PH82-2/Neixiang 188 cross were grown in Anyang,Henan,China,during three cropping seasons.A-type and B-type granule contents were determined using a laser diffraction particle size analyzer,defined as the percentage of totalstarch volume.A total of195 SSR and STS markers were used to construct a genetic map.QTL analysis was performed by composite interval mapping.Three QTL for A-type starch granule content were mapped on chromosomes 1DL,7BL and 4AL,explaining 5.6%,5.2%and 3.8%of the phenotypic variation,respectively.These results provide useful information for improving starch quality in common wheat.

    ?2013 Crop Science Society of China and Institute of Crop Science,CAAS.Production and hosting by Elsevier B.V.All rights reserved.

    1.Introduction

    Starch,a major component of wheat(Triticum aestivum L.) endosperm,accounts for 65–75%of the dry weight of the mature grain and is highly related to end-use quality of wheat-based products[1,2].Generally,wheat endosperm contains A-type and B-type starch granules,showing a bimodal granule size distribution.A-type granules are bigger(10–35 μm)and disk-or lenticular-shaped,accounting for 3%of total wheat starch by number and more than 70%by weight,whereas B-type granules are smaller(<10 μm)and spherical or angular,making up over 90%by number and less than 30%by weight[3–6].

    In wheat,A-type starch granules begin to form 3 d postanthesis,whereas B-type starch granules occur 15 d post-anthesis[2,7],resulting in differences in the molecular organization of amylose and amylopectin fractions and the molecular architecture of amylopectin[8–11].A-type granules have higher gelatinization enthalpy,peak viscosity,minimum viscosity,breakdown viscosity,final viscosity,setback and lower gelatinization onset,peak temperature,and amylopectin content,whereas B-type granules have higher amylose/lipid complex enthalpy and lower onset temperature[2,12–16].

    Differences in chemical and structural properties of A-type and B-type starch granules lead to different functionalities. It was reported that higher proportions of smaller granules increased dough elastic properties[17].B-type granules bind more water,which likely increases dough stiffness and reduces the elasticity[18].The processing ability and the qualities of both dried and cooked starch noodles made from small-sized granule fractions are much better than those made from large-sized granule fractions[19],but small A-type granules (about 12 μm)can increase bread weight[20].When A-type and B-type starch granules were remixed in various proportions,the optimum proportion of B-type granules for superior bread quality was 25–35%by weight[21].On the other hand, environmental factors influenced starch size distribution,but cultivars played a major role[22].Therefore,it is necessary to study the genetic factors influencing starch size distribution.

    A few QTL studies of starch granules have been done in Triticeae crops.A major QTL was identified on chromosome 4S of Ae.peregrina for the content of B-type starch granules, accounting for 44.4%of the phenotypic variation[23].A QTL for A:B ratio was detected on wheatchromosome 4B[24].AQTL was found on barley chromosome 2(2H),affecting A-type granules and the mean F-shape of B-type granules,and two others on chromosomes 4(4H)and 7(5H)affected the mean F-shape of B-type granule and the mean maximum diameter of A-type granules,respectively[25].In addition,QTL were localized for granules<5.0 μm,5.1–10.0 μm and>28.0 μm on chromosome 4DS and for granules 10.1–15.0 μm on 7AS and 1BL[26].

    However,there is no consistent major QTL controlling starch granule size or distribution,and no study on QTL mapping of starch granule size distribution in Chinese wheat cultivars has been carried out.Thus any association ofstarch granule type and Chinese dry noodle properties remains unknown.The aim of the present study was to map QTL for differences in wheat starch granules using a RIL population derived from a PH82-2/Neixiang 188 cross,and to identify closely linked molecular markers. PH82-2,a hard wheat released in Shandong,China,is suitable for making Chinese noodles and steamed bread,whereas Neixiang 188,a soft wheat released in Henan,is known for its broad adaptation.Both ofthemhave wild type non-waxy protein genes.

    2.Materials and methods

    2.1.Plant materials and field trials

    The 240 recombinant inbred lines(RILs)generated from a PH82-2/Neixiang 188 cross were used for QTL mapping of starch granule size distribution.Field trials were conducted in a latinized alpha lattice design[27]with three partial replications at Anyang,Henan,China,in the 2005–2006,2010–2011 and 2011–2012 cropping seasons.In total,390 plots were assigned to a 13 row×30 column array at each location, among which 60 RILs were randomly selected and then planted with three replications,whereas the other 180 RILs were planted in single replications in the 2005–2006 season.In 2010–2011 and 2011–2012 seasons,320 plots were assigned to a 10 row×32 column array at each location,among which the 60 RILs randomly selected in the 2005–2006 season were planted with two replications,and the other 180 RILs were planted as a single replication.The two parents were included as check cultivars with 10 to 15 replications in each field trial across seasons for error estimation.

    2.2.Milling

    Grain hardness was measured on 300-kernel samples with a Perten Single Kernel Characterization System(SKCS)4100 (Perten Instruments,Springfield,IL,USA).The tested samples were tempered overnight to 14.5%,15.5%and 16.5%moisture for soft,medium,and hard wheats,respectively.Grain samples of 100 g from each line were milled using a Brabender Quadrumat Junior Mill(Brabender Inc.,Duisberg,Germany).

    2.3.Starch isolation and granule size determination

    Starch was extracted according to Liu et al.[28]and Park et al. [29]with minor modifications,in which the tailings were centrifuged twice and all the starch was pooled together.To separate gluten from starch,dough was prepared by mixing 6 g offlourwith 4 g ofdistilled water,stood for 10 min,and then washed with 60 mL of water.The gluten was washed twice with 20 mL of water to ensure collection of all the starch.The combined starch suspensions were filtered through a nylon bolting cloth(75 μm openings)to remove impurities.The starch suspension was centrifuged at 2,500×g for 15 min,and the supernatant was discarded.The precipitate was divided into two portions and the upper gray-colored tailings were moved to another tube.Water(3 mL g?1of starch)was added into the lower light-colored portions and slurries were centrifuged again. These steps were repeated until there were no gray-colored tailings on top of the starch.The tailings that gathered from each repeat were re-suspended and centrifuged twice.Then, the top layer was discarded as described above.The upper and lower portions were combined,frozen,lyophilized and ground lightly with a mortar and pestle to pass a 100-mesh sieve.

    A-type and B-type starch granule contents were determined using a Sympatec Helos/Rodos laser diffraction particle size analyzer(Sympatec GmbH,Clausthal-Zellerfeld,Germany), and the data were calculated as the percentage of total starch volume.Granules with sizes of<10.0 μm and 10.1–35.0 μm in diameter were classified as B-type and A-type starch granules, respectively[6].Granules with diameters>35.0 μm were considered to be impurities or starch polymers.Each sample was measured twice,and the differences between two repeats of B-type granule contents were less than 0.5%.

    2.4.Statistical analysis

    All traits were separately analyzed by fitting an appropriate spatial model with rows and columns[30,31].The best linear unbiased predictions from the best-fit model were used forsubsequent analysis[30].Analysis of variance,correlation coefficients and other computations were conducted by the Statistical Analysis System(SAS)v9.0(SAS Institute Inc.,Cary, NC,USA).

    2.5.QTL analysis

    The linkage map and marker data for the RIL population were described in a previous study[31].A total of 195 SSR and STS markers were used to construct the linkage map.QTL were detected by composite interval mapping(CIM)based on 1,000 permutation tests and a LOD score of 2.0 with the software QTL Cartographer v2.5.Map distances in centiMorgan units were calculated from recombination values using the Kosambi mapping function.

    Table 2–Mean,rangeandheritabilities(h2)ofthecontentsof A-type and B-type starch granules among PH82-2/Neixiang 188 RILs and parents based on phenotypic data averaged over three years.

    3.Results

    3.1.Phenotypic variation and broad-sense heritability

    The correlation coefficients of A-type and B-type starch granule contents across three cropping seasons are presented in Table 1.The contents of A-type starch granules or B-type starch granules among different years were positively correlated,with the correlation coefficients in the ranges of 0.35–0.46 and 0.53–0.66,respectively.The contents of A-type and B-type starch granules in the same years were negatively correlated, with correlation coefficients of–0.72,–0.78 and–0.46 in 2006, 2011 and 2012,respectively.

    The mean contents of A-type starch granules of PH82-2 and Neixiang 188 were 79.9%and 82.6%,whereas the mean contents of B-type starch granules were 17.4%and 16.9%, respectively(Table 2).The mean contents of A-type and B-type starch granules in the RIL population were 79.0%and 18.1%,with ranges of 65.7–89.0%and 11.9–28.2%,respectively.Although there were no obvious differences between PH82-2 and Neixiang 188,variation among RILs was significant with transgressive segregation observed in the RIL population(Fig.1),indicating polygenic inheritance.

    The analysis of variance for the 240 RILs showed that genotypes,years and their interaction had significant variances,and genotypes contributed to the largest component. Broad-sense heritabilities(h2)estimated for A-type and B-type starch granules were 81.2%and 87.3%,respectively.

    Table 1–Correlation coefficients of contents of A-type and B-type starch granules for PH82-2/Neixiang 188 RILs across three years.

    3.2.QTL for starch granule size

    Three QTL for content of A-type starch granules were detected in the population(Table 3 and Fig.2).Two QTL on chromosomes 1DL and 7BL were found in the 2012 trial,explaining 5.6 and 5.2%of phenotypic variation,with the increasing allele effects from Neixiang 188 and PH82-2,respectively.One QTL with the increasing allele effect from PH82-2 was located on chromosome 4AL in the 2006 trial,explaining 3.8%of the phenotypic variation.

    The LOD threshold for significance was 2.0.LOD scores are shown on the horizontal axes,and molecular markers and genetic distances(cM)are shown on the vertical axes.

    4.Discussion

    4.1.Location of QTL for relative starch granule types

    In previous studies,a major QTL for starch granule size distribution was mapped on group 4 chromosomes in Triticeae [23–26].Although Qga.caas-4AL was located near the Wx-B1 locus,both parents in the current cross have the wild type non-waxy Wx-B1 allele,thus suggesting a different locus.No QTL was previously found on chromosomes 1DL,4AL and 7BL in common wheat,implying that the present QTL for content of A-type starch granules are new.However,the QTL were not consistently detected across environments and thus other populations or materials should be used in QTL or association mapping to validate these findings.

    It was concluded that A-type and B-type starch granules were controlled by different genes[32].Although the relative quantity reflects the granule size distribution and is relatively easy to estimate.Percentage volume is not a suitable parameter for direct comparison of QTL conferring the two types of granules. Therefore,the specific diameters,numbers and weights of A-type and B-type starch granules should be examined in the future.

    Fig.1–Frequency distribution of percentage volumes of A-type and B-type starch granules in the RIL population from PH82-2/ Neixiang 188 in three years.

    4.2.QTL for starch properties

    Starch granule size and RVA parameters are important factors in determining starch function.In a previous study,RVA parameters were mapped with the same RIL population[31]. Compared to the previous results,Qga.caas-1DL was located near QTL for sedimentation value and mixograph parameters and the marker for Dx5+Dy10,where a QTL for palate, stickiness and smoothness of Chinese dry noodle was also mapped[33],indicating that these parameters are related to each other and may have pleiotropic effects on noodle quality.The QTL for both starch properties and dough tolerance may contribute to quality improvement.In addition,Batey et al.[24]mapped a QTL for peak viscosity on chromosome 7BL in the same interval as Qga.caas-7BL. Therefore,content of A-starch granules is closely related to RVA parameters.

    Table 3–QTL for content of A-type starch granules detected by composite interval mapping(CIM)in the RIL population from PH82-2/Neixiang 188.

    4.3.Relationship of identified QTL with starch biosynthesis enzymes

    Many enzymes are involved in starch biosynthesis.The genes for the key enzyme involved in amylose synthesis,granulebound starch synthase I(GBSS I),were identified on chromosomes 7AS,4AL and 7DS[34].It was reported that partially waxy and waxy wheats had less A-type starch granules and more B-type starch granules than non-waxy wheats[35].GBSS I was found to be responsible for the ratio of A-type to B-type starch granules[1].In this study,however,both PH82-2 andNeixiang 188 have wild type Wx-A1,Wx-B1 and Wx-D1 alleles and no QTL was found at these loci.

    Soluble starch synthase may control starch granule size distribution in the early stage of grain filling[1].SS III and SS IV(soluble starch synthase)genes were located on common wheat homoeologous group 1 chromosomes[36,37],and it was reported that SS IV affected starch granule formation in Arabidopsis thaliana[38].In addition,the genes for ADP-glucose pyrophosphorylase low subunit,SS I and SS II,and branching enzymes(SBE I and SBE II)were located on homoeologous group 7 chromosomes[39–42].Starch branching enzymes were associated with A-type starch granules[7].Mutation of an isoamylase gene on barley chromosome 7H was found to have a dramatic effect on the number,structure and initiation of starch granules[43].However,map positions of these genes have not been determined.The possibility that these genes are candidate genes for Qga.caas-1DL and Qga.caas-7BL remains unknown.To understand the synthesis of starch granules, more traits,such as diameter,number and weight of starch granules should be examined.

    Starch granule development can be divided into two stages,formation of the starch granule nuclei and development of the nuclei into A and B granules[7].The enzymes mentioned above may have different functions in the two phases,or there may be other enzymes regulating starch granule initiation and development.This should be verified by expression analysis of starch biosynthesis enzymes combined with dynamic changes during granule development.Exploring the mechanism of starch granule formation and the driving key enzymes will help develop cultivars with desirable quality characteristics through genetic engineering and markerassisted selection.

    The isolation method has a significant effect on starch granules.We dried wet starch by 40°C treatment and lyophilization.Compared to high temperature drying,lyophilization produced more starch(1–35 μm)up to 90%or even 100%, with less peaks beyond 35 μm.The latter may be caused by aggregation of small starch granules that are difficult to separate after drying.

    Despite significant environmental effects,starch granule size distribution can be genetically determined.Fine mapping and discovering novelgenes are feasible and fundamentalfor further study and eventually for breeding high quality cultivars.

    Fig.2–Logarithm of odds(LOD)contours obtained by composite interval mapping(CIM)for QTL on chromosomes 1D,4A and 7B for content of A-type starch granules in the PH82-2/Neixiang 188 RIL population.

    Acknowledgments

    The study was supported by the National Natural Science Foundation of China(31171547)and China Agriculture Research System(CARS-3-1-3).

    R E F E R E N C E S

    [1]C.H.Zhang,D.Jiang,F.L.Liu,J.Cai,T.B.Dai,W.X.Cao,Starch granules size distribution in superior and inferior grains of wheatis related to enzyme activities and their gene expressions during grain filling,J.Cereal Sci.51(2010)226–233.

    [2]Y.A.Yin,J.C.Qi,W.H.Li,L.P.Cao,Z.B.Wang,Formation and developmental characteristics of A-and B-type starch granules in wheat endosperm,J.Integr.Agric.11(2012)73–81.

    [3]A.D.Evers,The size distribution among starch granules in wheat endosperm,Starch-Starke 25(1973)303–304.

    [4]H.S.Kim,K.C.Huber,Channels within soft wheat starch A-and B-type granules,J.Cereal Sci.48(2008)159–172.

    [5]W.R.Morrison,H.Gadan,The amylose and lipid contents of starch granules in developing wheat endosperm,J.Cereal Sci. 5(1987)263–275.

    [6]M.Peng,M.Gao,E.S.M.Abdel-Aal,P.Hucl,R.N.Chibbar, Separation and characterization of A-and B-type starch granules in wheat endosperm,Cereal Chem.76(1999) 375–379.

    [7]M.Peng,M.Gao,M.Baga,P.Hucl,R.N.Chibbar, Starch-branching enzymes preferentially associated with A-type starch granules in wheat endosperm,Plant Physiol. 124(2000)265–272.

    [8]D.B.Bechtel,I.Zayas,L.Kaleikau,Y.Pomeranz, Size-distribution of wheat starch granules during endosperm development,Cereal Chem.67(1990)59–63.

    [9]L.Copeland,J.Blazek,H.Salman,M.C.Tang,Form and functionality of starch,Food Hydrocolloid 23(2009)1527–1534.

    [10]M.L.Parker,The relationship between A-type and B-type starch granules in the developing endosperm of wheat, J.Cereal Sci.3(1985)271–278.

    [11]S.V.Shinde,J.E.Nelson,K.C.Huber,Soft wheat starch pasting behavior in relation to A-and B-type granule content and composition,Cereal Chem.80(2003)91–98.

    [12]B.P.Geera,J.E.Nelson,E.Souza,K.C.Huber,Composition and properties ofA-and B-type starch granules ofwild-type,partial waxy,and waxy soft wheat,Cereal Chem.83(2006)551–557.

    [13]H.S.Kim,K.C.Huber,Physicochemical properties and amylopectin fine structures of A-and B-type granules of waxy and normal soft wheat starch,J.Cereal Sci.51(2010)256–264.

    [14]S.Sahlstr?m,A.B.B?vre,E.Br?then,Impact of starch properties on hearth bread characteristics:I.Starch in wheat flour,J.Cereal Sci.37(2003)275–284.

    [15]S.Sahlstr?m,A.B.B?vre,E.Br?then,Impact of starch properties on hearth bread characteristics:II.Purified A-and B-granule fractions,J.Cereal Sci.37(2003)285–293.

    [16]H.N.Soh,M.J.Sissons,M.A.Turner,Effect of starch granule size distribution and elevated amylose content on durum dough rheology and spaghetti cooking quality,Cereal Chem. 83(2006)513–519.

    [17]N.M.Edwards,J.E.Dexter,M.G.Scanlon,Starch participation in durum dough linear viscoelastic properties,Cereal Chem. 79(2002)850–856.

    [18]Y.C.Huang,H.M.Lai,Noodle quality affected by different cereal starches,J.Food Eng.97(2010)135–143.

    [19]Z.Chen,H.A.Schols,A.G.J.Voragen,Starch granule size strongly determines starch noodle processing and noodle quality,J.Food Sci.68(2003)1584–1589.

    [20]S.Sahlstr?m,E.Br?then,P.Lea,K.Autio,Influence of starch granule size distribution on bread characteristics,J.Cereal Sci.28(1998)157–164.

    [21]A.B.Soulaka,W.R.Morrison,The bread baking quality of six wheat starches differing in composition and physical properties,J.Sci.Food Agric.36(1985)719–727.

    [22]H.Dengate,P.Meredith,Variation in size distribution of starch granules from wheat grain,J.Cereal Sci.2(1984)83–90.

    [23]T.Howard,N.A.Rejab,S.Griffiths,F.Leigh,M.Leverington-Waite, J.Simmonds,C.Uauy,K.Trafford,Identification of a major QTL controlling the content of B-type starch granules in Aegilops,J. Exp.Bot.62(2011)2217–2228.

    [24]I.L.Batey,M.J.Hayden,S.Cai,P.J.Sharp,G.B.Cornish,M.K. Morell,R.Apples,Genetic mapping of commercially significant starch characteristics in wheat crosses,Aust.J. Agr.Res.52(2001)1287–1296.

    [25]A.Borém,D.E.Mather,D.C.Rasmusson,R.G.Fulcher,P.M. Hayes,Mapping quantitative trait loci for starch granule traits in barley,J.Cereal Sci.29(1999)153–160.

    [26]G.Igrejas,B.Faucher,D.Bertrand,D.Guilbert,P.Leroy,G. Branlard,Genetic analysis of the size of endosperm starch granules in a mapped segregating wheat population,J.Cereal Sci.35(2002)103–107.

    [27]Y.Zhang,Z.H.He,A.M.Zhang,M.van Ginkel,R.J.Pe?a,G.Y. Ye,Pattern analysis on protein properties of Chinese and CIMMYT spring wheat cultivars sown in China and CIMMYT, Aust.J.Agr.Res.57(2006)811–822.

    [28]Q.Liu,Z.Gu,E.Donner,I.Tetlow,M.Emes,Investigation of digestibility in vitro and physicochemical properties of A-and B-type starch from soft and hard wheat flour,Cereal Chem.84(2007)15–21.

    [29]S.H.Park,O.K.Chung,P.A.Seib,Effects of varying weight ratios of large and small wheat starch granules on experimental straight-dough bread,Cereal Chem.82(2005)166–172.

    [30]A.R.Gilmour,B.R.Cullis,A.Verbyla,Accounting for natural and extraneous variation in the analysis of field experiments, J.Agric.Biol.Environ.Stat.2(1997)269–293.

    [31]Y.L.Zhang,Y.P.Wu,Y.G.Xiao,J.Yan,C.X.Ma,X.C.Xia,Z.H. He,QTL mapping for milling,gluten quality,and flour pasting properties in a recombinant inbred line population derived from a Chinese soft×hard wheat cross,Crop Pasture Sci.60 (2009)587–597.

    [32]F.L.Stoddard,Genetics of wheat starch B-granule content, Euphytica 112(2000)23–31.

    [33]J.L.Zhao,M.S.Chen,Y.M.Ma,R.J.Li,Y.P.Ren,Q.Q.Sun,S.S.Li, QTL mapping for quality traits of Chinese dry noodle,Agric. Sci.China 8(2009)394–400.

    [34]T.Nakamura,M.Yamamori,H.Hirano,S.Hidaka,Identification of three Wx proteins in wheat(Triticum aestivum L.),Biochem. Genet.31(1993)75–86.

    [35]A.C.Bertolini,E.Souza,J.E.Nelson,K.C.Huber,Composition and reactivity of A-and B-type starch granules of normal, partial waxy,and waxy wheat,Cereal Chem.80(2003) 544–549.

    [36]Z.Li,G.Mouille,B.Kosar-Hashemi,S.Rahman,B.Clarke,K.R. Gale,R.Appels,M.K.Morell,The structure and expression of the wheat starch synthase I gene.Motifs in the expressed gene define the lineage of the starch synthase III gene family, Plant Physiol.123(2000)613–624.

    [37]M.Leterrier,L.D.Holappa,K.E.Broglie,D.M.Beckles,Cloning, characterisation and comparative analysis of a starch synthase IV gene in wheat:functional and evolutionary implications,BMC Plant Biol.8(2008)98.

    [38]I.Roldán,F.Wattebled,M.Mercedes Lucas,D.Delvallé,V. Planchot,S.Jiménez,R.Pérez,S.Ball,C.D'hulst,Mérida,The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation,Plant J. 49(2007)492–504.

    [39]C.Ainsworth,M.Tarvis,J.Clark,Isolation and analysis of a cDNA clone encoding the small subunit of ADP-glucose pyrophosphorylase from wheat,Plant Mol.Biol.23(1993)23–33.

    [40]Z.Y.Li,X.S.Chu,G.Mouille,L.L.Yan,B.Kosar-Hashemi,S.Hey, J.Napier,P.Shewry,B.Clarke,R.Appels,M.Morell,S.Rahman, The localization and expression of the class IIstarch synthases of wheat,Plant Physiol.120(1999)1147–1155.

    [41]K.F.McCue,W.J.Hurkman,C.K.Tanka,O.D.Anderson, Starch-branching enzymes Sbe1 and Sbe2 from wheat (Triticum aestivum cv.Cheyenne):molecular characterization, development expression,and homoeologue assignment by differential PCR,Plant Mol.Biol.Rep.20(2002)191–192.

    [42]M.Yamamori,T.Endo,Variation of starch granule proteins and chromosome mapping of their coding genes in common wheat,Theor.Appl.Genet.93(1996)275–281.

    [43]R.A.Burton,H.Jenner,L.Carrangis,B.Fahy,G.B.Fincher,C. Hylton,D.A.Laurie,M.Parker,D.Waite,S.van Wegen,T. Verhoeven,K.Denyer,Starch granule initiation and growth are altered in barley mutants that lack isoamylase activity, Plant J.31(2002)97–112.

    *Corresponding author.Tel.:+86 10 82108741.

    E-mail address:zhangyan07@caas.cn(Y.Zhang).

    Peer review under the responsibility of Crop Science Society of China and Institute of Crop Science,CAAS.

    久久久久久免费高清国产稀缺| 国产精品免费视频内射| 老司机深夜福利视频在线观看| 欧美 亚洲 国产 日韩一| 亚洲欧美精品综合一区二区三区| 成人特级黄色片久久久久久久 | 热99久久久久精品小说推荐| 一进一出好大好爽视频| www.999成人在线观看| 久久国产精品大桥未久av| 日本a在线网址| 波多野结衣一区麻豆| 久久国产精品人妻蜜桃| 女同久久另类99精品国产91| 欧美黄色片欧美黄色片| 国产精品成人在线| 啦啦啦中文免费视频观看日本| 少妇 在线观看| 男女无遮挡免费网站观看| 免费观看av网站的网址| 日韩中文字幕视频在线看片| 激情在线观看视频在线高清 | 日本五十路高清| 亚洲成人国产一区在线观看| 1024视频免费在线观看| www.精华液| 老司机亚洲免费影院| 三上悠亚av全集在线观看| 精品少妇黑人巨大在线播放| 在线观看免费午夜福利视频| 久久99热这里只频精品6学生| 亚洲欧美精品综合一区二区三区| 12—13女人毛片做爰片一| 国产高清视频在线播放一区| 亚洲av成人不卡在线观看播放网| 涩涩av久久男人的天堂| 波多野结衣av一区二区av| 免费少妇av软件| 欧美老熟妇乱子伦牲交| 国产成人精品在线电影| 在线看a的网站| 亚洲五月婷婷丁香| 热99re8久久精品国产| 日韩中文字幕视频在线看片| 最近最新中文字幕大全电影3 | 国产色视频综合| 国产男女内射视频| 成人18禁高潮啪啪吃奶动态图| 麻豆成人av在线观看| 久久久欧美国产精品| 一级,二级,三级黄色视频| 亚洲国产中文字幕在线视频| 中文亚洲av片在线观看爽 | 国产精品偷伦视频观看了| 亚洲精品国产色婷婷电影| 9色porny在线观看| 中文亚洲av片在线观看爽 | 人人妻人人爽人人添夜夜欢视频| 久久久久国内视频| 黄色怎么调成土黄色| 亚洲精品国产区一区二| 久久精品人人爽人人爽视色| 日本撒尿小便嘘嘘汇集6| 91九色精品人成在线观看| 亚洲伊人色综图| 精品久久久久久久毛片微露脸| 午夜老司机福利片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产毛片av蜜桃av| 亚洲精品自拍成人| 日日夜夜操网爽| 飞空精品影院首页| 国产精品av久久久久免费| 最新在线观看一区二区三区| 高清欧美精品videossex| 少妇精品久久久久久久| 国产黄色免费在线视频| 脱女人内裤的视频| 波多野结衣av一区二区av| 18禁美女被吸乳视频| 精品久久蜜臀av无| 麻豆乱淫一区二区| 日本精品一区二区三区蜜桃| 精品久久久久久电影网| 97人妻天天添夜夜摸| 国产精品久久久人人做人人爽| 免费看十八禁软件| 国精品久久久久久国模美| 嫩草影视91久久| 国产av精品麻豆| 国产成人欧美在线观看 | 久热这里只有精品99| 麻豆av在线久日| 丰满迷人的少妇在线观看| 999久久久精品免费观看国产| 国产精品二区激情视频| tocl精华| 国产亚洲精品一区二区www | 又大又爽又粗| 亚洲欧美日韩高清在线视频 | 精品欧美一区二区三区在线| 亚洲成人免费电影在线观看| 国产免费现黄频在线看| 高清av免费在线| 一级黄色大片毛片| 黄色视频不卡| 婷婷丁香在线五月| 妹子高潮喷水视频| 极品教师在线免费播放| 欧美国产精品一级二级三级| 亚洲欧美日韩另类电影网站| 日韩欧美三级三区| 老司机午夜十八禁免费视频| 下体分泌物呈黄色| 高清视频免费观看一区二区| 亚洲免费av在线视频| 岛国在线观看网站| 亚洲av美国av| 桃花免费在线播放| 欧美日韩av久久| kizo精华| 性少妇av在线| 久久国产精品影院| 国产成人精品在线电影| 午夜成年电影在线免费观看| 亚洲国产欧美日韩在线播放| 亚洲aⅴ乱码一区二区在线播放| 国产高清videossex| 亚洲中文字幕一区二区三区有码在线看 | 国产成人aa在线观看| 亚洲国产欧美网| 久久国产乱子伦精品免费另类| 男女视频在线观看网站免费| 国产高清三级在线| 婷婷精品国产亚洲av在线| 日本免费a在线| 精品99又大又爽又粗少妇毛片 | 美女 人体艺术 gogo| 一个人看视频在线观看www免费 | 在线观看日韩欧美| 欧美日韩国产亚洲二区| 国产精品久久久久久精品电影| 真人一进一出gif抽搐免费| 人人妻人人看人人澡| 亚洲欧美日韩无卡精品| 日本 欧美在线| 脱女人内裤的视频| 国产精品99久久久久久久久| 黄片小视频在线播放| 亚洲国产色片| 岛国在线观看网站| 国产成年人精品一区二区| 在线免费观看不下载黄p国产 | 成年人黄色毛片网站| 真人做人爱边吃奶动态| 日韩成人在线观看一区二区三区| 午夜福利在线观看吧| 啦啦啦观看免费观看视频高清| 91字幕亚洲| 国产精品女同一区二区软件 | 久久精品国产清高在天天线| 免费在线观看成人毛片| 久久国产精品影院| 美女高潮喷水抽搐中文字幕| 首页视频小说图片口味搜索| 国产一级毛片七仙女欲春2| 国产成人福利小说| 高清在线国产一区| 亚洲精品一区av在线观看| 啪啪无遮挡十八禁网站| 日日夜夜操网爽| 亚洲精品在线观看二区| 99国产精品一区二区蜜桃av| 丁香六月欧美| 午夜免费观看网址| 少妇的丰满在线观看| 日本成人三级电影网站| 国产黄色小视频在线观看| 国产aⅴ精品一区二区三区波| 一区二区三区激情视频| 免费观看人在逋| 级片在线观看| 国产av在哪里看| 亚洲黑人精品在线| 91在线观看av| 国产蜜桃级精品一区二区三区| 精品熟女少妇八av免费久了| 国产精品1区2区在线观看.| 变态另类丝袜制服| 校园春色视频在线观看| 日韩欧美 国产精品| 精品国产乱码久久久久久男人| 国产高清videossex| 日韩精品青青久久久久久| 亚洲国产精品成人综合色| 欧美最黄视频在线播放免费| 午夜福利欧美成人| 亚洲人成伊人成综合网2020| 亚洲国产高清在线一区二区三| 舔av片在线| 国产精品永久免费网站| 国产野战对白在线观看| 精品一区二区三区视频在线 | 一a级毛片在线观看| 麻豆成人午夜福利视频| 一级黄色大片毛片| 亚洲欧美一区二区三区黑人| 窝窝影院91人妻| 国产一区二区在线观看日韩 | 国产精品亚洲av一区麻豆| 熟女电影av网| 色播亚洲综合网| 成人欧美大片| 国产私拍福利视频在线观看| 欧美日韩亚洲国产一区二区在线观看| 97碰自拍视频| 国产精华一区二区三区| 老司机在亚洲福利影院| 久久久精品欧美日韩精品| av黄色大香蕉| 美女免费视频网站| 99热6这里只有精品| 三级男女做爰猛烈吃奶摸视频| 精品久久久久久久毛片微露脸| 丰满人妻熟妇乱又伦精品不卡| av天堂在线播放| 成人无遮挡网站| 亚洲av成人一区二区三| 天堂√8在线中文| 成人三级做爰电影| 国产三级在线视频| 无人区码免费观看不卡| 两个人的视频大全免费| 桃红色精品国产亚洲av| 亚洲精品一卡2卡三卡4卡5卡| 亚洲无线在线观看| 国产探花在线观看一区二区| 国产精品一及| 欧美中文综合在线视频| 亚洲国产精品999在线| 久久久色成人| 黑人巨大精品欧美一区二区mp4| 叶爱在线成人免费视频播放| 一级毛片高清免费大全| 亚洲激情在线av| 久久久国产成人精品二区| 不卡一级毛片| 中国美女看黄片| 香蕉久久夜色| 久久久国产精品麻豆| 午夜久久久久精精品| 亚洲欧美日韩无卡精品| 日本撒尿小便嘘嘘汇集6| 亚洲 欧美 日韩 在线 免费| 亚洲精华国产精华精| 中文资源天堂在线| 亚洲无线在线观看| 精品久久久久久久久久免费视频| 久久精品aⅴ一区二区三区四区| 免费在线观看成人毛片| 久久久久久九九精品二区国产| 成人无遮挡网站| 亚洲自偷自拍图片 自拍| АⅤ资源中文在线天堂| 久久人妻av系列| www日本黄色视频网| 国产成人av教育| 成年女人看的毛片在线观看| 麻豆av在线久日| 久久精品亚洲精品国产色婷小说| 久久久久久久午夜电影| 天堂影院成人在线观看| 亚洲美女视频黄频| 99热这里只有精品一区 | 国产私拍福利视频在线观看| 嫁个100分男人电影在线观看| 亚洲精品乱码久久久v下载方式 | 搡老熟女国产l中国老女人| 村上凉子中文字幕在线| 性色av乱码一区二区三区2| 黄色丝袜av网址大全| 精品电影一区二区在线| 欧美性猛交黑人性爽| 国产精品亚洲av一区麻豆| 黑人巨大精品欧美一区二区mp4| 最好的美女福利视频网| 欧美黑人欧美精品刺激| 最近最新中文字幕大全免费视频| 国产v大片淫在线免费观看| 99精品在免费线老司机午夜| www日本在线高清视频| 成人av一区二区三区在线看| 琪琪午夜伦伦电影理论片6080| 啪啪无遮挡十八禁网站| av黄色大香蕉| 激情在线观看视频在线高清| 此物有八面人人有两片| 色吧在线观看| 精品久久蜜臀av无| 精品国产超薄肉色丝袜足j| 亚洲狠狠婷婷综合久久图片| 中出人妻视频一区二区| 午夜两性在线视频| 俄罗斯特黄特色一大片| 亚洲avbb在线观看| 不卡一级毛片| 长腿黑丝高跟| 麻豆国产av国片精品| 亚洲欧美日韩高清在线视频| 午夜免费成人在线视频| 午夜福利在线观看吧| 欧美一级毛片孕妇| 麻豆成人av在线观看| 亚洲国产欧美人成| 久久草成人影院| 午夜福利在线观看免费完整高清在 | 欧美在线黄色| 国模一区二区三区四区视频 | 十八禁网站免费在线| aaaaa片日本免费| 欧美激情久久久久久爽电影| 欧美黄色片欧美黄色片| 操出白浆在线播放| 国产精品国产高清国产av| 久久天堂一区二区三区四区| 操出白浆在线播放| 欧美不卡视频在线免费观看| 亚洲中文av在线| 国产成人啪精品午夜网站| 日韩中文字幕欧美一区二区| 国产精品爽爽va在线观看网站| 欧美成人免费av一区二区三区| 黄色日韩在线| 天堂动漫精品| 三级毛片av免费| 亚洲色图av天堂| 国产成人福利小说| 人妻久久中文字幕网| 国产99白浆流出| 日本a在线网址| 一级毛片女人18水好多| 国产野战对白在线观看| 99riav亚洲国产免费| 久久久久久久久中文| 国内揄拍国产精品人妻在线| 国产真实乱freesex| 日韩精品中文字幕看吧| АⅤ资源中文在线天堂| 99久久综合精品五月天人人| 欧美三级亚洲精品| 性色av乱码一区二区三区2| 亚洲人成网站高清观看| 2021天堂中文幕一二区在线观| 毛片女人毛片| 亚洲va日本ⅴa欧美va伊人久久| 国产高清视频在线观看网站| 中文字幕久久专区| 国产精品日韩av在线免费观看| 一级毛片精品| 色综合站精品国产| 国产成人精品久久二区二区免费| 国产精品精品国产色婷婷| 黑人操中国人逼视频| 亚洲狠狠婷婷综合久久图片| 久久精品亚洲精品国产色婷小说| 亚洲七黄色美女视频| 国产精品乱码一区二三区的特点| 99国产精品一区二区蜜桃av| 一二三四在线观看免费中文在| a级毛片在线看网站| 一个人看的www免费观看视频| 国产成人精品久久二区二区91| 国内精品一区二区在线观看| 亚洲精华国产精华精| 黄色成人免费大全| 午夜免费激情av| 中文亚洲av片在线观看爽| 男人的好看免费观看在线视频| 全区人妻精品视频| 一级作爱视频免费观看| 欧美又色又爽又黄视频| 国产单亲对白刺激| 日韩 欧美 亚洲 中文字幕| 亚洲avbb在线观看| 国产91精品成人一区二区三区| 国产又黄又爽又无遮挡在线| 亚洲av成人av| 一区二区三区国产精品乱码| 欧美性猛交╳xxx乱大交人| 国产亚洲精品一区二区www| 91av网站免费观看| 国产毛片a区久久久久| 天天躁日日操中文字幕| 久久国产精品影院| 高清毛片免费观看视频网站| 每晚都被弄得嗷嗷叫到高潮| 午夜激情欧美在线| 亚洲国产精品999在线| 精品日产1卡2卡| 男女下面进入的视频免费午夜| 法律面前人人平等表现在哪些方面| 亚洲片人在线观看| 九色国产91popny在线| 波多野结衣高清作品| 一级毛片精品| 偷拍熟女少妇极品色| 国产精品乱码一区二三区的特点| 久久亚洲真实| 成年女人看的毛片在线观看| 一进一出抽搐动态| 日韩成人在线观看一区二区三区| 亚洲国产中文字幕在线视频| 久久久久久久久久黄片| 免费一级毛片在线播放高清视频| 成人特级av手机在线观看| 亚洲午夜理论影院| 欧美激情在线99| 一二三四在线观看免费中文在| 嫁个100分男人电影在线观看| 三级国产精品欧美在线观看 | 亚洲国产精品sss在线观看| 91麻豆av在线| 色吧在线观看| 免费一级毛片在线播放高清视频| 91av网站免费观看| 一二三四在线观看免费中文在| 男人的好看免费观看在线视频| 1000部很黄的大片| 色视频www国产| 男女下面进入的视频免费午夜| av黄色大香蕉| 亚洲精品国产精品久久久不卡| 国产亚洲精品av在线| а√天堂www在线а√下载| 国产精品一区二区精品视频观看| 精品欧美国产一区二区三| 又粗又爽又猛毛片免费看| 两人在一起打扑克的视频| 中文字幕人成人乱码亚洲影| 伦理电影免费视频| 国产一区二区在线av高清观看| 久久精品国产综合久久久| 亚洲七黄色美女视频| 久久国产精品影院| 熟女人妻精品中文字幕| 无遮挡黄片免费观看| 国产成人啪精品午夜网站| 久久久久久久久久黄片| 亚洲午夜理论影院| 又爽又黄无遮挡网站| 国产三级在线视频| 99热这里只有精品一区 | 午夜福利成人在线免费观看| 国产私拍福利视频在线观看| 夜夜躁狠狠躁天天躁| 90打野战视频偷拍视频| 婷婷亚洲欧美| 后天国语完整版免费观看| 神马国产精品三级电影在线观看| 久久久久国产一级毛片高清牌| 国产精品久久久人人做人人爽| 人妻丰满熟妇av一区二区三区| 五月玫瑰六月丁香| 黑人欧美特级aaaaaa片| 国产91精品成人一区二区三区| 午夜成年电影在线免费观看| 丁香欧美五月| 免费在线观看成人毛片| 日韩免费av在线播放| 男插女下体视频免费在线播放| 动漫黄色视频在线观看| 亚洲成av人片免费观看| 99久久久亚洲精品蜜臀av| 国产欧美日韩一区二区精品| 在线观看免费视频日本深夜| 天天躁日日操中文字幕| 亚洲av五月六月丁香网| 国产亚洲av嫩草精品影院| 亚洲av成人不卡在线观看播放网| 色综合欧美亚洲国产小说| 丰满人妻一区二区三区视频av | 天天一区二区日本电影三级| 日韩高清综合在线| 国产乱人视频| 欧美成人免费av一区二区三区| 宅男免费午夜| 看黄色毛片网站| 制服丝袜大香蕉在线| 欧美日韩综合久久久久久 | 午夜福利在线观看免费完整高清在 | 国产午夜精品久久久久久| 亚洲专区字幕在线| 欧美xxxx黑人xx丫x性爽| 午夜福利高清视频| 91麻豆av在线| 亚洲精品色激情综合| 久久精品国产综合久久久| 国产精品 国内视频| 一区二区三区高清视频在线| 久9热在线精品视频| 我的老师免费观看完整版| 久久这里只有精品19| 国产一区二区在线观看日韩 | 桃色一区二区三区在线观看| 久久精品国产亚洲av香蕉五月| 日日夜夜操网爽| 狠狠狠狠99中文字幕| 国产精品久久久久久久电影 | 国产伦在线观看视频一区| 欧美xxxx黑人xx丫x性爽| 好男人电影高清在线观看| 亚洲avbb在线观看| АⅤ资源中文在线天堂| 两性午夜刺激爽爽歪歪视频在线观看| 母亲3免费完整高清在线观看| 一区二区三区高清视频在线| 久久久久国产一级毛片高清牌| 亚洲av免费在线观看| netflix在线观看网站| 午夜福利在线观看吧| 久久精品人妻少妇| 国产激情久久老熟女| 国产一区二区在线av高清观看| 国内精品一区二区在线观看| 精品欧美国产一区二区三| 天天躁狠狠躁夜夜躁狠狠躁| 久久热在线av| 日韩欧美免费精品| 日本黄色视频三级网站网址| 99久久精品国产亚洲精品| 国产精品久久久久久精品电影| 中文字幕av在线有码专区| 亚洲精华国产精华精| 嫩草影视91久久| 成人18禁在线播放| 90打野战视频偷拍视频| 在线观看66精品国产| 精品一区二区三区四区五区乱码| 国产免费av片在线观看野外av| 看黄色毛片网站| 久久精品91无色码中文字幕| www.自偷自拍.com| 黄色丝袜av网址大全| 亚洲狠狠婷婷综合久久图片| 黑人巨大精品欧美一区二区mp4| 在线看三级毛片| 宅男免费午夜| 国产午夜精品论理片| 国产精华一区二区三区| 亚洲国产精品sss在线观看| 欧美一级a爱片免费观看看| 我要搜黄色片| 老汉色∧v一级毛片| 成人亚洲精品av一区二区| 国产一区二区在线av高清观看| 白带黄色成豆腐渣| 日韩有码中文字幕| 男女做爰动态图高潮gif福利片| 一级毛片高清免费大全| 欧美成人一区二区免费高清观看 | 久久久久精品国产欧美久久久| 国产一区二区三区在线臀色熟女| 亚洲人成网站在线播放欧美日韩| 夜夜夜夜夜久久久久| 久久久久久久久久黄片| 亚洲欧美日韩东京热| 欧美日韩一级在线毛片| 久久婷婷人人爽人人干人人爱| 欧美高清成人免费视频www| 久久久久九九精品影院| 91av网一区二区| 日日夜夜操网爽| a级毛片在线看网站| 人人妻,人人澡人人爽秒播| 真实男女啪啪啪动态图| 亚洲七黄色美女视频| 久久久久久九九精品二区国产| 国产精品 欧美亚洲| 欧美性猛交╳xxx乱大交人| 国产99白浆流出| 校园春色视频在线观看| 综合色av麻豆| 欧美三级亚洲精品| 色av中文字幕| 露出奶头的视频| 成年女人看的毛片在线观看| 人妻久久中文字幕网| 九九热线精品视视频播放| 亚洲成人免费电影在线观看| 99久国产av精品| 久久精品综合一区二区三区| 变态另类成人亚洲欧美熟女| 欧美黄色淫秽网站| 一二三四社区在线视频社区8| 国产乱人伦免费视频| 亚洲成a人片在线一区二区| 亚洲av成人av| av天堂中文字幕网| 久久精品国产99精品国产亚洲性色| 一二三四社区在线视频社区8| 一个人看的www免费观看视频| 亚洲成a人片在线一区二区| 亚洲精品美女久久久久99蜜臀| h日本视频在线播放| 美女高潮的动态| 久久香蕉国产精品| 熟女电影av网| 欧美日韩亚洲国产一区二区在线观看| 国产精品爽爽va在线观看网站| 亚洲精品在线美女| 欧美极品一区二区三区四区| 天天添夜夜摸| 国产高潮美女av| 中文字幕最新亚洲高清| 日本a在线网址|