• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Isolation and characterization of an isoamylase gene from rye

    2013-03-13 05:51:50KeZhengJieXuQingtoJingAndrLrocheYumingWeiYoulingZhengZhenxingLu
    The Crop Journal 2013年2期

    Ke Zheng,Jie Xu,Qingto Jing,André Lroche,Yuming Wei,Youling Zheng,*,Zhenxing Lu,*

    1.Introduction

    Rye (Secale cereale L.) is an important cereal crop worldwide.Rye grain is mainly used for animal feed,to make beer,whisky or vodka,and is also milled into flour for bread,pumpernickel or crisp bread [1].Compared to other cereal crops such as wheat (Triticum aestivum L.),barley (Horderum vulgare L.) and oat (Avena sativa L.),rye has a number of positive and special attributes,such as outstanding cold hardiness,excellent drought tolerance and strong disease resistance.Apart from its use as a minor cereal crop and a donor of the R genome to triticale(×Triticosecale),it has also been extensively used as an important germplasm source to introgress resistance genes into wheat [2].Some rye attributes are conserved in triticale,an artificial hybrid species made by crossing wheat and rye[3].Triticale is being explored for use as a novel bioindustrial crop in Canada.

    Starch synthesis is a complicated process in plants.The first step takes place inside and/or outside amylopasts via ADP-glucose pyrophosphorylase (AGPase,EC 2.7.7.27) for synthesis of ADP glucose,an activated glucosyl donor for starch synthesis[4–6].Subsequent steps lead to two separate pathways for amylose or amylopectin synthesis.Granule-bound starch synthase (GBSS,EC 2.4.1.21),also known as waxy protein,is responsible for the synthesis of amylose polymers [6–8].Amylopectin synthesis results from the elongation of glucan chains with both α-(1,4)-linkage and α-(1,6)-linkage synthesized by the multiple subunits or isoforms of starch synthase(SS,EC 2.4.1.21),starch-branching enzyme (SBE,EC 2.4.1.18) [9,10] and starch debranching enzymes(DBE).According to their different substrate specificities,DBEs are divided into two types:isoamylase (EC 3.2.1.68) and pullulanase (EC 3.2.1.41) [9,11].Genotypic mutants with low starch but high water-soluble polysaccharides were identified in maize(Zea mays L.)[5,12],rice(Oryza sativa L.) [13],barley [14] and Arabidopsis thaliana [15,16],demonstrating that DBEs,in conjunction with SS and SBE,play an essential role in development and accumulation of amylopectin [8,17].Characterization of barley mutants,transgenic potato and rice also indicate that isoamylase plays a crucial role in initiating the development of starch granules[14,18,19].

    Starch is the most important carbohydrate in crop grains,but gene interaction in starch synthesis and accumulation in polyploid crops has not been well explored.Since rye has contributed one third of the hexaploid triticale genome,rye isoamylase must be one of the essential enzymes for amylopectin synthesis in triticale grains.However,there is no scientific report about the molecular features of rye isoamylase genes available in public databases.In this study,we isolated genomic and cDNA sequences of a rye isoamylase gene,characterized its structure,domains and expression profiles,and its predicted protein,and also analyzed the evolutionary relationship of isoamylase proteins from rye and other plant species.This is the first report on identification and characterization of an isoamylase gene from the rye genome.

    2.Materials and methods

    2.1.Plant materials

    Hexaploid spring wheat (Triticum aestivum L.) cv.Chinese Spring and diploid spring rye (Secale cereale L.) cv.Rogo were grown under controlled environmental conditions(24 °C day,20 °C night with a 16 h photoperiod of 240 μmol m-2s-1) in the same growth cabinet.Various plant materials (stem,leaf,root,seed) were sampled,flash frozen in liquid nitrogen,and stored at-80 °C until used.

    2.2.Preparation of genomic DNA and RNA

    Genomic DNA was extracted from young leaf tissue at Zadoks growth Stage 22 [20] using a DNeasy Plant Mini Kit (Cat.No.69104,Qiagen Inc.,Mississauga,ON,Canada).Total RNA was isolated from immature seeds (12 days post anthesis,DPA)according to a phenol/SDS protocol [21].RNA was further purified using the RNeasy Plant Min Kit (Cat.No.74904,Qiagen Inc.,Mississauga,ON,Canada).

    2.3.Primers and PCR amplification

    Primers for cloning the rye isoamylase gene were designed according to the conserved regions of Aegilops tauschii isoamylase gene sequence (GenBank accession no.AF548379)[22],wheat iso1 mRNA sequence (GenBank accession no.AJ301647)[23]and barley isoamylase mRNA sequence(GenBank accession no.AF490375) [14].Ten pairs of primers were designed to amplify the overlapping genomic DNA sequences that correspond to the rye isoamylase gene.Furthermore,three pairs of primers were developed to amplify the overlapping cDNA sequences.Typically,25 μL of PCR mixture contained 20 pmol primers,30 ng of genomic DNA or 5 μg of cDNA,1 × buffer,1 × Q-solution and 1.25 U of Qiagen HotStar HiFidelity Polymerase (Cat.No.202605,Qiagen Inc.,Mississauga,ON,Canada).Reverse transcription(RT)-PCR was performed using total RNA as the template with Superscript III Reverse Transcriptase (Cat.No.18080-093,Invitrogen,Burlington,ON,Canada).Primer sequences and PCR conditions are listed in Table 1.

    2.4.Cloning and sequence analysis

    Amplified isoamylase DNA fragments were cloned into the PCR4-TOPO vector (Cat.No.K4575-02,Invitrogen,Burlington,ON,Canada) and at least three independent clones for each fragment were sequenced in both directions by the DNA Sequencing Service Centre,University of Calgary (Calgary,Canada).Rye isoamylase sequences and the corresponding protein were blasted with the NCBI BLASTN tool (http://blast.ncbi.nlm.nih.gov) and aligned with previously reported isoamylase sequences using DNAMAN software v5.0 (Lynnon Biosoft,U.S.A.).The putative encoding regions of transit peptides and mature proteins of isoamylase genes from different plant genomes were predicted using the ChloroP 1.1 server(http://www.cbs.dtu.dk/services/ChloroP/).

    2.5.qRT-PCR and gene expression

    Total RNAs were isolated from rye leaves,stems,roots and rye seeds at different developmental stages (9,15,24 and 33 DPA)with an RNA Extraction Kit (Cat No.74904,Qiagen Inc.,Mississauga,ON,Canada).For RT-PCR,1 μg of total RNA was transcribed to cDNA in a 20 μL PCR by using the oligo (dT) 18 primer and the SuperScript III Reverse Transcriptase (Cat No.18080-044,Invitrogen,Burlington,ON,Canada).The cDNA mixture was diluted 20 times in RNA-free water and 2.5 μL of cDNA was used as template in a 10 μL real-time PCR consisting of 1 μL primer pair(final concentrate 500 nmol L-1each),1.5 μL RNA-free water and 5 μL SYBR Green (Cat.No.204145,Qiagen,Mississauga,ON,Canada).The primer pair (5′-AAGGAGTGCG AGGGTCTTGG-3′ and 5′-GGTAAGTGGCTGGTGTTGAAGG-3′)was designed by using the Beacon Designer software (v7.0) to detect the transcription level of the rye isoamylase gene identified in this study (GenBank accession no.FJ491379).The real-time PCR was performed on a 7900H qRT-PCR system(Applied Biosystem Canada,Ontario,Canada)and temperature cycling parameters were as follows: 95 °C for 15 min,then 40 cycles of 95 °C for 30 s,60 °C for 30 s and 72 °C for 30 s.Relative expression of rye isoamylase was analyzed by REST software [30].The ADP-ribosylation factor (Ta 2291,GenBank accession no.AB050957),shown to exhibit a constant transcript level at different plant developmental stages under various environmental conductions[31],was used as a reference gene to normalize the rye isoamylase expression.Expression values were subjected to a random variance Mel t-test (P <0.05) and twofold or greater differences were considered as differentially expressed.

    Table 1-Primer sequences and PCR conditions for the rye isoamylase gene with amplification parameters and product amplicon sizes.

    2.6.Construction of a phylogenetic tree

    A phylogenetic tree of isoamylase genes was obtained by analyzing the deduced amino acid(aa)sequence from rye(this study),wheat[23],Ae.tauschii[22],barley[14],maize[5],rice[24],pea (GenBank accession no.DQ092413-415),potato [25],sweet potato[26]and Arabidopsis(GenBank accession no.AF002109).A dendrogram was constructed using the Neighbor-Joining method in MEGA 4.1 software and[27].

    3.Results and Discussion

    3.1.Isolation of a rye isoamylase gene

    We amplified PCR and RT-PCR fragments from rye genomic DNA and cDNA using 13 PCR primer pairs designed from conserved domain sequences of plant isoamylase genes(Fig.1).More than one band was amplified with primers Rye-ISA-F14/R14,Rye-ISA-F31/R31,Rye-ISA-F12/R12 and Rye-ISA-F21/R21.In each case,the largest fragment corresponding to the theoretical fragment size (Table 1) was selected for further cloning and sequencing.Ten different overlapping genomic DNA fragments covering the whole rye isoamylase gene and three overlapping cDNA fragments for full-length contigs were isolated and independently cloned into the TOPO-vector and sequenced.Whole genomic DNA and cDNA sequences of the rye isoamylase gene were obtained by the assembly of these overlapping PCR fragments.We determined that the full-length of the rye isoamylase gene was 7351 bp for genomic DNA (GenBank accession no.FJ491378) and 2364 bp for cDNA (GenBank accession no.FJ491379).The overlapping sequences of the genomic DNA and cDNA were identical(data not shown).

    Our results demonstrated that the rye isoamylase gene was isolated and cloned with the help of sequence homologies of the same genes from the Ae.tauschii,wheat,and barley genomes,as cereal crops share similar genotypes with highly conserved gene sequences.We found that PCR amplification of the isoamylase gene from the wheat genome was relatively less productive,with no or weak amplicons in comparison with rye(Fig.1).Plausible explanations for such low efficiency may be due to the large hexaploid wheat genome,that is triple the size of rye;PCR efficiency in wheat might be limited by interference of multiple gene loci or by relatively less DNA templates provided by the target genes.Further improvements on PCR conditions and primer designs will be necessary if new isoamylase genes are to be isolated from the wheat genome.

    Fig.1-DNA banding patterns of wheat and rye isoamylase genes amplified by different PCR primer sets.Lanes 1 and 2:Rye-ISA-F1/R1; Lanes 3 and 4: Rye-ISA-F14/R14; Lanes 5 and 6: Rye-ISA-F3/R3; Lanes 7 and 8: Rye-ISA-F4/R4; Lanes 9 and 10: Rye-ISA-F25/R25;Lanes 11 and 12:Rye-ISA-F31/R31;Lanes 13 and 14:Rye-ISA-F29/R29;Lanes 15 and 16:Rye-ISA-F30/R30;Lanes 17 and 18:Rye-ISA-F12/R12;Lanes 19 and 20:Rye-ISA-F13R13;Lane 21:Rye-ISA-F1/R20;Lane 22:Rye-ISA-F21/R21;and Lane 23:Rye-ISA-F13/R13.The templates of Chinese Spring genomic DNA were used to amplify the products in lanes 1,3,5,7,9,11,13,15,17 and 19;whereas Rogo genomic DNA templates were used to amplify the products in lanes 2,4,6,8,10,12,14,16,18 and 20 and Rogo cDNA was used in lanes 21,22 and 23.M is the GeneRuler DNA Ladder(Fermentas,Thermo Fisher Scientific).

    3.2.Characterization of the rye isoamylase gene

    We aligned the genomic and cDNA sequences of the rye isoamylase gene and found that the rye isoamylase gene has 18 exons interrupted by 17 introns.Such intron and exon patterns are nearly identical between the rye and Ae.tauschii genes.The exon lengths of the rye isoamylase gene vary from 72 bp to 363 bp; whereas the intron lengths vary from 73 to 1052 bp.In rice,maize and Arabidopsis,18 exons were identified,but the intron lengths are variable(Fig.2).A comparison of exon sizes among rye,rice,maize,Ae.tauschii and Arabidopsis revealed that these isoamylase genes have identical exon sizes apart from a few differences(Table 2).The first and last exon sizes of the isoamylase genes vary among different plant genomes;exon 2 of the isoamylase gene in rye is 3 bp shorter than that in maize,but exon 16 in rye is 3 bp larger than that in rice and Ae.tauschii.Dinucleotide sequences at the 5′ and 3′ ends in each of the 17 introns were found to follow the universal GT-AG rule[28].

    A transit peptide in addition to mature protein regions is normally encoded by plant nuclear isoamylase genes.The cDNA lengths for the transit peptide and the mature protein of rye isoamylase gene are 144 bp and 2220 bp,respectively,and exhibit similarity to other plant isoamylase genes available in public databases.Comparative studies of isoamylase genes among rye and other plant species indicated that mature proteins have higher homology than transit peptides among plant isoamylase genes and the identity of aa sequences between rye,Ae.tauschii,wheat and barley is more than 95%(Table 3).We found that sequence differences in the exon regions of plant isoamylase genes are mainly due to nucleotide substitutions,deletions or insertions.Similarly,differences in the intron regions of plant isoamylase genes are due to more frequent substitution,insertion or deletion events.We determined that DNA homologies range from 40% to 71% in intron regions of isoamylase genes between rye and Ae.tauschii,rice and maize (Table 3),considerably lower than in exon regions.Our results indicated that DNA sequences are highly conserved in the exons of plant isoamylase genes and that evolution rates in the introns of plant isoamylase genes are faster than in the exons.

    Fig.2-Schematic diagram for the exon-intron arrangement of isoamylase genes from cereals and Arabidopsis.The sequences used in this analysis were as follows: rye ISA (GenBank accession no.FJ491378),rice OsISA(GenBank accession no.AB093426),Ae.tauschii wDBEI-D1 (GenBank accession no.AF548379),maize SU1 (GenBank accession no.AF030882)and Arabidopsis ISA(GenBank accession no.AF002109).The filled rectangles indicate the exon locations in isoamylase genes.Scale bar,1 kb.

    Table 2-Exon lengths (bp) of isoamylase genes from cereals and Arabidopsis.a

    Fig.3-Expression profiles of the rye isoamylase gene among(A)various tissues(stem,leaf,root and seed)and(B)different seed development stages (9,15,24 and 33 DPA).Relative expression of rye isoamylase was analyzed by REST software and real-time RT-PCR quantifications were normalized by the ADP-ribosylation factor (Ta 2291,GenBank accession no.AB050957).Expression values were subjected to a random variance Mel t-test(P <0.05)and twofold or greater differences were considered as differentially expressed.Error bars represent the SE for three independent replicates.

    3.3.Analysis of rye isoamylase proteins

    From the full-lengths of genomic DNA and cDNA sequences,we deduced that the rye isoamylase mature protein consists of 787 aa residues with an additional 48 aa for its transit peptide.The calculated molecular weights for the transit peptide and mature protein of rye isoamylase are 5.21 kD and 83.56 kD,respectively.The predicted pI for the mature isoamylase is 5.46.

    Table 3-Sequence homologies and similarities of cereal isoamylase genesa (%).

    The aa sequences of mature isoamylases exhibited more than 83% homology among rye and other plant genomes,but especially more than 95%homology between rye and Ae.tauschii,wheat and barley.However,sequence homologies for the transit peptides of isoamylases between rye and rice or maize are 31.75% or 27.59%,respectively,significantly less than similar comparisons for the mature proteins (83.31% or 87.18%,respectively) (Table 3).Our results indicate that the structural conservation of the transit peptides for this enzyme is generally lower than that of the mature proteins.Since the transit peptides are the N-terminal aa presequences that direct proteins to an organelle (e.g.,chloroplast,mitochondria) and are required for their transport across membranes from their synthesis sites in the cytoplasm [29],significant diversities in transit peptides of isoamylase between rye and rice or maize may be related to their different cellular structures and metabolic functions,although the mature isoamylases share similar catalytic domains and elements.

    3.4.Expression of the rye isoamylase gene

    We used quantitative real-time PCR to analyze the expression of the rye isoamylase gene in various tissues and at different seed developmental stages.Our results showed that the isoamylase gene is expressed in all rye tissues tested in this study,with seeds having significantly higher levels of isoamylase transcript than leaves,stems and roots(Fig.3-A).A recent study showed that the ISA1 transcript level is relatively abundant in maize tissues where starch is synthesized [32].As the leaf and other green tissues are temporary storage places for starch accumulation during photosynthesis,the expression of the isoamylase gene in rye leaves and stems demonstrated that amylase may have an important role for either starch synthesis or starch degradation.Isoamylase is termed as the debranching enzyme,essential for formation of crystalline amylopectin [6].We analyzed the expression profiles of the rye isoamylase gene during endosperm development and found that its expression in rye endosperm reached a maximum level at the mid-development stage(15 DPA) and then dropped through 24 and 33 DPA (Fig.3-B).Consistent with previous reports on wheat and maize[23,32],our results confirmed that the isoforms of isoamylase-type DBE genes are maximally expressed during endosperm development and then gradually decline during grain maturation.Studies on barley mutants and transgenic rice suggested that isoamylases play a crucial role in synthesis of phytoglycogen and starch granule structure and initiation [14,19].It will be informative to further investigate the function of isoamylase in granule initiation and degradation in rye and triticale.

    To explore evolutionary relationships we constructed a phylogenetic tree on the basis of the aa sequences of mature plant isoamylases.All monocots gathered in a single cluster(Fig.4).There is 98% sequence homology between Ae.tauschii wDBE1 and wheat iso1.On the phylogenetic tree of the deduced mature protein sequences,rye ISA shares 96% sequence homologies with Ae.tauschii wDBE1 and wheat iso1,and 92%homology with barley ISA1,indicating that rye isoamylase is more closely related to Ae.tauschii wDBE1 and wheat iso1.

    Fig.4-Phylogenetic tree for isoamylase mature proteins from monocot and dicot plants.The aa sequence of rye isoamylase protein was determined in this study and other plant sequences were obtained from the NCBI GenBank databases.The sequences used for analysis were:rye ISA(FJ491378/FJ491379),Ae.tauschii wDBE1(AF548379),wheat iso1(AJ301647),barley ISA1(AF490375),rice OsISA(AB093426),maize SU1(AF030882),Arabidopsis ISA(AF002109),sweet potato iso(DQ074643),potato iso1(AY132996),potato iso2(AY132997),potato iso3(AY132998),pea iso1(DQ092413),pea iso2(DQ092414)and pea iso3(DQ092415).All sequences were analyzed by the Neighbor-Joining method in MEGA 4.1 software[27].

    4.Conclusions

    In this study,we isolated and characterized genomic DNA and cDNA and also predicted the corresponding protein sequence of the rye isoamylase gene.By comparing isoamylase genes and their proteins among rye and other plant species,we found that plant isoamylase genes are highly homologous in the exon regions and rye isoamylase is most closely homologous in aa sequence to wheat and Ae.tauschii than to barley in terms of phylogenetic relationship.Our real-time PCR results indicated that the rye isoamylase gene is mainly expressed in seed endosperms with a maximum level at the mid-development stage (15 DPA).Starch synthesis is a complicated metabolic system in plants and characterization of starch synthesis genes is essential for establishing a basis to explore starch structure,function,and accumulation.Isoamylase genes have been isolated and characterized from different plant species,but their precise roles in starch synthesis and granule initiation are not yet clear.The rye isoamylase isolated and characterized in this study has provided new and essential information to explore its function in amylopectin accumulation in rye and triticale grains and also its effects on subsequent development of new triticale genotypes for novel starch granule types leading to higher or lower amylopectin contents.

    This study was supported by the MOE-AAFC PhD Research Program and partial A-Base funding from Agriculture and Agri-Food Canada.

    [1] W.Bushuk,Rye:Production,Chemistry and Technology.The 2nd Edition,American Association of Cereal Chemists International Press,St.Paul,Minnesota,USA,2001.289.

    [2] S.V.Rabinovich,Importance of wheat–rye translations for breeding modern cultivars of Triticum aestivum L.Euphytica 100 (1998) 323–340.

    [3] K.Briggs,The growth potential of triticale in western Canada,Review Report Commissioned by Alberta Agriculture,Food,and Rural Development,Edmonton,Alberta,Canada,2001,p.114.

    [4] T.Thorbjornsen,P.Villand,K.Denyer,O.A.Olsen,A.M.Smith,Distinct forms of ADP glucose pyrophosphorylase occur inside and outside the amylopasts in barley endosperm,Plant J.10(1996) 243–250.

    [5] M.G.James,D.S.Robertson,A.M.Myers,Characterization of the maize gene sugary-1,a determinant of starch composition in kernels,Plant Cell 7(1995)417–429.

    [6] I.J.Tetlow,Understanding storage starch biosynthesis in plants:a means to quality improvement,Can.J.Bot.84(2006)1167–1185.

    [7] C.Martin,A.M.Smith,Starch biosynthesis,Plant Cell 7(1995)971–985.

    [8] I.J.Tetlow,M.K.Morell,M.J.James,Recent developments in understanding the regulation of starch metabolism in higher plants,J.Exp.Bot.55 (2004) 2131–2145.

    [9] Y.Nakamura,Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants:rice endosperm as a model tissue,Plant Cell Physiol.43(2002)718–725.

    [10] S.G.Ball,M.K.Morell,From bacterial glycogen to starch:understanding the biogenesis of the plant starch granule,Annu.Rev.Plant Biol.54(2003) 207–233.

    [11] D.C.Doehlert,C.A.Knutson,Two classes of starch debranching enzymes from developing maize kernels,J.Plant Physiol.138(1991)566–572.

    [12] O.Pan,O.E.Nelson,A debranching enzyme deficiency in endosperms of the sugary-1 mutants of maize,Plant Physiol.74 (1984) 324–328.

    [13] A.Kubo,N.Fujita,K.Harada,H.Satoh,Y.Nakamura,The starch debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm,Plant Physiol.121(1999)399–409.

    [14] R.A.Burton,H.Jenner,L.Carrangis,B.Fahy,G.B.Fincher,C.M.Hylton,D.A.Laurie,M.Parker,D.Waite,S.van Wegen,T.Verhoeven,K.Denyer,Starch granule initiation and growth are altered in barley mutants that lack isoamylase activity,Plant J.31(2002) 97–112.

    [15] S.C.Zeeman,T.Umemoto,W.L.Lue,A.Y.Pui,C.Martin,A.M.Smith,J.C.Chen,A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen,Plant Cell 10(1998)1699–1711.

    [16] F.Wattebled,Y.Dong,S.Dumez,D.Delvalle,V.Planchot,P.Berbezy,D.Vyas,P.Colonna,M.Chatterjee,S.Ball,C.D'Hulst,Mutants of Arabidopsis lacking a chloroplastic isoamylase accumulate phytoglycogen and an abnormal form of amylopectin,Plant Physiol.138(2005)184–195.

    [17] S.Ball,H.P.Guan,M.James,A.Myers,P.Keeling,G.Mouille,A.Buleon,P.Colonna,J.Preiss,From glycogen to amylopectin:a model for the biogenesis of the plant starch granule,Cell 86(1996) 349–352.

    [18] R.Bustos,B.Fahy,C.M.Hylton,R.Seale,N.M.Nebane,A.Edwards,C.Martin,A.M.Smith,Starch granule initiation is controlled by a hetermultimeric isoamylase in potato tubers,Proc.Natl.Acad.Sci.U.S.A.101 (2004) 2215–2220.

    [19] Y.Kawagoe,A.Kubo,H.Satoh,F.Takaiwa,Y.Nakamura,Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm,Plant J.42(2005)164–174.

    [20] D.R.Tottman,R.J.Makepeace,An explanation of the decimal code for the growth stages of cereals with illustrations,Ann.Appl.Biol.93(1979) 221–234.

    [21] R.D.Palmiter,Magnesium precipitation of ribonucleo-protein complexes: expedient techniques for the isolation of undegraded polysomes and messenger RNA,Biochemistry 13(1974) 3606–3615.

    [22] S.Rahman,Y.Nakamura,Z.Li,B.Clarke,N.Fujita,Y.Mukai,M.Yamamoto,A.Regina,Z.Tan,S.Kawasaki,M.Morell,The sugary-type isoamylase gene from rice and Aegilops tauschii:characterization and comparison with maize and Arabidopsis,Genome 46 (2003) 496–506.

    [23] U.Genschel,G.Abel,H.Lorz,S.Lutticke,The sugary-type isoamylase in wheat: tissue distribution and subcellular localisation,Planta 214 (2002) 813–820.

    [24] N.Fujita,A.Kubo,P.B.Francisco,M.Nakakita,K.Harada,N.Minaka,Y.Nakamura,Purification,characterization,and cDNA structure of isoamylase from developing endosperm of rice,Planta 208 (1999) 283–293.

    [25] H.Hussain,A.Mant,R.Seale,S.Zeeman,E.Hinchliffe,A.Edwards,C.Hylton,S.Bornemann,A.M.Smith,C.Martin,R.Bustos,Three isoforms of isoamylase contribute different catalytic properties for the debranching of potato glucans,Plant Cell 15(2003) 133–149.

    [26] S.H.Kim,T.Hamada,M.Otani,T.Shimada,Cloning and characterization of sweet potato isoamylase gene (IbIsa1)isolated from tuberous root,Breed.Sci.55(2005) 453–458.

    [27] S.Kumar,J.Dudley,M.Nei,K.Tamura,MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences,Brief.Bioinform.9(2008) 299–306.

    [28] R.Breathnach,P.Chambon,Organization and expression of eukaryotic spilt genes coding for proteins,Annu.Rev.Biochem.50 (1981) 349–383.

    [29] N.J.Patron,R.F.Waller,Transit peptide diversity and divergence:a global analysis of plastid targeting signals,Bioessays 29(2007)1048–1058.

    [30] M.W.Pfaffl,G.W.Horgan,L.Dempfle,Relative expression software tool(REST)for group wise comparison and statistical analysis of relative expression results in real-time PCR,Nucleic Acids Res.30(2002)e36.

    [31] A.R.Paolacci,O.A.Tanzarella,E.Porceddu,M.Ciaffi,Identification and validation of reference genes for quantitative RT-PCR normalization in wheat,BMC Mol.Biol.10(2009)11.

    [32] A.Kubo,C.Colleoni,J.R.Dinges,Q.Lin,R.R.Lappe,J.G.Rivenbark,A.J.Meyer,S.G.Ball,M.G.James,T.A.Hennen-Bierwagen,Functions of heteromeric and homomeric isoamylase-type starch-debranching enzymes in developing maize endosperm,Plant Physiol.153(2010)956–969.

    18+在线观看网站| 欧美日韩综合久久久久久 | 国产成+人综合+亚洲专区| 三级男女做爰猛烈吃奶摸视频| 国产野战对白在线观看| 少妇高潮的动态图| 自拍偷自拍亚洲精品老妇| 国产av不卡久久| 成人午夜高清在线视频| 成熟少妇高潮喷水视频| 搞女人的毛片| 一级a爱片免费观看的视频| 国产精品三级大全| 在线免费观看不下载黄p国产 | 永久网站在线| 丰满人妻一区二区三区视频av| 日本免费a在线| 国内精品久久久久久久电影| 中文字幕av在线有码专区| 国产精品亚洲一级av第二区| 国产91精品成人一区二区三区| 欧美激情在线99| 色视频www国产| 国产av麻豆久久久久久久| 亚洲精品在线美女| 亚州av有码| 久久久久久久精品吃奶| 亚洲美女搞黄在线观看 | 欧美日韩亚洲国产一区二区在线观看| 亚洲人成网站高清观看| 国产亚洲精品av在线| 亚洲人成网站在线播放欧美日韩| 国产爱豆传媒在线观看| 自拍偷自拍亚洲精品老妇| 九九久久精品国产亚洲av麻豆| 国产高清视频在线观看网站| 综合色av麻豆| 精品久久久久久久末码| 在线免费观看不下载黄p国产 | 欧美国产日韩亚洲一区| 成人美女网站在线观看视频| 日日摸夜夜添夜夜添av毛片 | 99视频精品全部免费 在线| 中文字幕av成人在线电影| 搡老岳熟女国产| 亚洲自偷自拍三级| 黄色视频,在线免费观看| 男女视频在线观看网站免费| 午夜精品久久久久久毛片777| 亚洲欧美精品综合久久99| 亚洲在线观看片| 激情在线观看视频在线高清| 久久久成人免费电影| 午夜福利在线观看吧| 日韩欧美在线二视频| 婷婷亚洲欧美| 宅男免费午夜| 午夜精品在线福利| 蜜桃久久精品国产亚洲av| 国产伦精品一区二区三区四那| 日韩精品中文字幕看吧| 免费在线观看影片大全网站| 一a级毛片在线观看| www.999成人在线观看| 99riav亚洲国产免费| 最近最新中文字幕大全电影3| 在线a可以看的网站| 婷婷六月久久综合丁香| 嫁个100分男人电影在线观看| 日韩欧美国产在线观看| 国产午夜福利久久久久久| 亚洲,欧美精品.| 久久九九热精品免费| 国产色婷婷99| 日本五十路高清| 国产精品精品国产色婷婷| 欧美色欧美亚洲另类二区| 亚洲午夜理论影院| 色噜噜av男人的天堂激情| 色播亚洲综合网| 内地一区二区视频在线| 不卡一级毛片| 舔av片在线| 桃色一区二区三区在线观看| 欧美+日韩+精品| 亚洲成人精品中文字幕电影| 啪啪无遮挡十八禁网站| 精品欧美国产一区二区三| 麻豆av噜噜一区二区三区| 国产欧美日韩精品一区二区| 少妇高潮的动态图| 亚洲真实伦在线观看| 少妇的逼好多水| 男人的好看免费观看在线视频| 99久久成人亚洲精品观看| 成人国产综合亚洲| 97人妻精品一区二区三区麻豆| 国产国拍精品亚洲av在线观看| 听说在线观看完整版免费高清| 久久九九热精品免费| 国产探花在线观看一区二区| 亚洲美女黄片视频| 中亚洲国语对白在线视频| 久久人妻av系列| 国内精品美女久久久久久| 国产av不卡久久| 热99re8久久精品国产| 亚洲午夜理论影院| 最新中文字幕久久久久| 久久性视频一级片| 99久久99久久久精品蜜桃| 村上凉子中文字幕在线| 亚洲精华国产精华精| 中文字幕人妻熟人妻熟丝袜美| 永久网站在线| 亚洲狠狠婷婷综合久久图片| 校园春色视频在线观看| 国产午夜福利久久久久久| 麻豆国产97在线/欧美| 老司机午夜十八禁免费视频| 免费看光身美女| 一区福利在线观看| 18禁裸乳无遮挡免费网站照片| 成人美女网站在线观看视频| 日韩成人在线观看一区二区三区| 一边摸一边抽搐一进一小说| 午夜久久久久精精品| 成年女人看的毛片在线观看| 听说在线观看完整版免费高清| 精品国产亚洲在线| 午夜福利免费观看在线| 亚洲男人的天堂狠狠| 在线a可以看的网站| www.999成人在线观看| 三级毛片av免费| 一本综合久久免费| 国产91精品成人一区二区三区| 高清毛片免费观看视频网站| 国产熟女xx| 男人舔女人下体高潮全视频| 国产成人影院久久av| 免费在线观看日本一区| 婷婷色综合大香蕉| 日韩亚洲欧美综合| 99国产精品一区二区三区| 亚洲美女视频黄频| 国产美女午夜福利| 人妻制服诱惑在线中文字幕| 国产精品一及| 国产成人av教育| 99国产精品一区二区三区| 黄色女人牲交| bbb黄色大片| 亚洲最大成人中文| 哪里可以看免费的av片| 精品无人区乱码1区二区| 国产探花极品一区二区| 精品午夜福利在线看| 1024手机看黄色片| 特级一级黄色大片| 日本精品一区二区三区蜜桃| 国产精品亚洲av一区麻豆| 亚洲专区国产一区二区| 国产黄a三级三级三级人| 欧美色欧美亚洲另类二区| 国产白丝娇喘喷水9色精品| 亚洲18禁久久av| 国内精品久久久久久久电影| 熟女电影av网| 舔av片在线| 亚洲精品乱码久久久v下载方式| 不卡一级毛片| 免费人成视频x8x8入口观看| 精品久久久久久久久久免费视频| 美女大奶头视频| 成人无遮挡网站| 日日摸夜夜添夜夜添小说| 深夜a级毛片| 色精品久久人妻99蜜桃| 在线播放无遮挡| 草草在线视频免费看| 1024手机看黄色片| 婷婷精品国产亚洲av| 麻豆国产97在线/欧美| 精品午夜福利视频在线观看一区| 日韩中文字幕欧美一区二区| 国产黄色小视频在线观看| 中文在线观看免费www的网站| 午夜福利高清视频| 久久午夜福利片| 国产伦精品一区二区三区四那| 婷婷色综合大香蕉| 国产精品嫩草影院av在线观看 | 成人高潮视频无遮挡免费网站| 精品乱码久久久久久99久播| 午夜福利成人在线免费观看| 久久精品人妻少妇| 国产精华一区二区三区| 757午夜福利合集在线观看| 亚州av有码| 国产精品亚洲av一区麻豆| 亚洲中文字幕日韩| 偷拍熟女少妇极品色| 在线播放国产精品三级| 日韩成人在线观看一区二区三区| 美女cb高潮喷水在线观看| 国产精品人妻久久久久久| 黄色女人牲交| 国产视频内射| 一区二区三区激情视频| 亚洲国产精品成人综合色| 脱女人内裤的视频| 日韩中字成人| 亚洲人成伊人成综合网2020| 国产精品亚洲一级av第二区| 99国产精品一区二区蜜桃av| 国产精品人妻久久久久久| 免费av毛片视频| 午夜激情福利司机影院| 又紧又爽又黄一区二区| 一区二区三区四区激情视频 | 午夜亚洲福利在线播放| 亚洲在线观看片| 一级a爱片免费观看的视频| 国产精品嫩草影院av在线观看 | 欧美日韩黄片免| 一个人免费在线观看电影| 天堂网av新在线| 3wmmmm亚洲av在线观看| 精品无人区乱码1区二区| 麻豆成人av在线观看| 露出奶头的视频| 99久久成人亚洲精品观看| 亚洲真实伦在线观看| 午夜福利视频1000在线观看| 白带黄色成豆腐渣| 免费大片18禁| 麻豆一二三区av精品| 3wmmmm亚洲av在线观看| 美女高潮的动态| 亚洲一区二区三区色噜噜| 搡老妇女老女人老熟妇| 窝窝影院91人妻| 久久99热这里只有精品18| 午夜激情福利司机影院| 亚洲电影在线观看av| 亚洲七黄色美女视频| 日日摸夜夜添夜夜添小说| 他把我摸到了高潮在线观看| 91麻豆av在线| 国产男靠女视频免费网站| 国产精华一区二区三区| 成年版毛片免费区| 国产高清有码在线观看视频| 亚洲av中文字字幕乱码综合| АⅤ资源中文在线天堂| 国产又黄又爽又无遮挡在线| 黄色女人牲交| 国产精品久久电影中文字幕| 此物有八面人人有两片| 国产人妻一区二区三区在| 精品福利观看| 我要看日韩黄色一级片| 日日摸夜夜添夜夜添小说| 久久久久久久久大av| 成年女人毛片免费观看观看9| 悠悠久久av| 18美女黄网站色大片免费观看| 国产午夜精品论理片| 香蕉av资源在线| 老司机午夜福利在线观看视频| 悠悠久久av| 97热精品久久久久久| 一个人看视频在线观看www免费| 天堂√8在线中文| 亚洲美女搞黄在线观看 | 国内少妇人妻偷人精品xxx网站| 国模一区二区三区四区视频| 亚洲av五月六月丁香网| 国产黄色小视频在线观看| 精品久久久久久久人妻蜜臀av| 日韩成人在线观看一区二区三区| 在线观看午夜福利视频| 日韩精品中文字幕看吧| 午夜福利免费观看在线| 日韩欧美在线二视频| 最近最新中文字幕大全电影3| 国产一区二区在线观看日韩| 极品教师在线视频| 搡老岳熟女国产| 免费在线观看成人毛片| 神马国产精品三级电影在线观看| 麻豆成人午夜福利视频| 身体一侧抽搐| 青草久久国产| 国产精品一区二区三区四区免费观看 | 午夜激情福利司机影院| 日韩人妻高清精品专区| 午夜精品久久久久久毛片777| 国产视频一区二区在线看| а√天堂www在线а√下载| 亚洲午夜理论影院| 中文字幕熟女人妻在线| 成人精品一区二区免费| 亚洲av日韩精品久久久久久密| 亚洲在线自拍视频| 亚洲18禁久久av| 亚洲天堂国产精品一区在线| 亚洲激情在线av| 欧美日韩亚洲国产一区二区在线观看| 国产一区二区在线观看日韩| 老司机福利观看| 村上凉子中文字幕在线| 欧美丝袜亚洲另类 | 在线免费观看的www视频| 校园春色视频在线观看| 精华霜和精华液先用哪个| 99热这里只有是精品在线观看 | 中文字幕免费在线视频6| 亚洲真实伦在线观看| 国产美女午夜福利| 大型黄色视频在线免费观看| 无人区码免费观看不卡| 好男人电影高清在线观看| 好男人在线观看高清免费视频| 在线天堂最新版资源| 中亚洲国语对白在线视频| 国产精品一区二区三区四区免费观看 | 男人舔奶头视频| 午夜精品久久久久久毛片777| 一区二区三区激情视频| 欧美成狂野欧美在线观看| 在线观看66精品国产| 99久久无色码亚洲精品果冻| 少妇高潮的动态图| 亚洲精品影视一区二区三区av| 亚洲最大成人中文| 欧美在线一区亚洲| 亚洲av五月六月丁香网| 精品久久久久久久末码| 99视频精品全部免费 在线| 夜夜爽天天搞| 麻豆成人av在线观看| 中亚洲国语对白在线视频| 伦理电影大哥的女人| 免费大片18禁| 在线十欧美十亚洲十日本专区| 99国产综合亚洲精品| 人妻丰满熟妇av一区二区三区| 18禁黄网站禁片免费观看直播| 久久久久国内视频| 国产欧美日韩精品一区二区| 亚洲av.av天堂| 国产久久久一区二区三区| 色噜噜av男人的天堂激情| 亚洲欧美精品综合久久99| 91av网一区二区| 一级av片app| 欧美日本亚洲视频在线播放| 蜜桃亚洲精品一区二区三区| 亚洲成人中文字幕在线播放| 亚洲久久久久久中文字幕| 婷婷色综合大香蕉| 久久伊人香网站| 一a级毛片在线观看| 校园春色视频在线观看| 日韩欧美一区二区三区在线观看| 又爽又黄a免费视频| 亚洲综合色惰| 久久人妻av系列| 亚洲av美国av| 国内精品久久久久精免费| 日本精品一区二区三区蜜桃| 窝窝影院91人妻| 女生性感内裤真人,穿戴方法视频| 日日夜夜操网爽| 一二三四社区在线视频社区8| 中文字幕久久专区| 国产一区二区激情短视频| 99久久精品一区二区三区| 国产成人福利小说| 91在线观看av| 搡老妇女老女人老熟妇| 亚洲经典国产精华液单 | 日本免费一区二区三区高清不卡| 国产麻豆成人av免费视频| 日韩免费av在线播放| 成人av在线播放网站| 久久久久久九九精品二区国产| 一进一出抽搐动态| 精品人妻1区二区| 日本撒尿小便嘘嘘汇集6| av在线观看视频网站免费| 亚洲一区高清亚洲精品| 亚洲精品成人久久久久久| 亚洲av不卡在线观看| 3wmmmm亚洲av在线观看| av黄色大香蕉| АⅤ资源中文在线天堂| 99久久99久久久精品蜜桃| 国内毛片毛片毛片毛片毛片| 欧美激情久久久久久爽电影| 久久久久国内视频| 免费在线观看影片大全网站| 亚洲欧美激情综合另类| eeuss影院久久| 亚洲avbb在线观看| 亚洲激情在线av| 天堂网av新在线| 国产精品三级大全| 久久久久久久久久成人| 69av精品久久久久久| 免费无遮挡裸体视频| 性插视频无遮挡在线免费观看| 一级黄色大片毛片| 午夜精品久久久久久毛片777| 嫩草影视91久久| 麻豆av噜噜一区二区三区| 美女免费视频网站| www.熟女人妻精品国产| 国产精品一区二区三区四区久久| 中文字幕av在线有码专区| 18禁在线播放成人免费| 成年版毛片免费区| 欧美乱妇无乱码| 在线观看av片永久免费下载| 首页视频小说图片口味搜索| 国产主播在线观看一区二区| 精品一区二区三区av网在线观看| a级毛片a级免费在线| 好看av亚洲va欧美ⅴa在| 最近中文字幕高清免费大全6 | 国产高清视频在线播放一区| 色视频www国产| 欧美bdsm另类| 久久久久久久亚洲中文字幕 | 在线十欧美十亚洲十日本专区| 欧美成人a在线观看| 精品不卡国产一区二区三区| 成人性生交大片免费视频hd| 久久国产乱子伦精品免费另类| 精品久久久久久成人av| 国产私拍福利视频在线观看| 免费一级毛片在线播放高清视频| 成人性生交大片免费视频hd| 午夜免费成人在线视频| 精品日产1卡2卡| 久久精品国产亚洲av香蕉五月| 国产精品一区二区免费欧美| 国产精品爽爽va在线观看网站| 久久精品国产亚洲av涩爱 | 国产高潮美女av| 99热这里只有是精品在线观看 | 日韩大尺度精品在线看网址| 亚洲性夜色夜夜综合| 国产精品乱码一区二三区的特点| 免费观看人在逋| 色5月婷婷丁香| 最近视频中文字幕2019在线8| 脱女人内裤的视频| 精品久久国产蜜桃| 国产免费男女视频| a在线观看视频网站| 亚洲中文字幕日韩| 高清毛片免费观看视频网站| 久久国产精品影院| 亚洲国产精品成人综合色| 99国产精品一区二区三区| 成人无遮挡网站| 91久久精品电影网| 国产精品久久久久久久久免 | 老司机福利观看| 黄片小视频在线播放| av专区在线播放| 欧美性感艳星| 精品不卡国产一区二区三区| 亚洲人与动物交配视频| 一级a爱片免费观看的视频| 精品久久久久久久久久久久久| 亚洲综合色惰| 中文字幕高清在线视频| 免费人成视频x8x8入口观看| 人妻制服诱惑在线中文字幕| 国产高清有码在线观看视频| 人妻制服诱惑在线中文字幕| 国产伦人伦偷精品视频| 国产精品一区二区三区四区免费观看 | 91麻豆精品激情在线观看国产| 丁香六月欧美| 一区二区三区四区激情视频 | 国产69精品久久久久777片| 日本 av在线| 一本精品99久久精品77| 噜噜噜噜噜久久久久久91| 亚洲国产精品合色在线| 亚洲欧美日韩高清专用| 午夜影院日韩av| av黄色大香蕉| 噜噜噜噜噜久久久久久91| 国产白丝娇喘喷水9色精品| 麻豆国产av国片精品| 久久国产乱子伦精品免费另类| 级片在线观看| 久久久久久大精品| 激情在线观看视频在线高清| 国产真实乱freesex| 一级a爱片免费观看的视频| 男女那种视频在线观看| 听说在线观看完整版免费高清| 婷婷精品国产亚洲av| 可以在线观看的亚洲视频| 久久国产乱子免费精品| 亚洲在线观看片| 在线观看美女被高潮喷水网站 | 亚洲国产精品成人综合色| 人妻夜夜爽99麻豆av| 性欧美人与动物交配| 美女黄网站色视频| 中文字幕久久专区| 亚洲内射少妇av| 欧美潮喷喷水| 色哟哟·www| 亚洲午夜理论影院| 俄罗斯特黄特色一大片| 亚洲,欧美,日韩| 欧美在线一区亚洲| 日韩免费av在线播放| 欧美日韩亚洲国产一区二区在线观看| АⅤ资源中文在线天堂| 久久久久国产精品人妻aⅴ院| 久久性视频一级片| 久久国产乱子免费精品| 国产色婷婷99| 欧美zozozo另类| 午夜福利高清视频| 日本三级黄在线观看| 久久精品综合一区二区三区| 欧美不卡视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 国产一区二区在线观看日韩| 国产av麻豆久久久久久久| 色播亚洲综合网| 亚洲专区中文字幕在线| 99热这里只有精品一区| 亚洲av日韩精品久久久久久密| 国产精品1区2区在线观看.| 少妇人妻精品综合一区二区 | 久久草成人影院| 美女高潮喷水抽搐中文字幕| 一本综合久久免费| 国产精品嫩草影院av在线观看 | 波多野结衣高清作品| 国产免费男女视频| 久久久国产成人免费| 在线观看一区二区三区| 国产精品野战在线观看| 久久午夜福利片| av在线观看视频网站免费| 国产 一区 欧美 日韩| 在线观看美女被高潮喷水网站 | 国模一区二区三区四区视频| 亚洲真实伦在线观看| av在线老鸭窝| 欧美成人性av电影在线观看| 国产高潮美女av| 亚洲国产精品久久男人天堂| 亚洲最大成人av| 国产精品亚洲一级av第二区| 女人被狂操c到高潮| 天堂√8在线中文| 精品福利观看| 日本撒尿小便嘘嘘汇集6| 深夜精品福利| 在线十欧美十亚洲十日本专区| 能在线免费观看的黄片| 精品一区二区免费观看| 国产成+人综合+亚洲专区| 久9热在线精品视频| 搡女人真爽免费视频火全软件 | 欧美中文日本在线观看视频| 国产国拍精品亚洲av在线观看| 国产黄片美女视频| 国产视频内射| 久久精品影院6| 婷婷精品国产亚洲av| 国产亚洲欧美98| 亚洲av成人av| 波野结衣二区三区在线| 日本撒尿小便嘘嘘汇集6| 天堂动漫精品| 成人国产综合亚洲| 免费在线观看成人毛片| 五月玫瑰六月丁香| 国产乱人伦免费视频| 亚洲欧美激情综合另类| 天堂动漫精品| .国产精品久久| 性欧美人与动物交配| 精品久久国产蜜桃| 久久香蕉精品热| 老司机福利观看| 最近视频中文字幕2019在线8| 国产极品精品免费视频能看的| 亚洲欧美精品综合久久99| 90打野战视频偷拍视频| 午夜两性在线视频| 色av中文字幕| 90打野战视频偷拍视频| 欧美日韩黄片免| 久久伊人香网站| 午夜亚洲福利在线播放| 91字幕亚洲| 最近最新中文字幕大全电影3| 女人十人毛片免费观看3o分钟| 国产精品影院久久|