楊經(jīng)綏, 徐向珍, 張仲明, 戎 合, 李 源, 熊發(fā)揮, 梁風華, 劉 釗,劉 飛, 李金陽, 李兆麗, 陳松永, 郭國林, Paul ROBINSON
中國地質(zhì)科學院地質(zhì)研究所, 大陸構造與動力學國家重點實驗室地幔研究中心, 北京 100037
蛇綠巖型金剛石和鉻鐵礦深部成因
楊經(jīng)綏, 徐向珍, 張仲明, 戎 合, 李 源, 熊發(fā)揮, 梁風華, 劉 釗,劉 飛, 李金陽, 李兆麗, 陳松永, 郭國林, Paul ROBINSON
中國地質(zhì)科學院地質(zhì)研究所, 大陸構造與動力學國家重點實驗室地幔研究中心, 北京 100037
地球上的原生金剛石主要有3種產(chǎn)出類型, 分別來自大陸克拉通下的深部地幔金伯利巖型金剛石、板塊邊界深俯沖變質(zhì)巖中超高壓變質(zhì)型金剛石, 和隕石坑中的隕石撞擊型金剛石。在全球5個造山帶的10處蛇綠巖的地幔橄欖巖或鉻鐵礦中均發(fā)現(xiàn)金剛石和其他超高壓礦物的基礎上, 我們提出地球上一種新的天然金剛石產(chǎn)出類型, 命名為蛇綠巖型金剛石。認為蛇綠巖型金剛石普遍存在于大洋巖石圈的地幔橄欖巖中,并提出蛇綠巖型金剛石和鉻鐵礦的深部成因模式。認為早期俯沖的地殼物質(zhì)到達地幔過渡帶(410~660 km深度)后被肢解, 加入到周圍的強還原流體和熔體中, 當熔融物質(zhì)向上運移到地幔過渡帶頂部, 鉻鐵礦和周圍的地幔巖石以及流體中的金剛石等深部礦物一并結晶, 之后, 攜帶金剛石的鉻鐵礦和地幔巖石被上涌的地幔柱帶至淺部, 經(jīng)歷了洋盆的拉張和俯沖階段, 最終在板塊邊緣就位。
金剛石; 蛇綠巖; 鉻鐵礦; 地幔橄欖巖
通常認為, 地球上的原生金剛石主要有3種產(chǎn)出類型, 金伯利巖型、超高壓變質(zhì)型和隕石撞擊型。其中, 金伯利巖型金剛石(Kimberlite Diamond)最早被人類發(fā)現(xiàn)和利用, 研究歷史也最長, 該類金剛石被認為來自大陸巖石圈(克拉通)下的深部地幔(Shirey et al., 2004; Gurney et al., 2010)。超高壓變質(zhì)型金剛石(Metamorphic Diamond)被發(fā)現(xiàn)的歷史僅20余年, 其通常與柯石英等超高壓礦物伴生, 產(chǎn)在造山帶和板塊俯沖邊界的深俯沖變質(zhì)巖中(Sobolev et al., 1990; Xu et al., 1992)。隕石中或受隕石撞擊的巖石中也會產(chǎn)生一些金剛石, 盡管此類金剛石較少且成因相對簡單清楚, 但歸屬一個獨自的產(chǎn)出類型,稱之隕石撞擊型金剛石(Impact diamond)(Koeberl et al., 1997; Karczemska et al., 2009)。三類金剛石形成的條件和環(huán)境不同, 但形成的壓力均達5 GPa以上(> 150 km深度)(Dobrzhinetskaya et al., 1995)。
自從在西藏蛇綠巖鉻鐵礦中發(fā)現(xiàn)金剛石以來(中國地質(zhì)科學院地質(zhì)研究所金剛石組, 1981; Bai et al., 1993), 近些年不斷在不同地區(qū)的蛇綠巖地幔橄欖巖和鉻鐵礦中發(fā)現(xiàn)金剛石(楊經(jīng)綏等, 2007, 2008, 2011; 徐向珍等, 2008; Xu et al., 2009)。研究表明,它們的產(chǎn)出地質(zhì)背景十分不同于已知的其他3種金剛石的產(chǎn)出類型, 提出將其歸為一種新的金剛石產(chǎn)出類型, 命名為蛇綠巖型金剛石(楊經(jīng)綏等, 2011)。
本文對比了金伯利巖型金剛石、超高壓變質(zhì)型金剛石和隕石撞擊型金剛石的特征, 小結了蛇綠巖型金剛石的主要特征, 并結合蛇綠巖中其他深部礦物的發(fā)現(xiàn), 提出蛇綠巖和鉻鐵礦的深部成因模式。
金伯利巖型金剛石是指金伯利巖(kimberlite)中產(chǎn)出的金剛石, 為寶石級金剛石的主要來源。金伯利巖主要產(chǎn)在大陸克拉通地區(qū), 如南非、西伯利亞、南美、加拿大、澳大利亞、印度和我國華北等世界上大的克拉通都有分布。金剛石和金伯利巖的發(fā)現(xiàn)始于南非, 南非的金剛石產(chǎn)量和質(zhì)量均位于世界前列, 自1870年起, 已經(jīng)開采了2億克拉(1克拉=0.2克), 其中一半為寶石級(Field et al., 2008)。我國目前金伯利巖型金剛石的主要產(chǎn)地為山東蒙陰和遼寧復縣, 兩地儲量均達上千萬克拉, 山東蒙陰至2009年產(chǎn)出已近200萬克拉, 但與世界級的大型金剛石礦的差距很大。
金伯利巖一般呈巖管、巖墻或巖脈產(chǎn)出, 通常來自大陸巖石圈<200 km或更深的地幔, 形成于地幔低程度部分熔融產(chǎn)生的堿性巖漿(路鳳香等, 1998; Stachel et al., 2005; Harte, 2010)。鉀鎂煌斑巖(lamproite)因其物質(zhì)來源和成因與金伯利巖相近, 人們通常將其歸為同一類型。金剛石形成于地幔內(nèi)部的高溫、高壓和低氧逸度環(huán)境, 當源自深部的金伯利巖巖漿在向上運移過程中, 可將地幔中已形成的金剛石裹挾并帶至地表(Walter et al., 2011)。早期通常認為,金伯利巖型金剛石是金伯利巖巖漿結晶的產(chǎn)物, 但金剛石中包裹體的測年表明, 金剛石形成早于金伯利巖, 說明金伯利巖巖漿僅起到一個運載工具的作用(Richardson, 1984)。另有研究者認為, 大顆粒有經(jīng)濟價值的金剛石在被金伯利巖巖漿捕獲后, 可以通過多次脈動式的巖漿作用逐步長大, 因而流體及熔體對金剛石生長過程所起的作用也不可忽視。
金伯利巖型金剛石形成時代跨度通常較大, 環(huán)帶結構發(fā)育, 晶體形態(tài)多樣, 常見有的八面體型、立方體型和包殼型, 其中呈立方體狀、包殼狀形態(tài)的金剛石常含有流體包裹體, 可能在金伯利巖巖漿捕擄金剛石時所形成(Fedortchouk et al., 2010; Burgess et al., 2009; Skuzovatov et al., 2012)。例如, Field等(2008)總結了南非14個大型金伯利巖礦床, 發(fā)現(xiàn)金剛石顏色種類豐富, 主要有純藍色、白色、煙色、褐色等顏色, 并且形態(tài)多樣, 表面常有熔蝕和再生的現(xiàn)象, 表明金剛石被巖漿捕獲后受到流體交代或巖漿熔融作用的影響。
金伯利巖型金剛石內(nèi)常含有大量的礦物包裹體,根據(jù)其礦物種類組合特征的不同, 可以劃分為橄欖巖型(P型)和榴輝巖型(E型)兩種, 代表金剛石形成于兩種不同性質(zhì)的地幔源區(qū)(圖1a, b)。其中P型礦物包裹體類型主要有Cr-鎂鋁榴石、橄欖石、Cr-透輝石、斜方輝石和鉻鐵礦等典型地幔礦物(圖1c)(Gurney, 1989); 而E型礦物包裹體主要有綠輝石、石榴石、金云母、柯石英和金紅石等(Sobolev et al., 1997)。
世界各地金伯利巖型金剛石的碳同位素變化范圍較寬, 通常P型金剛石的δ13C其變化區(qū)間主要落在–1‰ ~ –10‰, 而E型金剛石的C同位素變化更寬(Bulanova et al., 2002; Deines et al., 2009; Melton et al., 2013)。氮同位素變化在–1.2‰ ~ –8‰(Burgess et al., 2009), 研究還發(fā)現(xiàn)金剛石中富含CO2、H2和H2O等流體(Fedortchouk et al., 2010; Burgess et al., 2009; Zedgenizov et al., 2009; Basu et al., 2013), 說明金伯利巖型金剛石在富含流體-熔體的還原環(huán)境中生長結晶。
近些年, 金剛石中下地幔的包裹體礦物的發(fā)現(xiàn)引起廣泛興趣。其中P型包裹體有鐵方鎂石(方鎂石和方鐵礦組合), 鐵或氮的碳化物, 高硅石榴石(Harte, 2010), MgSi-鈣鈦礦, CaSi-鈣鈦礦, CaTi-鈣鈦礦, TAPP(Tetragonal almandine-pyrope phase, 四方鐵鋁榴石-鎂鋁榴石相)(Harte et al., 1994), Mn-鈦鐵礦, 低Mg鉻尖晶石, 以及碳硅石、自然鎳、自然鐵等(Kaminsky, 2012)。E型礦物包裹體有: ‘phase Egg’(AlSiO3OH), 該礦物命名為“艾格相”(Schmidt et al., 1998; Wirth et al., 2007), 其壓力穩(wěn)定區(qū)達40 GPa(Vanpeteghem et al., 2003), 斯石英(Ono, 1999; Sano et al., 2004), 以及具Eu異常的Ca-Si鈣鈦礦和高硅石榴石等(Kaminsky, 2012)。
與通常典型的地幔型(P型)金剛石的值(δ13C ≈–5‰)不同, 含有這些包裹體的金剛石的δ13C通常會有一個很大的C同位素變化范圍(δ13C值~ ?1‰到–24‰) (Stachel et al., 2005; Tappert et al., 2009)。Walter等(2011)認為這些礦物的包裹體和C同位素表明早期的洋殼物質(zhì)俯沖到下地幔深度后, 被金伯利巖巖漿上升過程中帶到地表。
圖1 金伯利巖型金剛石特征Fig. 1 Kimberlite diamond
人們在哈薩克斯坦的Kokchetav超高壓變質(zhì)帶中最早報道有微粒金剛石(Sobolev et al., 1990)。含金剛石的巖石為長英質(zhì)片麻巖、石英巖和大理巖等表殼巖石, 表明在板塊和地體邊界, 陸殼物質(zhì)俯沖到>150 km深度之后, 又折返到地表, 其動力學機制引起人們極大的興趣。目前, 人們已經(jīng)在全球6個造山帶中發(fā)現(xiàn)了微粒金剛石, 包括中國的大別(Xu et al., 1992)和秦嶺(Yang et al., 2003), 挪威的西部片麻巖省(Dobrzhinetskaya et al., 1995), 德國的Erzgebirge地體(Massonne, 1999), 希臘的Greek Ghodope雜巖體(Mposkos et al., 2001)等(圖2)。
人們對Kokchetav超高壓變質(zhì)地體中金剛石做了較多的研究。金剛石呈微粒大量出現(xiàn), 通常10~80 μm大小, 平均為粒徑30~50 μm 。微粒金剛石δ13C= ?9.3‰ ~ ?13‰, 有些顆粒細小的金剛石獲得δ13C= ?17.2‰ ~ ?26.9‰, 認為是C的分餾作用所引起(Ogasawara, 2005)。Erzgebirge超高壓變質(zhì)地體中的金剛石形成于兩個階段, 早期的δ13C= ?17.8‰,晚期的為δ13C= ?21.5至?25.5%, 認為反映從早期還原階段演化至晚期相對氧化階段(Dobrzhinetskaya et al., 2010)。Kokchetav超高壓變質(zhì)金剛石中的N具有地殼的成因, 平均δ15N=+5.9‰ ~ +8.5‰(Cartigny et al., 2001; Jacobsen et al., 2011)。
Kokchetav超高壓地體中長英質(zhì)片麻巖中的金剛石中的礦物包裹體主要有SiO2、TiO2、Cr2O3、Al2O3, 以及鋯石、方解石和白云石等, 并有流體包裹體。白云巖、大理巖和鈣質(zhì)-硅酸巖片麻巖的金剛石中包裹體主要有方解石、白云石、金紅石和Fe2O3等。金剛石中的一些礦物包裹體被認為形成深度>190~280 km, 包括Kokchetav金剛石中的文石+菱鎂礦包裹體, 石榴石橄欖巖中發(fā)現(xiàn)多硅石榴石(Majoritic Garnet)殘核, 德國Erzgebirge地體中含金剛石片麻巖中的TiO2II金紅石(金紅石具有a-PbO2結構)(Van Roermund et al., 1998; Hwang et al., 2000; Katayama et al., 2000; Ye et al., 2000; Ogasawara et al., 2002; Dobrzhinetskaya et al., 2006; Spengler et al., 2006; Masago et al., 2010)。
圖2 超高壓變質(zhì)型和隕石撞擊型金剛石Fig. 2 Metamorphic diamond and impact diamond
自然界的金剛石的結構和特征決定其形成于高壓條件下, 通常產(chǎn)自地球的深部, 但隕石撞擊型金剛石也屬金剛石產(chǎn)出的一個類型。
地球上隕石撞擊型金剛石最早發(fā)現(xiàn)于美國亞利桑那州的Meteor隕石坑, 金剛石產(chǎn)在Canyon Diablo隕石中, 被認為是隕石撞擊地球時形成的(Heymann et al., 1966)。發(fā)現(xiàn)隕石撞擊型金剛石的還有德國的Ries Crater隕石(Goresy et al., 2001), 摩洛哥的NWA 3140隕石, 以及利比亞的DaG 868隕石(Karczemska et al., 2009)等。此外, 人們還在南極冰蓋的鐵隕石中發(fā)現(xiàn)了細粒的隕石撞擊型金剛石, 認為其形成于地球之外的行星之間的撞擊(Goresy et al., 2001)。俄羅斯和烏克蘭也有多處隕石坑中發(fā)現(xiàn)了金剛石(Masaitis, 1993; Masaitis et al., 1972, 1990; Vishnevskyet al., 1975; Gurov et al., 1995)。尤其, 位于俄羅斯西伯利亞的Popigai隕石坑直徑約100 km, 時代為35.7 Ma(Bottomley et al., 1997), 其中發(fā)現(xiàn)的金剛石可達1 cm, 該金剛石為多晶組成(Masaitis et al., 1972)。
圖3 蛇綠巖型金剛石分布圖Fig. 3 Locations of the ophiolite diamond on Earth
圖4 蛇綠巖型金剛石Fig. 4 Diamond in ophiolites
Koeberl等(1997)研究了從隕石撞擊后形成的熔融體中結晶出的金剛石, 其粒度達500~600 μm, 其中保留了從石墨轉(zhuǎn)變成金剛石的印記(圖2c, d)。其C同位素的δ13C區(qū)間為–12‰至–17‰, 比產(chǎn)于地幔的金伯利巖型金剛石的13C更虧損, 但比沉積物中生物成因的13C要富集, 而與石墨的區(qū)間相一致, 證明是石墨受到?jīng)_擊變質(zhì)后形成(Vishnevsky et al., 1975)。
自西藏雅魯藏布江蛇綠巖的鉻鐵礦中發(fā)現(xiàn)金剛石以來(中國地質(zhì)科學院地質(zhì)研究所金剛石組, 1981), 蛇綠巖中金剛石的研究近些年取得了很多新進展。此前人們僅在羅布莎蛇綠巖的一個礦區(qū)的鉻鐵礦中發(fā)現(xiàn)了金剛石, 并且金剛石的數(shù)量很少, 僅數(shù)十粒。新的研究從羅布莎3個礦區(qū)的多個鉻鐵礦和地幔橄欖巖中發(fā)現(xiàn)了金剛石(楊經(jīng)綏等, 2008), 尤其, 康金拉礦區(qū)的鉻鐵礦和地幔橄欖巖中均找到千余粒金剛石(徐向珍等, 2008), 研究取得了重大突破。其后, 在全長近2000 km的雅魯藏布江縫合帶中多個地幔橄欖巖體中陸續(xù)發(fā)現(xiàn)了金剛石, 其中包括東波、普蘭、當窮、日喀則和澤當?shù)葞r體(楊經(jīng)綏等, 2011; Yang et al., 2011)。此外, 在西藏的班公湖—怒江縫合帶的丁青地幔橄欖巖、新疆薩爾托海蛇綠巖鉻鐵礦、緬甸的密支那蛇綠巖地幔橄欖巖(Yang et al., 2012b, 2013)和俄羅斯極地烏拉爾的Ray-Iz蛇綠巖鉻鐵礦中也均發(fā)現(xiàn)了金剛石(楊經(jīng)綏等, 2007)。至此, 在西藏、新疆、俄羅斯烏拉爾和緬甸密支那等全球5條縫合帶的10個蛇綠巖中發(fā)現(xiàn)了金剛石等深部礦物, 表明大洋地幔橄欖巖中可能普遍存在金剛石(圖3, 4)。尤其是, 西藏和俄羅斯烏拉爾的鉻鐵礦石中原位金剛石的發(fā)現(xiàn), 徹底消除了蛇綠巖金剛石為混染的質(zhì)疑(Taylor et al., 1995; 切切斯特鉆石公司考察團, 1997)。在以上研究基礎上, 劃分出了蛇綠巖型金剛石, 認為代表地球上金剛石的一種新的產(chǎn)出類型, 其形成構造背景完全不同于金伯利巖型金剛石和超高壓變質(zhì)型金剛石(楊經(jīng)綏等, 2011), 并認為蛇綠巖型金剛石提供了鉻鐵礦深部成因的重要證據(jù)(Yang et al., 2012a)。
蛇綠巖型金剛石, 無論其產(chǎn)在鉻鐵礦中還是地幔橄欖巖中, 具有十分相近的特征。首先, 金剛石的直徑多為0.2~0.5 mm, 自形晶、無色或淡黃色, 主要為八面體型和菱形十二面體型。紅外光譜測得羅布莎的金剛石為IaA-IaB混合型, 金剛石的氮總量變化于20×10-6~670×10-6(白文吉等, 2001)。在美國加利福尼亞大學河畔分?;瘜W系完成的紅外光譜分析, 獲得西藏羅布莎金剛石樣品也屬IaA型(戎合等, 2013)。在德國地學研究中心(GFZ)的SIM實驗室完成的61粒金剛石的71件C同位素分析, 樣品包括西藏多個地幔橄欖巖和俄羅斯烏拉爾鉻鐵礦中的金剛石, 獲得δ13CVPDB變化于–18.3‰到–28.7‰之間,平均值為–24.6‰; 在西澳大學完成的15粒金剛石的33件分析與德國的分析結果一致(Yang et al., 2013)。在德國GFZ使用FIB和TEM方法開展礦物包裹體研究發(fā)現(xiàn)兩地金剛石中均有Co-Mn-Ni合金等特殊礦物包裹體(Yang et al., 2012b), 不同于金伯利巖金剛石中的包裹體(Tappert et al., 2005; Davies et al., 2004)。
圖5 超高壓新礦物青松礦(BN)和形成深度示意圖Fig. 5 Qingsongite and its formational depth
蛇綠巖和鉻鐵礦中存在一個超高壓礦物群, 除超高壓礦物金剛石外, 其他超高壓礦物還有: 碳硅石、硅金紅石、硅尖晶石等, 超高壓礦物柯石英和藍晶石(楊經(jīng)綏等, 2002a; 白文吉等, 2006; 楊經(jīng)綏等, 2008)。研究表明, 柱狀體柯石英為斯石英假象。斯石英形成溫度T=1000 C, 壓力P>9 GPa(即>300 km深度), 在壓力降低的環(huán)境, 斯石英相變成柯石英(P>2.8 GPa)(Yang et al., 2007)。運用FIB和TEM新手段, 在柯石英中發(fā)現(xiàn)納米級的超高壓成因的TiN和BN等特殊包裹體(Dobrzhinetskaya et al., 2009)。最近, 國際新礦物和礦物命名委員會批準該氮化物礦物(分子式BN)為新礦物, 新礦物命名為Qingsongite(青松礦) (Williams et al., 2013)。青松礦是為了紀念中國地質(zhì)科學院地質(zhì)研究所的方青松研究員(1939—2010)而命名的新礦物, 他在羅布莎鉻鐵礦石中找到第一粒金剛石中做出了杰出貢獻(中國地質(zhì)科學院地質(zhì)研究所金剛石組, 1981)。
青松礦電子探針成分: B 48.54 ±0.65 wt% (47.90~49.2 wt%); N 51.46 ±0.65 wt%(52.10~50.8 wt%); 分子式: BN; 晶體結構: 立方晶系, a=3.61 ?, ρcalc=3.50 g cm-3,空間群F-43 m。青松礦包裹在羅布莎鉻鐵礦中超高壓柯石英和藍晶石組合中, 形成溫度為1300℃, 壓力為10~15 GPa, 深度大于300 km, 是典型的超高壓礦物。BN中的物質(zhì)B(硼)為地表常見礦物組分, 因此, 推測其源于地殼, 俯沖到深部地幔, 形成青松礦。青松礦的發(fā)現(xiàn), 結合鉻鐵礦中鋯石等其他地殼物質(zhì)的報道, 對認識大洋深俯沖, 殼幔相互作用和豆莢狀鉻鐵礦的形成具有重要意義。
圖6 地幔中的超高壓礦物和鉻鐵礦的深部成因模式Fig. 6 Model of formation of ultrahigh-pressure minerals and ophiolitic chromitites
經(jīng)典的板塊構造理論認為, 蛇綠巖地幔橄欖巖(即大洋地幔橄欖巖)通常來自淺部地幔。已有研究表明, 在蛇綠巖地幔巖中可能普遍含深部礦物, 深部礦物的成分和C同位素特征表明這些物質(zhì)可能來自早期俯沖到地幔過渡帶(410~660 km)的地殼巖片。為此我們提出一個新的蛇綠巖鉻鐵礦成因模式如下:
從海溝深俯沖下去的地殼物質(zhì)中會攜帶大量的流體和U、Th、Pb等放射性物質(zhì), 到達地幔過渡帶后, 由于放射性生熱和流體的作用, 俯沖巖片被肢解和熔融, 加入到周圍的強還原流體中。同理, 地幔物質(zhì)在過渡帶也將發(fā)生高度熔融, Cr元素從巖石中熔出進入熔融體。這些熔融體和流體隨地幔柱上涌至過渡帶頂部附近, 隨溫度和壓力降低, 金剛石等超高壓相礦物與鉻鐵礦均開始結晶。之后, 攜帶金剛石的鉻鐵礦和地幔巖石隨地幔柱上涌至淺部, 深部強還原環(huán)境形成的礦物一部分被保留, 如金剛石和青松礦等, 另一部分發(fā)生改變, 如斯石英被相對低壓相的柯石英替代(Yang et al., 2007), 柯石英從高Si的鉻鐵礦中出溶(Yamamoto et al., 2009)。
Liou等(2012)在美國礦物學雜志撰文, 認為“蛇綠巖鉻鐵礦中發(fā)現(xiàn)超高壓礦物打破了傳統(tǒng)蛇綠巖鉻鐵礦形成于高溫、低壓的洋中脊或弧后擴張環(huán)境的傳統(tǒng)觀念的‘禁錮’”。新發(fā)現(xiàn)有可能改變蛇綠巖地幔橄欖巖和鉻鐵礦為淺部來源的經(jīng)典板塊構造理論,改變傳統(tǒng)的人們對地幔物質(zhì)成分和地幔物質(zhì)運移的認識, 并且可能通過深部地幔礦物的研究證實地幔柱和地幔循環(huán)新理論。
致謝:西藏礦業(yè)巴登珠總工和地質(zhì)組成員, 以及CARMA項目組和研究生20余人參加野外調(diào)研和取樣, 大陸構造與動力學國家重點實驗室協(xié)助分析測試、許志琴院士和實驗室成員予以指導或研討, 在此一并致謝。中國地質(zhì)科學院地質(zhì)研究所白文吉研究員和方青松研究員的早期研究工作和經(jīng)驗為本研究奠定了基礎, 使得我們少走了許多彎路, 在此深表感謝。尤其方青松研究員過早的逝去, 是地幔深部礦物研究的一個重大損失。我們謹以此文和新礦物——青松礦的發(fā)現(xiàn)并以他的名字命名, 予以紀念!
白文吉, 楊經(jīng)綏, ROBINSON P, 方青松, 張仲明, 顏秉剛, 胡旭峰. 2001. 西藏羅布莎蛇綠巖鉻鐵礦中的金剛石研究[J]. 地質(zhì)學報, 75(3): 404-409.
白文吉, 楊經(jīng)綏, 方青松, 任玉峰, 戎合, 施倪承, 李國武, 馬喆生. 2006. 雅魯藏布江蛇綠巖中超高壓礦物硅尖晶石的研究[J]. 中國地質(zhì), 33(6): 1379-1385.
路鳳香, 鄭建平, 陳美華. 1998. 有關金剛石形成條件的討論[J].地學前緣, 5(3): 125-132.
切切斯特鉆石公司考察團. 1997. 西藏羅布莎和東巧地幔橄欖巖中不存在原生或殘留的金剛石[J]. 西藏地質(zhì), (1): 103-109.
戎合, 楊經(jīng)綏, 張仲明, 徐向珍. 2013. 西藏羅布莎橄欖巖與中國大陸科學鉆探主孔(CCSDMH)榴輝巖中金剛石的紅外特征初探[J]. 巖石學報, 29(6): 1861-1866.
徐向珍, 楊經(jīng)綏, 巴登珠, 陳松永, 方青松, 白文吉. 2008. 雅魯藏布江蛇綠巖帶的康金拉鉻鐵礦中發(fā)現(xiàn)金剛石[J]. 巖石學報, 24(7): 1453-1462.
楊經(jīng)綏, 白文吉, 方青松, 顏秉剛, 施倪承, 馬哲生, 代明泉, 熊明. 2002a. 蛇綠巖中的一種超高壓礦物——硅金紅石[J].自然科學進展, 12(11): 1220-1222.
楊經(jīng)綏, 白文吉, 方青松, 孟繁聰, 陳松永, 張仲明, 戎合. 2007.極地烏拉爾豆莢狀鉻鐵礦中發(fā)現(xiàn)金剛石和一個異常礦物群[J]. 中國地質(zhì), 34(5): 950-952.
楊經(jīng)綏, 白文吉, 方青松, 戎合. 2008. 西藏羅布莎蛇綠巖鉻鐵礦中的超高壓礦物和新礦物(綜述)[J]. 地球?qū)W報, 29(3): 263-274.
楊經(jīng)綏, 徐向珍, 李源, 李金陽, 巴登珠, 戎合, 張仲明. 2011.西藏雅魯藏布江縫合帶的普蘭地幔橄欖巖中發(fā)現(xiàn)金剛石:蛇綠巖型金剛石分類的提[J]. 巖石學報, 27(11): 3171-3178.
楊經(jīng)綏, 許志琴, 裴先治, 史仁燈, 吳才來, 張建新, 李海兵,孟繁聰, 戎合. 2002b. 秦嶺發(fā)現(xiàn)金剛石: 橫貫中國中部巨型超高壓變質(zhì)帶新證據(jù)及古生代和中生代兩期深俯沖作用的識別[J]. 地質(zhì)學報, 76(4): 484-495.
楊經(jīng)綏, 張仲明, 李天福, 李兆麗, 任玉峰, 徐向珍, 巴登珠,白文吉, 方青松, 陳松永, 戎合. 2008. 西藏羅布莎鉻鐵礦體圍巖方輝橄欖巖中的異常礦物[J]. 巖石學報, 24(7): 1445-1452.
中國地質(zhì)科學院地質(zhì)研究所金剛石組. 1981. 西藏首次發(fā)現(xiàn)含金剛石的阿爾卑斯型巖體[J]. 地質(zhì)論評, 27(5): 445-447.
References:
BAI Wen-ji, YANG Jing-sui, FANG Qing-song, REN Yu-feng, RONG He, SHI Ni-cheng, LI Guo-wu, MA Zhe-sheng. 2006. Study of the UHP mineral silicon spinel in the Yarlung Zangbo ophiolite[J]. Geology in China, 33(6): 1379-1385(in Chinese with English abstract).
BAI Wen-ji, YANG Jing-sui, ROBINSON P, FANG Qing-song, ZHANG Zhong-ming, YAN Bing-gang, HU Xu-feng. 2001. Study of Diamonds from Chromitites in the Luobusa Ophiolite, Tibet[J]. Acta Geologica Sinica, 75(3): 404-409(in Chinese with English abstract).
BAI Wen-ji, ZHOU Mei-fu, ROBINSON P T. 1993. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet[J]. Canadian Journal of Earth Sciences, 30(8): 1650-1659.
BASU S, JONES A P, VERCHOVSKY A B, KELLEY S, STUART F M. 2013. An overview of noble gas (He, Ne, Ar, Xe) contents and isotope signals in terrestrial diamond[J]. Earth-Science Reviews, 126: 235-249.
BOTTOMLEY R, GRIEVE R, YORK D, MASAITIS V. 1997. The age of the Popigai impact event and its relation to events at the Eocene/Oligocene boundary[J]. Nature, 388: 365-368.
BULANOVA G P, PEARSON D G, HAURI E H, GRIFFIN B J. 2002. Carbon and nitrogen isotope systematics within a sector-growth diamond from the Mir kimberlite, Yakutia[J]. Chemical Geology, 188(1-2): 105-123.
BURGESS R, CARTIGNY P, HARRISON D, HOBSON E, HARRIS J. 2009. Volatile composition of microinclusions in diamonds from the Panda kimberlite, Canada: Implications for chemical and isotopic heterogeneity in the mantle[J]. Geochimica et Cosmochimica Acta, 73(6): 1779-1794.
CARTIGNY P, DE CORTE K, SHATSKY V S, ADER M, DE PAEPE P, SOBOLEV N V, JAVOY M. 2001. The origin and formation of metamorphic microdiamonds from the Kokchetav massif, Kazakhstan: a nitrogen and carbon isotopic study[J].Chemical Geology, 176: 265-281.
DAVIES R M, GRIFFIN W L, O'REILLY S Y, DOYLE B J. 2004. Mineral inclusions and geochemical characteristics of microdiamonds from the DO27, A154, A21, A418, DO18, DD17 and Ranch Lake kimberlites at Lac de Gras, Slave Craton, Canada[J]. Lithos, 77(1-4): 39-55.
DEINES P, STACHEL T, HARRIS J W. 2009. Systematic regional variations in diamond carbon isotopic composition and inclusion chemistry beneath the Orapa kimberlite cluster, in Botswana[J]. Lithos, 112: 776-784.
Delegation of Chichester Diamond Company. 1997. There is no primary diamonds in the mantle peridotites of Luobusa and Dongqiao[J]. Tibet Geology, (1): 93-102(in Chinese).
DOBRZHINETSKAYA L F, EIDE E A, LARSEN R B, STURT B A, TR?NNES R G, SMITH D C, TAYLOR W R, POSUKHOVA T V. 1995. Microdiamond in high-grade metamorphic rocks of the Western Gneiss region, Norway[J]. Geology, 23: 597-600.
DOBRZHINETSKAYA L F, GREEN H W, TAKAHATA N, SANO Y, SHIRAI K. 2010. Crustal Signature of δ13C and Nitrogen Content in Microdiamonds from Erzgebirge, Germany: Ion Microprobe Studies[J]. Journal of Earth Sciences, 21(5): 623-634.
DOBRZHINETSKAYA L F, LIU Z, CARTIGNY P, ZHANG J, TCHKHETIA NN, GREEN II HW, HEMLEY RJ. 2006. Synchrotron infrared and Raman spectroscopy of microdiamonds from Erzgebirge, Germany[J]. Earth and Planetary Science Letters, 248: 340-349.
DOBRZHINETSKAYA L F, WIRTH R, YANG J S, IAN D, HUTCHEON P K, WEBER HARRY W. GREEN II. 2009. High-pressure highly reduced nitrides and oxides from chromitite of a Tibetan ophiolite[J]. PANS, Early Edition, 106: 1-6.
FEDORTCHOUK Y, MATVEEV S, CARLSON J A. 2010. H2O and CO2in kimberlitic fluid as recorded by diamonds and olivines in several Ekati Diamond Mine kimberlites, Northwest Territories, Canada[J]. Earth and Planetary Science Letters, 289(3-4): 549-559.
FIELD M, STIEFENHOFER J, ROBEY J, KURSZLAUKIS S. 2008. Kimberlite-hosted diamond deposits of southern Africa: A review[J]. Ore Geology Reviews, 34(1-2): 33-75.
GORESY A E, GILLET P, CHEN M, KüNSTLER F, GRAUP G, ST?HLE V. 2001. In situ discovery of shock-induced graphite-diamond phase transition in gneisses from the Ries Crater, Germany[J]. American Mineralogist, 86: 611-621.
GURNEY J J, HELMSTAEDT H H, RICHARDSON S H, SHIREY S B. 2010. Diamonds through Time[J]. Economic Geology, 105(3): 689-712.
GURNEY J J. 1989. Diamonds.4IKC, Kimberlites and related rocks[M]. Geol. Soc. Aust. Spec. Publ., 14: 935-965.
GUROV E P, GUROVA E P, RAKITSKAYA R B. 1995. Impact Diamonds in the Craters of the Ukrainian Shield[J]. Meteoritics, 30(5): 515-516.
HARTE B, HARRIS J W. 1994. Lower mantle mineral association preserved in diamonds[J]. Mineralogical Magazine, 58A: 384-385.
HARTE B. 2010. Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones[J]. Mineralogical Magazine, 74(2): 189-215.
HAWTHORNE J B. 1975. Model of a kimberlite pipe[J]. Physics and Chemistry of the Earth, 9: 1-15.
HEYMANN D, LIPSCHUTZ M E, NIELSON B, ANDERS E. 1966. Canyon Diablo meteorite: Metallographic and mass-spectrometric study of 56 fragments[J]. Journal of Geophysical Research, 71(2): 619-641.
HWANG S L, SHEN P, CHU H T, YUI T F. 2000. Nanometer-size αPbO2-type TiO2in garnet: a thermobarometer for ultrahigh-pressure metamorphism[J]. Science, 288: 321-324.
Institute of Geology, Chinese Academy of Geological Sciences. 1981. The discovery of alpine-type diamond bearing ultrabasic intrusions in Xizang (Tibet)[J]. Geological Review, 27(5): 445-447(in Chinese with English abstract).
JACOBSEN B, MATZEL J, HUTCHEON I D, GREEN H W, DOBRZHINETSKAYA L F. 2011. Diamond-graphite transformation: A NanoSIMS isotope study of diamond-graphite inclusion in ircon from the Kochetav massif[J]. Goldscmidt Conference Abstract, 1095.
KAMINSKY F. 2012. Mineralogy of the lower mantle: A review of‘super-deep’ mineral inclusions in diamond[J]. Earth-Science Reviews, 110(1-4): 127-147.
KARCZEMSKA A, JAKUBOWSKI T, VERGAS F. 2009. Different diamonds in meteorites-DaG 868 and NWA 3140 ureilites[J]. Journal of Achievements in materials and manufacturing engineering, 37(2): 292-297.
KATAYAMA I, PARKINSON CD, OKAMOTO K, NAKAJIMA Y, MARUYAMA S. 2000. Supersilicic clinopyroxene and silica exolution in UHPM eclogite and pelitic gneiss from the Kokchetav massif, Kazakhstan[J]. American Mineralogist, 85: 1368-1374.
KOEBERL C, MASAITIS V L, SHAFRANOVSKY G I, GILMOUR I, LANGENHORST F, SCHRAUDER M. 1997. Diamonds from the Popigai impact structure, Russia[J]. Geology, 25: 967-970.
LIN EDWARDS. 2013. Meteorite yields carbon crystals harder than diamond[OL/EB]. [2013-10-10]. http://phys.org/news 184402061.html.
LIOU J G, ZHANG Ru-yuan, LIU Fu-lai, ZHANG Ze-ming, ERNST W G. 2012. MSA Roebling Medal Lecture: Mineralogy, petrology, U-Pb geochronology, and geologic evolution of the Dabie - Sulu classic ultrahigh-pressure metamorphic terrane, East-Central China[J]. American Mineralogist, 97: 1533-1543.
LU Feng-xiang, ZHENG Jian-ping, CHEN Mei-hua. 1998. Discussion on formation condition of Diamonds[J]. Earth Science Frontiers, 5(3): 125-132(in Chinese with English abstract).
MASAGO H, OMORI S, MARUYAMA S. 2010. Significance of retrograde hydration in collisional metamorphism: A case study of water infiltration in the Kokchetav ultrahigh-pressure metamorphic rocks, northern Kazakhstan[J]. Gondwana Research, 18(1): 205-212.
MASAITIS V L, FUTERGENDLER S I, GNEVUSHEV M A. 1972. Diamonds in impactites of the Popigai meteorite crater[J]. All-Union Mineralogical Society Proceedings, 1: 108-112(in Russian).
MASAITIS V L, SHAFRANOVSKY G I, EZERSKY V A, RESHETNYAK N B. 1990. Impact diamonds in ureilites and impactites[J]. Meteoritika, (49): 180-196(in Russian).
MASAITIS V L. 1993. Diamond-bearing impactites, their distribution and petrogenesis[J]. Regionalnaya Geologiai Metallogenia, 1: 121-134(in Russian).
MASSONNE H J. 1999. A new occurrence of microdiamonds in quartzofeldspathic rocks of the Saxonian Erzgebirge, Germany, and their metamorphic evolution//GURNEY J, GURNEY J L, PASCOE M D, RICHARDSON S H. (Eds.), The P.H. Nixon Volume. Proceedings of 7th International Kimberlitic Conference[J]. Red Roof Design CC, apetown, 533-539.
MELTON G L, STACHEL T, STERN R A, CARLSON J, HARRIS J W. 2013. Infrared spectral and carbon isotopic characteristics of micro- and macro-diamonds from the Panda kimberlite(Central Slave Craton, Canada)[J]. Lithos, 177: 110-119.
MPOSKOS E D, KOSTOPOULOS D K. 2001. Diamond, former coesite and supersilicic garnet in metasedimentary rocks from the Greek Rhodope: a new ultrahigh-pressure metamorphic rovince established[J]. Earth and Planetary Science Letters, 192(4): 497-506.
OGASAWARA Y, FUKUSAVA K, MARUYAMA S. 2002. Coesite exsolution from supersilisic titanite in UHP marble from the Kokchetav massif, northern Kasakhstan[J]. American Mineralogist, 87: 454-461.
OGASAWARA Y. 2005. Microdiamonds in ultrahigh-pressure metamorphic rocks[J]. Element, 1(2): 91-96.
ONO S. 1999. High temperature stability of phase “Egg”, Al-SiO3(OH)[J]. Contributions to Mineralogy and Petrology, 137 (1-2): 83-89.
RICHARDSON S H, GURNEY J J, ERLANK A J, HARRIS J W. 1984. Origin of diamonds in old enriched mantle[J]. Nature, 310: 198-202.
RONG He, YANG Jing-sui, ZHANG Zhong-ming, XU Xiang-zhen. 2013. A preliminary study of FT-IR on the diamonds from the Luobusa chromitites of Tibet and the eclogite of CCSD-MH, China[J]. Acta Petrologica Sinica, 29(6): 1861-1866(in Chinese with English abstract).
SANO A, OHTANI E, KUBO T, FINAKOSHI K. 2004. In situ X-ray observation of decomposition of hydrous aluminum silicate AlSiO3OH and aluminum oxide hydroxide d-AlOOH at high pressure and temperature[J]. Journal of Physics and Chemistry of Solids, 65(8):1547-1554.
SCHMIDT M W, FINGER L W, ANGEl R J, DINNEBIER R E. 1998. Synthesis, crystal structure, and phase relations of Al-SiO3OH, a high-pressure hydrous phase[J]. American Mineralogist, 83(7-8): 881-888.
SHIREY S B, RICHARDSON S H, HARRIS J W. 2004. Integrated models of diamond formation and craton evolution[J]. Lithos, 77(1-4): 923-944.
SKUZOVATOV S Y, ZEDGENIZOV D A, RAGOZIN A L, SHATSKY V S. 2012. Growth medium composition of coated diamonds from the Sytykanskaya kimberlite pipe (Yakutia)[J]. Russian Geology and Geophysics, 53(11): 1197-1208.
SOBOLEV N V, KAMINSKY F V, GRIFFIN W L, YEFIMOVA E S, WIN T T, RYAN C G, BOTKUNOV A I. 1997. Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia[J]. Lithos, 39 (3-4): 135-157.
SOBOLEV N V, SHATSKY V S. 1990. Diamond inclusions in garnets from metamorphic rocks: a new environment for diamond formation[J]. Nature, 343: 742-756.
SPENGLER D, VAN ROERMUND H L M, DRURY M R, OTTOLINI L, MASO P R D, DAVIES G. 2006. Deep origin and hot melting of an Archaean orogenic peridotite massif in Norway[J]. Nature, 440: 913-917.
SPETSIUS V, TAYLOR L A. 2008. Diamonds of Siberia photographic evidence for their origin[M]. Tranquility Base Press, Lenoir, Tennessee, USA: 1-278.
STACHEL T, BREY G P, HARRIS J W. 2005. Inclusions in sublithospheric diamonds: glimpses of deep Earth[J]. Elements, 1(2): 73-78.
TAPPERT R, FODEN J, STACHEL T, MUEHLENBACHS K, TAPPERT M, WILLS K. 2009. The diamonds of South Australia[J]. Lithos, 112S: 806-821.
TAPPERT R, STACHEL T, HARRIS J W, SHIMIZU N, BREY G. P. 2005. Mineral inclusions in diamonds from the Panda kimberlite, Slave Province, Canada[J]. European Journal of Mineralogy, 17(3): 423-440.
TAYLOR W R, MILLEDGE H J, GRIFFIN B J, NIXON P H, KAMPERMAN M. MATTEY D P. 1995. Characteristics of microdiamonds from ultramafic massifs in Tibet; authentic ophiolitic diamonds or contamination? Sixth international kimberlite conference; extended abstracts[J]. Proceedings of the International Kimberlite Conference, 6: 623-624.
VAN ROERMUND H L M, DRURY M R. 1998. Ultra-high pressure (PN6 GPa) garnet peridotites in Western Norway: exhumation of mantle rocks from N185 km depth[J]. Terra Nova, 10: 295-301.
VANPETEGHEM C, OHTANI E, KONDO T, TAKEMURA K, KIKEGAWA T. 2003. Compressibility of phase Egg Al-SiO3OH: equation of state and role of water at high pressure[J]. American Mineralogist,88 (10): 1408-1411.
VISHNEVSKY S A, PALCHIK N A. 1975. Graphite in the rocks of Popigai structure: destruction and transformation to other phases of the carbon system[J]. Geologiai Geofizika, 1: 67-75.
WALTER M J, KOHN S C, ARAUJO D, BULANOVA G P,SMITH C B, GAILLOU E, WANG J, STEELE A, SHIREY S B. 2011. Deep Mantle Cycling of Oceanic Crust: Evidence from Diamonds and Their Mineral Inclusions[J]. Science, 334: 54-57.
WILLIAMS P A, HATERT F, PASERO M, MILLS S J. 2013. New minerals and nomenclature modifications approved in 2013[J]. Mineralogical Magazine, 77(6): 2695-2709.
WIRTH R, VOLLMER C, BRENKER F, MATSYUK S, KAMINSKY F. 2007. Nanocrystalline hydrous aluminium silicate in superdeep diamonds from Juina (Mato Grosso State, Brazil)[J]. Earth and Planetary Science Letters, 259(3-4): 384-399.
XU Shu-tong, SU Wen, LIU Yi-can, JIANG Lai-li, JI Shou-yuan, OKAY A I, SENG?R A M C. 1992. Diamond from the Dabie Shan Metamorphic Rocks and Its Implication for Tectonic Setting[J]. Science, 256(5053): 80-82.
XU Xiang-zhen, YANG Jing-sui, BA Deng-zhu, CHENG Song-yong, FANG Qing-song, BAI Wen-ji. 2008. Diamond discovered from the Kangjinla chromitite in the Yarlung Zangbo ophiolite belt, Tibet[J]. Acta Petrologica Sinica, 24(7): 1453-1462(in Chinese with English abstract).
XU Xiang-zhen, YANG Jing-sui, CHEN Song-yong, FANG Qing-Song, BAI Wei-ji, BA Deng-zhu. 2009. Unusual Mantle Mineral Group from Chromitite Orebody Cr-11 in Luobusa Ophiolite of the Yarlung-Zangbo Suture Zone, Tibet[J]. Journal of Earth Sciences, 20(2): 284-302.
YAMAMOTO S, KOMIYA T, HIROSE K, MARUYAMA S. 2009. Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, Southern Tibet[J]. Lithos, 109(3): 314-322.
YANG Jing-sui, BAI Wen-ji, FANG Qing-song, MENG Fan-cong, CHEN Song-yong, ZHANG Zhong-ming, RONG He. 2007. Discovery of diamond and an unusual mineral group from the podiform chromite, Polar Ural[J]. Geology in China, 34(5): 950-952(in Chinese with English abstract).
YANG Jing-sui, BAI Wen-ji, FANG Qing-song, RONG He. 2008. Ultrahigh-pressure Minerals and New Minerals from the Luobusa Ophiolitic Chromitites in Tibet: A Review[J]. Acta Geoscientica Sinica, 29(3): 263-274(in Chinese with English abstract).
YANG Jing-sui, BAI Wen-ji, FANG Qing-song, YAN Bing-gang, SHI Ni-cheng, MA Zhe-sehng, DAI Ming-quan, XIONG Ming. 2002. Si-rutile-an ultrahigh pressure mineral in ophiolites[J]. Progress in Natural Science, 12(11): 1220-1222(in Chinese).
YANG Jing-sui, DOBRZHINETSKAYA L, BAI Wen-ji, FANG Qing-song, ROBINSON P T, ZHANG Jun-feng, GREEN II H W. 2007. Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet[J]. Geology, 35(10): 875-878.
YANG Jing-sui, LI Tian-fu, CHEN Shi-zhong, WU Cai-lai, ROBINSON P T, LIU Dun-yi, WOODE J L. 2009. Genesis of garnet peridotites in the Sulu UHP belt: Examples from the Chinese continental scientific drilling project-main hole, PP1 and PP3 drillholes[J]. Tectonophysics, 475(3-4): 369-382.
YANG Jing-sui, ROBINSON P T, LI Jin-yang, LI Zhao-li, LIU Zhao, LI Yuan, XU Xiang-zhen. 2012a. Deep origin of the Luobusa ophiolitic peridotites and chromitites in Tibet[J]. 2012a. Fall Meeting, AGU abstract.
YANG Jing-sui, ROBINSON P T, XU Xiang-zhen, DILEK Y. 2013. Ophiolite-type diamond: A new occurrence of diamond on the Earth[J]. Abstract Europen Geoscience es Union General Assembly 2013, Vienna, Austria.
YANG Jing-sui, ROBINSON P T. 2011. In situ diamonds and moissanite in podiform chromitites of the Luobusa and Ray-Iz ophiolites, Tibet and Russia[J]. Goldschmidt Conference Abstracts 2011, A2209.
YANG Jing-sui, XU Xiang-zhen, LI Yuan, LI Jin-yang, BA Deng-zhu, RONG He, ZHANG Zhong-ming. 2011. Diamonds recovered from peridotite of the Purang ophiolite in the Yarlung-Zangbo suture of Tibet: A proposal for a new type of diamond occurrence[J]. Acta Petrologica Sinica, 27(11): 3171-3178(in Chinese with English abstract).
YANG Jing-sui, XU Xiang-zhen, ROBINSON P T. 2012b. Diamonds in ophiolitic mantle rocks and podiform chromitites: A tale of deep subduction to oceanic spreading[J]. 34 IGC, Brisbane, Austrlia.
YANG Jing-sui, XU Zhi-qin, DOBRZHINETSKAYA L F, GREEN II H W, PEI Xian-zhi, SHI Ren-deng, WU Cai-lai, WOODEN J L, ZHANG Jian-xin, WAN Yu-sheng, LI Hai-bing. 2003. Discovery of metamorphic diamonds in central China: an indication of a >4000-km-long zone of deep subduction resulting from multiple continental collisions[J]. Terra Nova, 15(6): 370-379.
YANG Jing-sui, XU Zhi-qin, PEI Xian-zhi, SHI Ren-deng, WU Cai-lai, ZHANG Jian-xin, LI Hai-bing, MENG Fan-cong, RONG He. 2002. Discovery of Diamond in North Qinling: Evidence for a Giant UHPM Belt across Central China and Recognition of Paleozoic and Mesozoic Dual Deep Subduction between North China and Yangtze Plates[J]. Acta Geologica Sinica, 76(4): 484-495(in Chinese with English abstract).
YANG Jing-sui, ZHANG Zhong-ming, LI Tian-fu, LI Zhao-li, REN Yu-feng, XU Xiang-zhen, BA Deng-zhu, BAI Wen-ji, FANG Qing-song, CHEN Song-yong, RONG He. 2008. Unusual minerals from harzburgite, the host rock of the Luobusa chromite deposit, Tibet[J]. Acta Petrologica Sinica, 24(7): 1445-1452(in Chinese with English abstract).
YE K, CONG B, YE D. 2000. The possible subduction of continental material to depth greater than 200 km[J]. Nature, 407: 734-736.
ZEDGENIZOV D A, RAGOZIN A L, SHATSKY V S, ARAUJO D, GRIFFIN W L, KAGI H. 2009. Mg and Fe-rich carbonate–silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia)[J]. Lithos, 112(s2): 638-647.
Ophiolite-type Diamond and Deep Genesis of Chromitite
YANG Jing-sui, XU Xiang-zhen, ZHANG Zhong-ming, RONG He, LI Yuan, XIONG Fa-hui, LIANG Feng-hua, LIU Zhao, LIU Fei, LI Jin-yang, LI Zhao-li, CHEN Song-yong, GUO Guo-lin, Paul ROBINSON
CARMA, State Key Laboratory of Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037
The three main occurrences of natural diamond currently recognized on Earth are kimberlites from the deep mantle under cratonic lithosphere, ultrahigh-pressure metamorphic rocks formed by subduction of continental crust, and meteorites and rocks in impact structures. Based on the discovery of diamonds and other ultrahigh-pressure minerals in ophiolitic mantle peridotites and podiform chromitites from 10 ophiolites in 5 plate boundaries, we propose a new occurrence of diamond, called ophiolite diamond. We suggest that ophiolite diamond exists universally in the mantle rocks beneath oceanic lithosphere, and thus propose a model that diamond-hosted chromitites and mantle rocks form at depths over 300 km at the top of the transition zone between the upper and lower mantle. The carbon and other crustal materials were derived from earlier subducted crust. The diamond-bearing chromitites and mantle rocks are brought to shallow depth by mantle convection and emplaced at plate boundaries along with other oceanic lithosphere.
diamond; ophiolite; chromitite; mantle peridotite
P619.241; P618.33
A
10.3975/cagsb.2013.06.01
本文由國家行業(yè)專項“深部探測技術與實驗研究”(編號: SinoProbe-05)、自然科學基金重點項目(編號: 40930313)、自然科學基金創(chuàng)新群體項目(編號: 40921001)和中國地質(zhì)調(diào)查局工作項目(編號: 1212011121263)聯(lián)合資助。獲中國地質(zhì)科學院2012年度十大科技進展第五名。
2013-10-21; 改回日期: 2013-10-25。責任編輯: 閆立娟。
楊經(jīng)綏, 男, 1950年生。研究員。主要從事巖石學研究。E-mail: yangjsui@cags.ac.cn。