張俊 顧廣澤 楊余飛
摘要:為了克服基于對偶迭代的分割方法在要求達(dá)到較高精度的分割時收斂較慢的缺點(diǎn), 提出了對二相位分片常數(shù)MumfordShah模型的一個子問題采用改進(jìn)的Chambolle對偶迭代進(jìn)行求解. 通過對Chambolle對偶迭代和一種修正對偶迭代分別進(jìn)行局部傅立葉分析, 證明了所提出的算法的合理性. 實驗結(jié)果表明: 對于twocell圖像, dot256圖像, 當(dāng)終止準(zhǔn)則精度要求更高時, 提出的算法迭代步數(shù)少, 收斂更快.
關(guān)鍵詞:圖像分割; 對偶算法; 水平集方法;局部傅立葉分析
中圖分類號:TP751 文獻(xiàn)標(biāo)識碼:A
5結(jié)語
對基于Chambolle對偶迭代的二相位分片常數(shù)水平集圖像分割方法做了改進(jìn),提高了分割的質(zhì)量. 所提出的方法不僅分割速度快, 而且精度高, 分割的結(jié)果準(zhǔn)確. twocell圖像, dot256圖像的分割結(jié)果表明了所提出的方法具有速度較快、分割較準(zhǔn)的特點(diǎn).
參考文獻(xiàn)
[1]MUMFORD D, SHAH J. Optimal approximations by piecewise smooth functions and associated variational problems[J]. Comm Pure Appl Math, 1989, 42(5): 577-685.
[2]CHAN T F, VESE L A. Active contours without edges[J]. IEEE T Image Process, 2001, 10(2): 266-277.
[3]VESE L A, CHAN T F.Amultiphase level set frarnewerk for image seynertation using the munford and shah model international[J].Journal of Computer Vision, 2002,50(3):271-293.
[4]CHAMBOLLE A. An algorithm for total variation minimization and applications[J]. Math Imaging Vis, 2004, 20: 89-97.
[5]WANG L L, GU Y. Efficient dual algorithms for image segmentation using TVAllenCahn type models[J]. Commun Comput Phys, 2011, 9: 859-877.
[6]CHAN T F, CHEN K, CARTER J L. Iterative methods for solving the dual formulation arising from image restoration[J]. Electron T Numer Ana, 2007, 26: 299-311.
[7]LIE J, LYSAKER M, TAI X C. A binary level set model and some applications to mumfordshah image segmentation[J]. IEEE Trans Image Process, 2006, 15(5): 1171-1181.
[8]LIE J, LYSAKER M, TAI X C. Avariant of the level set method and applications & image segmentation[J].Mathematics of Computation,2006,75:1155-1174.