• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    超聲空化對(duì)多孔氮化鈦顆粒的破碎作用*

    2013-03-10 06:02:42馬繼宇康進(jìn)武胡毅森黃天佑
    傳感技術(shù)學(xué)報(bào) 2013年10期
    關(guān)鍵詞:天佑工程系空化

    馬繼宇,康進(jìn)武,胡毅森,黃天佑

    (清華大學(xué)機(jī)械工程系先進(jìn)成形制造教育部重點(diǎn)實(shí)驗(yàn)室,北京100084)

    When an ultrasonic wave passes through a liquid,it creates negative and positive pressure alternatively.When the negative pressure is above the cavitation threshold,a phenomenon known as cavitation(transient cavitation)will occur.Transient cavitation creates bubbles that oscillate under the sine ultrasonic waves.Eventually,these bubbles will collapse in a violent implosion.The implosions will radiate high-powered shockwaves(>1 000 MPa)and high velocity microjet flows(>100 m/s)at a rate of 25 000~30 000 times per second.Additionally,the implosion of cavitation bubbles creates temperatures that exceed 5 000 K and cooling rate that exceeds 1010K/s[1].Ultrasound is widely applied to disperse submicron and nanometer agglomerated particles in liquid suspensions[2-4].There are also literatures which use ultrasound to fragment particles,like crystalline materials[5-6],metal particles[7],minerals[8-10],ceramic particles[11].Transient cavitation makes ultrasound an environmental-friendly,economical,and powerful tool to fragment particles during ultrasonic treatment[5].Followings are the two mechanisms responsible for particle fragmentation in the presence of ultrasonic treatment:particle-cavitation interaction and cavitation induced particle-particle interaction[11].But,only particles in the vicinity of the collapsing cavity,i.e.those close to or at the cavity wall,are exposed to the intense pressures generated by its implosion[3].Wagterveld et al[6]study the acoustic cavitation effects on calcite crystal(5 μm and 50 μm)using high speed photography.The results show that breakage of accelerated crystals by interparticle collision is unrealistic because of their small sizes and low velocities.In order to clarify the roles of ultrasonic cavitation and the particle collisions it induced on the fragmentation of suspension particles.Here,particles with many tiny pores on the surface were used based on the"Crevice Model"proposed by Harvey et al[12].The Crevice Model postulated that the gas nuclei are stabilized in hydrophobic conical cracks and crevices of solid surfaces in the liquid.The model has been widely used and is successful to explain several experimental observations of acoustic cavitation process.So,the tiny pore on the surface of non-wettable TiN particles can act as the stable and additional nucleation sites for ultrasonic cavitation when introduced into liquid.Cavitation action preferentially takes place on surface,especially the pores of the surface.When a bubble collapses on a surface,both a microjet and a shockwave are formed simultaneously[6].If there are many tiny pores on the surface of the particles,so the ultrasonic cavitation may be easier to occur and stronger,make the fragment process of the particle accelerated.Whilst there is some information in published literature on the kinetics and mechanism of dispersion of nano-powders[3-4]in liquids.There is practically none on the kinetics and mechanism of fragmentation of TiN particles with many tiny pores on the surface in liquids.This work systematically studies the effects of applied ultrasonic power,treatment time,solids concentration and liquid volume on fragmentation of special design TiN particles.Laser particle size analyzer(Mastersizer 2 000,Malvern Instruments,UK)was applied to analyze the particle size distribution of TiN before and after treatment.This particle size analyzer yields mass distributions,Q(x),accumulative mass distributions,∑ Q(x)and size distribution,q(x),over 100 geometrical sections in a user-selected size range,usually from 0.02 μm to 2 000 μm.The structure and morphology of the as-received and treated particles were analyzed using a Scanning Electron Microscope(SEM,Jeol JSM-7001F).

    1 Experimental Method

    The ultrasonic treatment system used in this study is illustrated in Fig.1.It consists of an self-tuned ultrasonic generator,a piezoelectric transducer,an ultrasonic horn,an ultrasonic radiator(a diameter of 36 mm)to transmit ultrasonic vibration into liquid,a double shelled vessel(an internal diameter of 76 mm)to hold the suspension and keep it at room temperature with a watercooling system and a thermocouple,a stir bar and a magnetic stirrer to keep the particles in suspension(TiN particles tend to precipitate to the bottom,otherwise form a precipitate in the bottom and the experiment to study the fragment kinetics of TiN will fail).Unlike,Ambedkar et al[10]and Gopi et al[11]used a settle method to study the fragmentation of coal and Al2O3ceramic particles.The power output of the ultrasonic treatment system was adjustable with a maximum input power of 350 W at a resonant frequency of 20 kHz.The ultrasonic radiator tip was inserted to a depth of 10 mm in the suspensions.In each test,the measured mass of particles,i.e.,5 g was dispersed into measured volume of distilled water,i.e.,500 mL.The variables investigated were applied ultrasonic power,treatment time,solids concentration and liquid volume.For studying the effect of power(110 W,270 W,330 W),the mass of the particles and the volume of the water were kept the same(i.e.,5 g/500 mL).For studying the effect of solids concentration,the power of ultrasonic treatment system and the volume of the water were kept the same(i.e.,2.5 g/500 mL,5 g/500 mL,10 g/500 mL,270 W).For studying the effect of volume,the mass of the solids concentration and the power of the ultrasonic treatment system were kept the same(i.e.,2.5 g/250 mL,5 g/500,270 W).After different treatment time(to vary from 2 min~60 min),small samples of suspension were withdrawn and the particle size distributions were immediately measured using laser particle size analyzer.

    Fig.1 Schematic of the experimental set up for ultrasonic treatment system in liquids

    TiN ceramic particles synthesized by the way of gas-solid reaction of Ti and N2were used as as-received material.Fig.2(a)shows the SEM image of TiN.The size of TiN is larger than 100μm and the shape is irregular.There are also some small fragments existing.Fig.2(b)shows the structure of a single TiN particle.There are many tinny pores on the surface as we designed.TiN particles are polycrystal and the size of the grain is not uniform.So,the particle used in this study is a polycrystalline material with many tiny pores on the surface[13-15].Fig.2(c)shows the particle size distribution of TiN estimated by laser particle size analyzer.It has a very broad particle size distribution with two maxima,one in the range of 100 μm ~700 μm and the other in the range of 2 μm ~50 μm,which is proved by the SEM analysis as shown in Fig.2(a).Nevertheless,the mass percentage of the particles smaller than 50 μm is negligible as compared with the larger ones.Here,d50was applied to describe the mean particle size of the TiN material.The mean particle size of the as-received material is 264 μm.

    Fig.2 Low(a)and high(b)magnified SEM images,particle size distribution(c)of the as-received TiN particles

    2 Results and Discussion

    Fig.3(a)shows the typical evolution of particle size distributions of TiN for different treatment time at power input of 270 W.After treatment of only 2 min,the distribution is totally different and,although,the curve still shows a bimodal particle size distribution.The mass percentage of the as-received material decreases and a mass of particle in the range of 1 μm ~100 μm is generated.When ultrasonic treatment proceeds,the original bimodal distribution will disappear after 15 min and the size distribution shifts to lower particle size values.Then a new bimodal distribution will appear after a treatment of 60 min.Substantial sub-micron particles are obtained,but the right side of the curve does not change very much.The resulting sub-micron particles could be well dispersed in suspensions under ultrasonic treatment.

    Fig.3 Particle size distribution(a)SEM images of(b)grains and(c)sub-micron particles of TiN after ultrasonic treatment at 270W(in 5 g/500 mL)

    SEM analysis of treated particles could provide more information on the breakage mechanism.SEM images of the treated materials are included in Fig.3b and Fig.3c.Fig.3b shows that the pores on the surface and grain boundaries of the as-received material disappear after treatment.Most grains are released from the as-received material.The size of the grains is not uniform and mainly in the range smaller than 50μm consistent with the laser particle size analyzer as shown in Fig.3a.The resulting sub micro particles are shown in Fig.3c.The shape of the particles is not so regular and these sub-micron particles tend to aggregate without ultrasonic treatment.

    The data and images in Fig.3 may suggest that the interaction of particles with cavitation bubbles results in particle fragmentation.In the ultrasonic treatment process,the ultrasonic cavitation tends to occur on the existing pores of the particle surface which gives a directly impact and stress on the particle.So it is reasonable to expect that particles fracture at their weakest point,most likely the grain boundaries where individual grains are joined together.After treatment,the grains are gradually released from the as-received particles.Due to the non-uniform grain size of the as-received particles,the size of resulting grains is mainly in the range of 1 μm ~50 μm shown by SEM.With prolonged treatment,the right side of cures does not change,but,a large amount of sub-micron particles is generated.So,these sub-micron particles may be broken by erosion from the surface of the grains.As a result,these sub-micron particles with high surface energy tend to aggregate.These results above indicate that during ultrasonic treatment of particle,large particles were firstly fractured into grains through intergranular fracture,and finally sub-micron were gradually eroded from the surface of the grains.

    Fig.4 shows d50obtained from the particle size distributions of TiN for different treatment time at power inputs of 110 W,270 W and 330 W,respectively.Treatment produces a significant mean particle size decrease in the first 2 min treatment.Thus,the initial value of the as-received sample(264 μm)sharply decreases to 174 μm,50 μm,40 μm after just 2 min of treatment at power inputs of 110 W,270 W and 330 W,respectively.This trend becomes more obvious with increasing input power.This may cause by the strong cavitation induced by the pores on the surface of TiN paticles.With increasing input power,the cavitation intensity and cavitation zone may be more intensive and extensive.After this sharp decrease,there is still a slow decrease in the mean particle size.After 60 minutes ultrasonic treatment,the final mean particles size is significantly smaller than the original size.It indicated that up to 60 min treatment,there is a decrease in the mean particle size of the sample at different power inputs.

    Fig.4 d50varies with respect to ultrasonic treatment time at different power input(in 5 g/500 mL)

    From above analysis,it can conclude that with processing time extend and the power increase,the fragmentation effect also increased.How about the power input and time togetherto affectthe fragmentation process.Also,energy consumption is a key criterion for the selection and use of a breakage process.

    The particle size distribution at the same energy input but at different input powers are compared in Fig.5a.Practically overlap indicating that the total energy input controls breakage of the large particles.There was an empirical size-energy model[3]that related mean particle size d50to specific energy input Emwhich has been applied to describe different types of breakage process.Emis the amount of energy dissipated per unit mass of TiN powder.C and α are constant parameters for a specific fragmentation process.

    Breakage of large particles investigated in this work can also be described by this model.The empirical constant is calculated by non-linear regression from experimental data shown in Fig.5(b).The empirical constant is the order of 0.248.The energy demand exponentially increases for the reduction to particle sizes lower than d50=30 μm.

    Fig.5 Particle size distributions at energy input of 99 kJ(a)and(b)experimental and calculated determined energy density demand for the ultrasonic treatment

    Ambedkar,et al[10]concluded from the ralaitonship between mean particle size and solids concentration that particle collison is one of the mechanisms for breakage of particles under ultrasonic treatment in liquids.Particle breakage by collision depends on impact velocity and particle size[6],but it is cetainly a function of material properties.The as-received particles used in this study are large than 100 μm.In addition,there are many flaws(grian boudary and pores)in the particle structure.It is very likely that breakage occurred directly through collision.Fig.6a and Fig.6b shows the partilce size distributions under different solids concentration and volumes.The comparison of the right side of the curves shows that proper solids concentration(5 g/500 mL)results in a less mass of the residual large particles.It is indicted that particle collision is the mechanism for breakage of large TiN particles.Fig.6c shows the partilce size distributions under different solids concentration and volumes.The comparison of the left side of the curves shows that lower solids concentration and smalller volume results in a large amount of the sub-micron particles.At lower solids concentration the suspension is non-viscous and the sub-micron particles with high surface energy could be well dispersed.Smaller volume will arouse a higher intensiy ultrasound which in turn will induced intesive cavitation.

    Fig.6 Effect of solids concentration(a),volumes(b)on particle size distribution during two minute and sixty minute(c)ultrasonic treatment

    Ultrasonic treatment leaded to the breakage of large particles and production of a large amount of sub-micron particles.The DSC curve of the treated samples for 60 min is illustrated in Fig.7(a).No obvious endothermic peaks is observed in the DSC curve of treated TiN,but a small exothermic peak showed at 909℃.This peak may due to the lattice strain induced in the particles during the ultrasonic treatment.In order to get more information about treated material,the crystal structure of the particles before and after ultrasonic treatment was investigated by XRD measurements,performed on D8 Advance automatic diffractometer using CuKα radiation.The diffraction measurements were done over scattering angle from 20°~80°with a step of 0.07 °/s.Fig.7b shows the XRD pattern of the TiN sample.XRD measurements shows all the examined powders are highly crystalline particle TiN with cubic structure.It is clear that the XRD pattern exhibits prominent peaks at angles of 36.66°,42.60°,61.81°,74.07°,77.96°,which are assigned to the(111),(200),(220),(311),(222)crystal planes(JCPDS Card 38-1420),respectively.The resulting materials retain the crystalline structure of the as-received material.Therefore,ultrasonic treatment does not change the structure of the TiN and it is stable under 1 000℃.

    Fig.7 DSC curve(a)and XRD pattern(b)of the treated samples for 60 min

    3 Conclusion

    A polyporous and polycrystalline TiN particle was applied to investigate the ultrasonic fragmentation process.Firstly,intensive and extensive cavitation is apt to take place on the existing pores.The direct impact on the particle surface and resulting particle collide cause the fracture of the large particles.The dominant fracture mechanism of the as-received particles is intergranular fracture.The breakage of as-received material can be described by a size-energy model.As the process progresses,the sub-micron particles clarified by both laser particle size analyzer and SEM are gradually eroded from the surface of grains.Less solids and volume arouse a higher intensive cavitation will produced smaller and more sub-micron particles.XRD and DSC results indicated that ultrasonic treatment does not change the structure of the TiN.This material and method can be applied to investigate the ultrasonic cavitation in liquid metal and use as second phase to reinforce metal alloy.

    [1]Eskin G I.Cavitation Mechanism of Ultrasonic Melt Degassing[J].Ultrasonics Sonochemistry,1995,2(2):137-141.

    [2]Lin Benlan,Shen Xiaodong,Cui Sheng.Preparation and Study on Dispersion of Hydro-Based Nanosized TiO2Suspension[J].Chinese Journal of Sensors and Actuators,2006,19(5):2314-2317.

    [3]Kusters K A,Pratsinis S E,Thoma S G,et al.Energy-Size Reduction Laws for Ultrasonic Fragmentation[J].Powder Technology,1994,80(3):253-263.

    [4]Ding P,Pacek A W.De-Agglomeration of Goethite Nano-Particles U-sing Ultrasonic Comminution Device[J].Powder Technology,2008,187(1):1-10.

    [5]Teipel U,Leisinger K,Mikonsaari I.Comminution of Crystalline Material by Ultrasonics[J].International Journal of Mineral Processing,2004,74(s):183-190.

    [6]Wagterveld R M,Boels L,Mayer M J,et al.Visualization of Acoustic Cavitation Effects on Suspended Calcite Crystals[J].Ultrason Sonochem,2011,18(1):216-25.

    [7]Luis G G,Yolanda V H,Maria C P,et al.Influence of Acoustic Parameters in Ultrasonic Comminution of Zn Powders in Liquid Phase[C]//19th ICA.Madrid.2007,2-7.

    [8]Guittonneau F,Abdelouas A,Grambow B.The Effect of High Power Ultrasound on an Aqueous Suspension of Graphite[J].Ultrasonics Sonochemistry.2010,17(2):391-398.

    [9]Franco F,Cecila J A,Pérez-Maqueda L A,et al.Particle-Size Reduction of Dickite by Ultrasound Treatments:Effect on the Structure,Shape and Particle-Size Distribution[J].Appl Clay Sci,2007,35(1-2):119-127.

    [10]Ambedkar B,Nagarajan R,Jayanti S.Investigation of High-Frequency,High-Intensity Ultrasonics for Size Reduction and Washing of Coal in Aqueous Medium[J].Ind Eng Chem Res,2011,50(23):13210-13219.

    [11]Gopi K R,Nagarajan R.Advances in Nanoalumina Ceramic Particle Fabrication Using Sonofragmentation[J].IEEE Trans Nanotechnol,2008,7(5):532-537.

    [12]Harvey E N,Barnes D K,McElroy W D,et al.Bubble Formation in Animals.Ⅰ.Physical Factors[J].Journal of Cellular and Comparative Physiology,1944,24(1):1-22.

    [13]Du Yuren,Xia Xinghua.A Fabrication and Test System for Porous Oxide Nanomaterial[J].Chinese Journal of Sensors and Actuators,2009,22(6):767-770.

    [14]Luo Shouhua,Liu Junxiu,He Siyuan.The Structural Feature Extraction of Foam Aluminum Materials Based on Volume Rendering[J].Chinese Journal of Sensors and Actuators,2009,22(12):1763-1767.

    [15]Zhu Liang,F(xiàn)eng Yanying,Ye Xiongying,et al.Study on Controllable Wettability of Roughness Surfaces[J].Chinese Journal of Sensors and Actuators,2006,19(5):1709-1712.

    猜你喜歡
    天佑工程系空化
    幸福時(shí)光曲
    功率超聲作用下鋼液中空化泡尺寸的演變特性
    鋼鐵釩鈦(2023年5期)2023-11-17 08:48:34
    萬(wàn)灶炊煙 “花”下相逢
    電子信息工程系
    機(jī)電工程系簡(jiǎn)介
    Pasión por la medicina
    天佑草原
    草原歌聲(2017年3期)2017-04-23 05:13:50
    三維扭曲水翼空化現(xiàn)象CFD模擬
    不同運(yùn)動(dòng)形式下水物相互作用空化數(shù)值模擬
    穿行:服裝工程系畢業(yè)設(shè)計(jì)作品
    美女主播在线视频| 成人综合一区亚洲| 尤物成人国产欧美一区二区三区| 亚洲欧美日韩另类电影网站 | 色吧在线观看| 大码成人一级视频| 亚洲精品国产成人久久av| 一区二区av电影网| 狂野欧美激情性bbbbbb| kizo精华| 大片免费播放器 马上看| 1000部很黄的大片| 建设人人有责人人尽责人人享有的 | 91精品国产九色| 精品久久久久久久末码| 久久影院123| 亚洲精品乱久久久久久| 蜜臀久久99精品久久宅男| 国产成人午夜福利电影在线观看| 精品人妻一区二区三区麻豆| 亚洲精品影视一区二区三区av| 国产精品99久久99久久久不卡 | 国产老妇伦熟女老妇高清| 国产精品嫩草影院av在线观看| 国产v大片淫在线免费观看| 成人亚洲精品av一区二区| 欧美丝袜亚洲另类| 国产爽快片一区二区三区| 97在线人人人人妻| 国产伦理片在线播放av一区| 99re6热这里在线精品视频| 国产欧美亚洲国产| 欧美精品人与动牲交sv欧美| 国产乱人视频| 一级a做视频免费观看| av在线天堂中文字幕| 亚洲国产精品成人综合色| 免费在线观看成人毛片| 在线观看人妻少妇| 欧美潮喷喷水| 制服丝袜香蕉在线| 久久精品国产自在天天线| 免费电影在线观看免费观看| 亚洲婷婷狠狠爱综合网| 少妇 在线观看| 18禁动态无遮挡网站| 国产精品人妻久久久久久| 国产一区二区三区综合在线观看 | 综合色丁香网| 韩国av在线不卡| 色视频www国产| 久久久久国产精品人妻一区二区| 亚洲精品乱码久久久v下载方式| 国产精品伦人一区二区| 欧美成人午夜免费资源| 亚洲人成网站在线观看播放| 亚洲av日韩在线播放| 三级经典国产精品| 亚洲精品久久久久久婷婷小说| av.在线天堂| 看非洲黑人一级黄片| 高清日韩中文字幕在线| 日韩强制内射视频| 午夜福利视频精品| 国产v大片淫在线免费观看| 国产人妻一区二区三区在| 热re99久久精品国产66热6| 熟妇人妻不卡中文字幕| 欧美一级a爱片免费观看看| 国产男女超爽视频在线观看| av在线观看视频网站免费| 国产成人精品婷婷| 日本一二三区视频观看| 国产亚洲av片在线观看秒播厂| 黄色配什么色好看| 内射极品少妇av片p| 边亲边吃奶的免费视频| 少妇的逼好多水| 亚洲,一卡二卡三卡| 欧美日韩国产mv在线观看视频 | 久久久久久久午夜电影| 一区二区三区免费毛片| 国产精品久久久久久精品古装| 国产亚洲av片在线观看秒播厂| 国产伦理片在线播放av一区| 中文天堂在线官网| av网站免费在线观看视频| 国产黄频视频在线观看| 日韩三级伦理在线观看| 国产片特级美女逼逼视频| 欧美成人精品欧美一级黄| 91狼人影院| 三级男女做爰猛烈吃奶摸视频| 国产有黄有色有爽视频| 成人国产av品久久久| 成人毛片60女人毛片免费| 菩萨蛮人人尽说江南好唐韦庄| 搡老乐熟女国产| 毛片一级片免费看久久久久| 精品人妻熟女av久视频| 欧美成人一区二区免费高清观看| 毛片女人毛片| 丝袜喷水一区| 国产精品麻豆人妻色哟哟久久| 91精品一卡2卡3卡4卡| 亚洲色图av天堂| 美女主播在线视频| av一本久久久久| videossex国产| 亚洲久久久久久中文字幕| 可以在线观看毛片的网站| 黄色配什么色好看| 免费看a级黄色片| 国产黄a三级三级三级人| 久久6这里有精品| 国产精品99久久99久久久不卡 | 色5月婷婷丁香| 久久女婷五月综合色啪小说 | 日韩av免费高清视频| 美女xxoo啪啪120秒动态图| 久久人人爽人人片av| 在线观看一区二区三区激情| 色综合色国产| 丰满人妻一区二区三区视频av| 少妇裸体淫交视频免费看高清| 亚洲国产色片| 特大巨黑吊av在线直播| 尾随美女入室| 国内少妇人妻偷人精品xxx网站| 日本午夜av视频| 美女xxoo啪啪120秒动态图| 亚洲婷婷狠狠爱综合网| 久久久久久久国产电影| 精品视频人人做人人爽| 精品国产露脸久久av麻豆| 少妇人妻一区二区三区视频| 亚洲最大成人av| 亚洲人与动物交配视频| 久热这里只有精品99| 成人亚洲欧美一区二区av| 街头女战士在线观看网站| 亚洲自拍偷在线| 天美传媒精品一区二区| 男人狂女人下面高潮的视频| 成人午夜精彩视频在线观看| 国产av码专区亚洲av| 少妇人妻久久综合中文| 欧美成人a在线观看| a级毛色黄片| 亚洲不卡免费看| 黄色日韩在线| 看非洲黑人一级黄片| 成人漫画全彩无遮挡| 国产成人a∨麻豆精品| 国产大屁股一区二区在线视频| 不卡视频在线观看欧美| 久久久亚洲精品成人影院| 丰满乱子伦码专区| 亚洲欧美一区二区三区国产| 亚洲天堂国产精品一区在线| 国产精品一区二区性色av| 少妇人妻久久综合中文| 美女内射精品一级片tv| 国产探花在线观看一区二区| 久久久久久九九精品二区国产| 视频区图区小说| 久久综合国产亚洲精品| 久久精品久久久久久久性| 99久久精品一区二区三区| 国产av码专区亚洲av| 日本wwww免费看| 狂野欧美激情性xxxx在线观看| 最近的中文字幕免费完整| 熟妇人妻不卡中文字幕| 欧美三级亚洲精品| 色哟哟·www| 久久国内精品自在自线图片| 高清在线视频一区二区三区| 国产乱人视频| 国产精品爽爽va在线观看网站| 久久国内精品自在自线图片| 国产精品国产av在线观看| 国内精品美女久久久久久| 99热国产这里只有精品6| 六月丁香七月| 日本三级黄在线观看| 精品少妇黑人巨大在线播放| 99久久精品热视频| videossex国产| 晚上一个人看的免费电影| 人体艺术视频欧美日本| 国产伦精品一区二区三区视频9| 国产亚洲最大av| 国产精品伦人一区二区| 少妇高潮的动态图| 日韩伦理黄色片| 亚洲国产最新在线播放| 国产91av在线免费观看| 中文字幕av成人在线电影| 国产黄a三级三级三级人| 国产老妇伦熟女老妇高清| 国产中年淑女户外野战色| 久久久a久久爽久久v久久| 人体艺术视频欧美日本| 青青草视频在线视频观看| 亚洲欧美日韩另类电影网站 | 大又大粗又爽又黄少妇毛片口| 99视频精品全部免费 在线| 亚洲av男天堂| 少妇熟女欧美另类| 日韩国内少妇激情av| 久久99蜜桃精品久久| 嫩草影院入口| 一级爰片在线观看| 国产熟女欧美一区二区| 偷拍熟女少妇极品色| 下体分泌物呈黄色| 内射极品少妇av片p| 亚洲欧美日韩无卡精品| av在线播放精品| 国产中年淑女户外野战色| 看黄色毛片网站| 在线a可以看的网站| 色哟哟·www| 国产黄色视频一区二区在线观看| 女人久久www免费人成看片| 2018国产大陆天天弄谢| 在线亚洲精品国产二区图片欧美 | 国产视频首页在线观看| 免费看av在线观看网站| 日韩国内少妇激情av| 亚洲av福利一区| 水蜜桃什么品种好| 99精国产麻豆久久婷婷| 少妇的逼好多水| 免费黄色在线免费观看| 亚洲色图av天堂| 日日撸夜夜添| 大片免费播放器 马上看| 久久精品国产a三级三级三级| .国产精品久久| 亚洲最大成人av| 欧美成人精品欧美一级黄| 国产精品一区二区三区四区免费观看| 亚洲国产欧美在线一区| 秋霞在线观看毛片| 搞女人的毛片| 精品久久国产蜜桃| 国产精品久久久久久精品古装| 天堂中文最新版在线下载 | 国内精品宾馆在线| 白带黄色成豆腐渣| 七月丁香在线播放| 国内精品宾馆在线| 高清视频免费观看一区二区| 亚洲熟女精品中文字幕| 亚洲国产精品成人久久小说| 亚洲国产精品999| 日韩一本色道免费dvd| 一级二级三级毛片免费看| 亚洲成人一二三区av| 久久久久久久久久久免费av| 一级片'在线观看视频| 日韩 亚洲 欧美在线| 三级经典国产精品| 夫妻午夜视频| 99热这里只有是精品在线观看| 九九在线视频观看精品| 久久久久久久午夜电影| 99热这里只有是精品在线观看| 久久鲁丝午夜福利片| 在线观看一区二区三区| 久久精品夜色国产| av在线亚洲专区| 精华霜和精华液先用哪个| 国产成人a∨麻豆精品| 国产色婷婷99| 99久久精品热视频| 国产精品99久久99久久久不卡 | 女的被弄到高潮叫床怎么办| 边亲边吃奶的免费视频| 黄色怎么调成土黄色| 香蕉精品网在线| 亚洲av日韩在线播放| 国产亚洲最大av| 丝袜脚勾引网站| 人人妻人人澡人人爽人人夜夜| 日韩大片免费观看网站| 欧美高清性xxxxhd video| 精品国产露脸久久av麻豆| 在线观看三级黄色| 久久99热6这里只有精品| 欧美极品一区二区三区四区| 久久久久久九九精品二区国产| a级毛片免费高清观看在线播放| 国产视频内射| 麻豆久久精品国产亚洲av| 丰满乱子伦码专区| 啦啦啦啦在线视频资源| 午夜福利在线观看免费完整高清在| 久久人人爽av亚洲精品天堂 | 成人一区二区视频在线观看| 国产爱豆传媒在线观看| 高清欧美精品videossex| 国产午夜精品一二区理论片| 汤姆久久久久久久影院中文字幕| videossex国产| av黄色大香蕉| 欧美日韩在线观看h| 在线免费十八禁| 色5月婷婷丁香| 成人黄色视频免费在线看| 午夜激情福利司机影院| 欧美日韩综合久久久久久| 综合色丁香网| 男人添女人高潮全过程视频| 亚洲欧美日韩无卡精品| 一本一本综合久久| 十八禁网站网址无遮挡 | 内射极品少妇av片p| 一级毛片电影观看| 免费黄色在线免费观看| 亚洲av二区三区四区| 欧美精品国产亚洲| 亚洲成人一二三区av| 亚洲精品视频女| 久久韩国三级中文字幕| 国产成人一区二区在线| av国产免费在线观看| 国产成人a∨麻豆精品| 国产探花极品一区二区| 大码成人一级视频| 新久久久久国产一级毛片| 国产永久视频网站| 色婷婷久久久亚洲欧美| 看免费成人av毛片| 中国国产av一级| 极品少妇高潮喷水抽搐| 美女脱内裤让男人舔精品视频| 亚洲aⅴ乱码一区二区在线播放| 又黄又爽又刺激的免费视频.| 亚洲欧美成人综合另类久久久| 午夜爱爱视频在线播放| 两个人的视频大全免费| 日日摸夜夜添夜夜爱| av在线亚洲专区| 免费av毛片视频| 18禁在线无遮挡免费观看视频| 波多野结衣巨乳人妻| 自拍偷自拍亚洲精品老妇| 久久久久国产精品人妻一区二区| 美女脱内裤让男人舔精品视频| 天天躁日日操中文字幕| 亚洲无线观看免费| 激情五月婷婷亚洲| 丝袜喷水一区| 各种免费的搞黄视频| 啦啦啦啦在线视频资源| 只有这里有精品99| 国产精品嫩草影院av在线观看| 国产有黄有色有爽视频| 国产黄片视频在线免费观看| 国产探花极品一区二区| 夫妻午夜视频| av黄色大香蕉| 人妻制服诱惑在线中文字幕| 久久精品国产亚洲网站| 国产成人精品福利久久| 国产精品.久久久| .国产精品久久| 两个人的视频大全免费| 成人毛片a级毛片在线播放| 97超视频在线观看视频| 免费黄频网站在线观看国产| 深夜a级毛片| 啦啦啦啦在线视频资源| 免费看光身美女| 亚洲色图综合在线观看| 日韩视频在线欧美| 少妇的逼好多水| 亚洲美女搞黄在线观看| 亚洲伊人久久精品综合| 久久精品久久久久久久性| 国产精品成人在线| 中文乱码字字幕精品一区二区三区| 欧美日本视频| 成人漫画全彩无遮挡| 亚洲人成网站高清观看| 亚洲精品,欧美精品| 亚洲av免费高清在线观看| 最近最新中文字幕大全电影3| 99久久精品热视频| 美女视频免费永久观看网站| 黄片无遮挡物在线观看| 日韩 亚洲 欧美在线| 国产欧美亚洲国产| 欧美xxxx黑人xx丫x性爽| 人妻一区二区av| 欧美日韩视频高清一区二区三区二| 国产高清三级在线| 亚洲自拍偷在线| 水蜜桃什么品种好| 国产毛片在线视频| av在线播放精品| 成人欧美大片| 国产综合精华液| www.av在线官网国产| 大片免费播放器 马上看| 精品国产一区二区三区久久久樱花 | 寂寞人妻少妇视频99o| av女优亚洲男人天堂| 成人免费观看视频高清| 精品久久久精品久久久| 国产伦精品一区二区三区四那| 少妇人妻久久综合中文| 韩国高清视频一区二区三区| 五月伊人婷婷丁香| 在线免费观看不下载黄p国产| 神马国产精品三级电影在线观看| 99久久精品国产国产毛片| 边亲边吃奶的免费视频| 色婷婷久久久亚洲欧美| 国产乱人视频| 中文乱码字字幕精品一区二区三区| 麻豆久久精品国产亚洲av| 插阴视频在线观看视频| 欧美日本视频| 国产成人a∨麻豆精品| 午夜免费男女啪啪视频观看| 久久综合国产亚洲精品| 看黄色毛片网站| 校园人妻丝袜中文字幕| 18+在线观看网站| 我要看日韩黄色一级片| 波多野结衣巨乳人妻| 美女主播在线视频| 观看免费一级毛片| www.色视频.com| 日韩视频在线欧美| 七月丁香在线播放| 亚洲不卡免费看| www.色视频.com| 啦啦啦啦在线视频资源| 日韩不卡一区二区三区视频在线| 国产精品久久久久久久久免| 精品一区二区免费观看| 亚洲人成网站在线播| 日韩大片免费观看网站| 精品亚洲乱码少妇综合久久| 免费不卡的大黄色大毛片视频在线观看| 极品教师在线视频| 亚洲怡红院男人天堂| 欧美极品一区二区三区四区| 中文字幕av成人在线电影| 麻豆成人午夜福利视频| 三级经典国产精品| av女优亚洲男人天堂| 久久久久国产网址| 久久97久久精品| 麻豆成人av视频| 69人妻影院| 直男gayav资源| 一级毛片黄色毛片免费观看视频| 久久综合国产亚洲精品| 午夜免费观看性视频| 欧美日韩视频精品一区| 简卡轻食公司| av福利片在线观看| 一个人观看的视频www高清免费观看| 久久精品国产亚洲av天美| 亚洲精品一二三| 美女国产视频在线观看| 三级国产精品片| 久久精品人妻少妇| 成年人午夜在线观看视频| 一区二区三区精品91| 国产亚洲最大av| 欧美潮喷喷水| 麻豆久久精品国产亚洲av| 99热6这里只有精品| 欧美bdsm另类| 女人被狂操c到高潮| 午夜福利高清视频| 免费看av在线观看网站| av在线老鸭窝| 国产亚洲91精品色在线| 可以在线观看毛片的网站| 99热国产这里只有精品6| 五月天丁香电影| 日本免费在线观看一区| 18禁在线播放成人免费| 国产亚洲91精品色在线| 日日摸夜夜添夜夜添av毛片| 男女国产视频网站| 免费人成在线观看视频色| 亚洲av中文av极速乱| 免费av毛片视频| 99热6这里只有精品| 日韩欧美一区视频在线观看 | 又粗又硬又长又爽又黄的视频| 99热这里只有是精品50| 亚洲国产高清在线一区二区三| 亚洲精品国产成人久久av| 国产高清国产精品国产三级 | 久久久久久久久久久免费av| 日本猛色少妇xxxxx猛交久久| 中文字幕久久专区| av国产免费在线观看| 禁无遮挡网站| 99热这里只有精品一区| 在线观看一区二区三区| 99久国产av精品国产电影| 91狼人影院| 日本午夜av视频| 2021少妇久久久久久久久久久| 日韩在线高清观看一区二区三区| 日本午夜av视频| 特大巨黑吊av在线直播| 久久鲁丝午夜福利片| 国产一区亚洲一区在线观看| 亚洲国产精品成人久久小说| 美女被艹到高潮喷水动态| 777米奇影视久久| 在现免费观看毛片| 亚洲av日韩在线播放| 欧美性感艳星| 亚洲精品一二三| 亚洲av国产av综合av卡| 成年人午夜在线观看视频| 少妇人妻精品综合一区二区| 亚洲天堂国产精品一区在线| 亚洲精品日韩av片在线观看| 亚洲精品国产色婷婷电影| 老司机影院毛片| 午夜老司机福利剧场| 免费高清在线观看视频在线观看| 最近2019中文字幕mv第一页| 男女下面进入的视频免费午夜| 中文字幕制服av| 99久久九九国产精品国产免费| 久久精品久久精品一区二区三区| 欧美人与善性xxx| 久久综合国产亚洲精品| 久久久a久久爽久久v久久| 精品久久久久久久久亚洲| 天堂网av新在线| 亚洲自拍偷在线| 日韩一区二区三区影片| 欧美日韩视频精品一区| 久久人人爽人人片av| 深夜a级毛片| 中文字幕制服av| 国产又色又爽无遮挡免| 嫩草影院精品99| 在线观看一区二区三区激情| 欧美国产精品一级二级三级 | 免费av观看视频| 91久久精品国产一区二区三区| 国产男女超爽视频在线观看| 麻豆精品久久久久久蜜桃| 日韩大片免费观看网站| 在线精品无人区一区二区三 | 亚洲四区av| 日本午夜av视频| 狠狠精品人妻久久久久久综合| 日韩制服骚丝袜av| 国产成人a区在线观看| 亚洲色图综合在线观看| 国产乱人视频| 爱豆传媒免费全集在线观看| 99久久精品一区二区三区| 欧美人与善性xxx| 女人十人毛片免费观看3o分钟| 天堂网av新在线| 日韩伦理黄色片| 大又大粗又爽又黄少妇毛片口| 国产一区二区亚洲精品在线观看| 欧美日韩综合久久久久久| 国产亚洲精品久久久com| 在线a可以看的网站| 亚洲av电影在线观看一区二区三区 | kizo精华| www.色视频.com| 国产精品三级大全| 91精品国产九色| 免费av不卡在线播放| 好男人视频免费观看在线| 肉色欧美久久久久久久蜜桃 | 男人舔奶头视频| 久久99热这里只频精品6学生| 内射极品少妇av片p| 久久国产乱子免费精品| 秋霞伦理黄片| 国产男女内射视频| 尾随美女入室| 深爱激情五月婷婷| 身体一侧抽搐| 国产老妇伦熟女老妇高清| 亚洲怡红院男人天堂| 涩涩av久久男人的天堂| 一边亲一边摸免费视频| 精品久久久久久久人妻蜜臀av| 欧美精品国产亚洲| 久久久精品免费免费高清| 丰满少妇做爰视频| 成年版毛片免费区| 好男人在线观看高清免费视频| 亚洲精品日韩在线中文字幕| 超碰av人人做人人爽久久| 精品少妇黑人巨大在线播放| 中文精品一卡2卡3卡4更新| 久久女婷五月综合色啪小说 | 久久精品综合一区二区三区| 国产色婷婷99| 麻豆国产97在线/欧美|