• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electrophysiological disturbances of coronary heart disease and gene,cell therapy

    2013-02-19 15:22:54李中言楊勁松
    關(guān)鍵詞:勁松主任醫(yī)師心內(nèi)科

    李中言,楊勁松

    (吉林醫(yī)藥學(xué)院附屬醫(yī)院心內(nèi)科,吉林 吉林 132013)

    ·綜 述·

    Electrophysiologicaldisturbancesofcoronaryheartdiseaseandgene,celltherapy

    李中言,楊勁松

    (吉林醫(yī)藥學(xué)院附屬醫(yī)院心內(nèi)科,吉林 吉林 132013)

    More recently,gene and cell therapy as potential therapeutic treatment modalities for patients with heart failure or ischemic heart disease were introduced.For gene and cell therapy to become successful it is not only necessary to select the most appropriate cell types or the best target genes,but also to understand the way new cells will have to be incorporated in the functional cardiac syncytium to prevent rhythm and conduction disturbances and to improve cardiac function.

    In order to understand the electrophysiological consequences of gene and cell therapy and to unravel the different processes playing a role in impulse conduction,it is important to consider normal electrophysiological characteristics of the heart first.

    1 Electrophysiology of the heart

    Systemic and pulmonary circulation is maintained through rhythmic contractions of the heart,which are triggered by propagated electrical waves.Electrical activation of the heart starts with spontaneous impulse formation in the sinoatrial node.Next the impulse spreads rapidly across the atria followed by mechanical activation of the atria.Subsequently,the electrical impulse propagates slowly through the atrioventricular node,thereby allowing atrial activation to be completed prior to ventricular activation.The electrical impulse then enters the base of the ventricular septum at the bundle of His and rapidly propagated across the left and right bundle branches,towards the apex of the ventricles.These bundle branches diverge into an extensive network of Purkinje fibers from which the electrical activation front rapidly spreads from endocardium,across the ventricular walls,to the epicardium and base of the heart.Consequently,normal activation of working myocardium is fast and coordinated,resulting in almost synchronous mechanical activation of the different ventricular segments.Of note,relatively small,physiological conduction delays can be measured between different ventricular segments,which together contribute to a process of sequential force generation[1].

    This rapid,coordinated activation of the left ventricle is also referred to as synchronicity,and determines to a large extent the efficacy by which blood is extruded from the ventricles[2].Delayed activation of one or more ventricular segments may result in dyssynchronous activation of the ventricles resulting in a reduced ejection fraction and increase in energy demand.

    During electrical activation of the ventricular myocardium,calcium ions (Ca2+) enter the cardiomyocytes (CMCs).Once Ca2+entered the cell,more Ca2+is released from intracellular calcium stores.These calcium ions bind to troponin,allowing sarcomere interactions and mechanical contraction of the cells.This process is referred to as electro-mechanical coupling and is the key mechanism by which the regulation contraction is managed in the heart.

    Consequently,cardiomyocyte death will disrupt the three dimensional syncytium resulting in conduction abnormalities,the occurrence potentially lethal arrhythmias and ultimately in symptoms of heart failure.

    2 Ventricular architecture

    The left ventricle has a typical ellipsoid shape,which is crucial in establishing and maintaining optimal transfer of blood from the ventricles into the systemic and pulmonary circulation by coordinated contractions.Underneath this basic principle of cardiac function lies the complex structure of the heart,which modifies both electrical and mechanical activation.Ventricular architecture has been described as a transmural spiral continuum between two helical fiber structures[2].In the long axis views of the ventricle,the fiber direction is mainly longitudinal in the endocardium (-60°) and gradually changes into a transverse (circumferential) direction in the midwall,after which it becomes longitudinal again in the epicardium (+60°).Moreover,short axis views of the ventricle shows diverging myofibers sheets separated by cleavage planes,associated with a change in orientation of less than 40°.Hence,tile activation wavefront propagates from the endocardium to the epicardium in a spiral-like fashion,guided by tile orientation of myofibers in the working myocardium.As a result of this fiber arrangement and associated electrical activation pattern,the left ventricular wall shortens,thickens,and twists along the long axis during cardiac activation,extruding a maximal volume of blood from the ventricles.In addition,this typical cardiac architecture also influences diastolic function[2].

    3 Myocardial tissue structure and anisotropic propagation

    During cardiac development,processes as cell differentiation,proliferation,migration,and integration,contribute to the formation of myocardial tissue[3-4].Among these newly formed cells are CMCs,which are initially round shaped,but become elongated through unidirectional growth and alignment in a specific direction,thereby creating a short and long cell axis.How this process of elongation and alignment is governed,is still not completely understood,but it seems to involve processes as electrical activation[5]and mechanical stretch.However,the role of the extracellular matrix in cell alignment is more evident,as shown by certain cardiac pathologies associated with extracellular matrix malformations,giving rise to increased structural heterogeneity.Later in cardiac development,intercalated disc components,such as gap junction proteins,become clustered at the longitudinal ends of CMCs.Consequently,these elongated rod-shaped cells are predominantly coupled in the longitudinal direction and organized in fiber bundles.Such CMCs are intertwined in an organized mesh of densely packed cells and therefore coupled to multiple neighbouring cells in different degrees of actual cell-cell contact.Importantly,this typical tissue structure of the healthy heart has functional implications for electrical conduction across the cardiac muscle.

    Anisotropy can be defined as heterogeneity of a physiological property for a certain material when measured along different axes,in contrast to isotropy,which referrers to homogeneity in each direction.Anisotropic conduction is determined by 3 factors; cell geometry,cell size,and gap junction distribution patterns.

    The degree of tissue anisotropy differs among the various regions in the heart.In particular,large variations can be found in both the anisotropy ratio and conduction velocity (CV) in different cardiac regions.In addition,the fastest CV in longitudinal direction is measured in Purkinje fibers,while the slowest CV,in the same direction,is found in the ventricular mass,being 2 m/s vs 0.5 m/s,respectively.These differences in CV seem to contribute to the specific roles of the various cardiac structures involved in electrical impulse propagation,together ensuring effective electrical and mechanical activation of the cardiac muscle.

    4 Electrical impulse initiation and propagation

    Propagation of an electrical impulse at high velocity over large distances across the heart is ensured by a sensitive interplay between gap junctions,allowing cell-to-cell conduction,and excitable cell membranes,generating action potentials.Propagation of electrical impulses is therefore mainly determined by 3 factors,1) the sarcolemmal electrical properties of CMCs to generate an action potential,2) characteristics of the gap junctions that determine the syncytical behavior of myocardial tissue,and 3) the anisotropic tissue structure.At a more cellular level,propagation is influenced by factors as cell shape and volume,and accumulation of ion channels and gap junctions.

    These gap junctions form intercellular channels that do not only allow Iow-resistance trafficking of electrical impulses but also the transfer of small molecules up to 1 KD between cytoplasmic compartments.These gap junctions are assembled by specific subtypes of connexons,following a site specific pattern,which allows distinct cardiac tissues to have different biophysical properties.The properties of gap junction channels can be modulated by a number of other mechanisms,including alterations in the phosphorylation state of specific connexin proteins,and extracellular fatty acid composition.Gap junction modulations are important to adapt effectively to physiological or pathophysiological changes,but cellular communication in the ventricles is controlled mainly by regulation of the number of functional gap junction channels.

    Successful electrical impulse propagation depends not only on the presence of functional gap junctions between adjacent CMCs,but also on the excitability of these cells.Excitability refers to the property of cells to generate an action potential by successive in-and outflow of ion current,and is traditionally divided in 5 phases,being phase (0) depolarization,phase (1) transient repolarization,phase (2) plateau,phase (3) repolarization,and phase (4) resting membrane phase.This process of excitation is the main mechanism by which CMCs are able to maintain or strengthen the electrical charge generated by these cells.

    5 Disturbances in impulse propagation

    Electrical propagation in the heart is maintained by a harmonious interplay between ion cannels and gap junctions.However,electrical impulse propagation across cardiac tissue can be disturbed by different causes,which among others involve changes in excitability and gap junction coupling.Action potential generation is a sensitive process as it involves multiple ion channels which could all be affected by different circumstances,thereby decreasing the excitability of the myocardium.Secondly,diminished gap junction coupling will decrease intercellular conductance,and thereby further depress conduction of the electrical impulse.Of note,for electrical impulse propagation across healthy myocardial tissue,the safety factor of conduction is about 1.5,but this may drop below 1 in case of seriously disturbed electrical properties.For example,myocardial infarction may result in such serious disturbances as the CMCs may become less excitable and less coupled by gap junctions,a process also referred to as electrical remodeling.In this thesis,especially these infarct related disturbances of electrical impulse initiation and propagation will be studied and discussed.

    6 Myocardial ischemia and infarction

    Once the myocardium becomes ischemic,especially in tile acute setting,the CMCs will rapidly uncouple by down regulating their connexin expression.This process of uncoupling is probably initiated to reduce the flow of injury related mediators towards adjacent cardiac tissue.Decreased intercellular coupling of CMCs also results in conduction abnormalities that could eventually lead to decreased contractile function and increased arrhythmogenic risk.In addition,during acute ischemia,action potential characteristics will change due to electrical remodeling.However,after more than 30 minutes,CMCs will further depolarize,while necrosis is initiated,and conduction becomes blocked completely.At this point,an initially slow cascade of events starts transforming the endangered zone of excitable and well-coupled myocardium rate a non-excitable and poorly coupled mesh of myocardial scar fibroblasts,secreting large amounts of extracellular matrix.This process is also referred to as infarct healing and is usually completed within 6 weeks in humans.During this process the number of fibroblasts dramatically increases,there by creating a fibrotic scar.The process of infarct scar formation is a complex,multistage process,regulated by different mechanisms,serving mainly to restore structural integrity of the damaged heart[6].However,the excessive presence of extracellular matrix secreted by scar fibroblasts can also contribute to the formation of insulating septa creating areas of nonuniform anisotropy,and extremely slow transverse CV as the impulse if forced to follow a zigzag course.

    Loss of excitation and reduced gap junction coupling,as a result of myocardial infarction,are not the only mechanisms by which the infarcted area affects cardiac function vital myocardial tissue is separated from the infarcted area by a border-zone,which is subjected to ongoing fibrosis.Infiltrating fibroblasts may cause heterogeneity in orientation of these resident cells and thereby changing their degree of connectivity,which could affect their contribution to anisotropic conduction.Furthermore,in this borderzone,ion channel properties are changed,such as delayed recovery of the fast inward Na+currents,and reduction in peak L-type inward Ca2+currents.These changes in ion channel properties do not only result in altered excitability; but also in altered refractoriness in these surviving CMCs.Hence,this causes serious disruptions in electrical conduction,thereby increasing the risk for ventricular arrhythmias to occur.

    Traditionally,myocardial scar tissue was considered to be static and solely detrimental.However,over the last decade this view has changed and now infarcted myocardium is considered to be active and viable tissue,representing mainly scar fibroblasts and accumulating extracellular matrix,while still detrimental in nature.This new perspective of myocardial scar tissue also increased its value as therapeutic target,thereby raising new possibilities to revive the damaged areas in the infarcted heart.

    7 Cell modification

    It becomes clear that fully differentiated cells in adult organisms are still susceptible to genetic interventions.Genetic modification can take place through viral and non viral methods,by which a synthetic strand of DNA is transferred into target cells[7].After DNA transfer,this genetic material can be used for protein synthesis,which may induce a phenotypic switch in these cells and modify their electrophysiological properties.

    In order to improve the electrophysiological properties of the infarcted myocardium by genetic manipulation,the excitability and gap junction coupling of the target cells should be modified.Such a modification would change conduction velocity across the working myocardium.Several experimental in vivo studies have attempted to modify CV in damaged myocardium by genetic modification of resident cardiac cells with promising results.In addition,several in vitro studies revealed the underlying mechanisms by which these therapeutic effects can be achieved,including modifications in the expression levels and functionality of both ion channels and connexins[8].However,most studies on genetic modification investigated the effects on the onset and occurrence of ventricular arrhythmias,while the effects on cardiac dyssynchrony were not studied in much detail.Nevertheless,an increase in CV across damaged myocardial tissue may contribute to improved synchronicity of the ventricle by decreasing the activation delay between different ventricular segments.Hence,a more synchronized activation pattern of the cardiac muscle might improve cardiac function.

    Besides the treatment of tachyarrhythmias,genetic modification of myocardial tissue has also been proposed for the treatment of bradyarrhythmias.Briefly,these disorders may arise from impaired impulse initiation in the sinus node,resulting in abnormally low heart rates.Therefore,modification of native pacemaker cells or controlled induction of pacemaker activity in other cardiac cells may improve cardiac function by restoring normal heart rate.

    Modification of not only electrophysiological properties of the cell,but also modification of cell fate may therefore contribute to additional therapeutic effects related to such genetic interventions.In more detail,genetic studies have revealed that certain cardiac-specific transcription factors are essential for proper cardiac differentiation and development.Forced expression of these cardiac transcription factors in non-cardiac cells might therefore lead to activation of cardiac genes and thereby induce a phenotypic switch in the target cells or even directly reprogram these cells into fully excitable and contractile CMCs.

    Adult mouse and human somatic cells were reprogrammed into a pluripotent state by forced expression of only a small number of genetic factors[9].Such reprogrammed cells are now referred to as induced pluripotent stem (iPS) ceIls and appear to be very similar to embryonic stem (ES) cells in many aspects,including their potential to fully differentiate into functional excitable CMCs.This novel concept of reprogramming creates new perspectives with regard to patient specific diagnosis and treatment[10].In theory,autologous cardiac cells from diseased patients are easily available now for screening and transplantation purposes.However,in order to fulfill these future goals,the process of cardiomyogenic differentiation in iPS cells should be as least as efficient as in ES cells or other stem cells.

    In addition,iPS cell-derived CMCs should maintain long term phenotypic and genotypic stability.Today,only a few studies have tried to compare these aspects of cardiomyogenic differentiation in iPS and ES stem cells,but showed only limited mechanistic insights in the differentiation processes of these cells[11-12].

    8 Cell transplantation

    Cell therapy for ischemic heart disease holds promise to regenerate infarcted myocardium,and thereby restore electrophysiological and contractile function[13].Adult CMCs are considered to be post-mitotic cells[14-15],and therefore stem or progenitor cells appear to be the ideal substrate to heal the infarcted myocardium.Formation of new CMCs from transplanted stem cells is now considered to be a very rare event and is probably not responsible for the therapeutic effects observed in clinical cell therapy trials.A more prominent role in the beneficial outcome is given to neovascularization,mediated through secretion of growth factors and cytokines by the engrafted cells.Still,the concept of cell-based therapy for ischemic heart disease has many interesting aspects worth to be further investigated[16].

    Concerning the electrophysiological aspects,these transplanted cells should couple to neighbouring cardiac cells,and,ideally,conduct the electrical impulses as fast as adjacent tissue.In addition,it is likely that cells implanted into damaged cardiac tissue should also align with native cardiac cells to restore tissue structure and contribute to anisotropic conduction.Moreover,if these implanted cells differentiate into functional,contractile CMCs,their alignment will also affect the amount of force that these cells generate in a specific direction.However,the alignment,or spatial integration,of transplanted cells with host cardiac tissue has not yet been studied in much detail.Different cell types have been used for transplantation into the damaged heart,each with their own electrophysiological properties.In addition,several studies have shown the beneficial effects of cell transplantation on conduction parameters in infarcted regions of the heart,associated with improved cardiac performance.Interestingly,the beneficial effects of cell therapy appear to be mainly mediated by improved gap junction coupling in the damaged areas,leaving only a minor role for excitation.This was further demonstrated by transplantation of cells lacking Cx43,which significantly worsened cardiac function by formation of anatomic obstacles,thereby increasing electrical heterogeneity and the risk of reentrant arrhythmias.These experiments highlighted the importance of gap junction coupling of transplanted cells with native cells to gain therapeutic benefit from these interventions.However,while gap junction coupling seems to be mandatory for a beneficial outcome of cell therapy,the extent of gap junction coupling between excitable and unexcitable cells,in terms of ratios,appeared to affect this outcome.Interestingly,transplantation of skeletal myoblasts into the post-infarction failing heart was associated with global downregulation of Cx43 expression in the host myocardium,an effect opposite to what cell therapy should achieve[17-18].This fall in gap junction coupling resulted most likely in decreased intercellular conductance,which was reflected by all increase in the incidence of conduction abnormalities,compared to control groups.

    In summary,while currently available therapeutic options for the treatment of acute myocardial infarction are sufficient for the treatment of symptoms,the underlying causes usually remain unresolved,being loss of myocardial tissue.Recently,extensive research has been performed in the field of cell and gene therapy.The ultimate aim of cell and gene therapy is to “heal” the infarcted area on a more biological basis,by repopulating the damaged area with “new” cells that contribute to proper cardiac function.

    However,further research is needed to gain insight into the integrative and functional aspects of these novel treatment strategies,with the purpose to improve outcome and reduce potential hazards.

    [1] Remme E W,Lyseggen E,Helle-Valle T,et al.Mechanisms of preejection and postejection velocity spikes in left ventricular myocardium:interaction between wall deformation and valve events[J].Circulation,2008,118(4):373-380.

    .[2] Bcckberg G,Hoffman J L,Mahajan A,et al.Cardiac mechanics revisited:the relationship of cardiac architecture to ventricular function[J].Circulation,2008,118(24):2571-2587.

    [3] Zhou B,Ma Q,Rajagopal S,et al.Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart[J].Nature,2008,454(7200):109-113.

    [4] Yang L,Soonpaa M H,Adler E D,et al.Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population[J].Nature,2008,453(7194):524-528.

    [5] You J O,Rafat M,Ye G J,et al.Nanoengineering the heart:conductive scaffolds enhance connexin 43 expression[J].Nano Lett,2011,11(9):3643-3648.

    [6] Nah D Y,Rhee M Y.The inflammatory response and cardiac repair after myocardial infarction[J].Korean Circ J,2009,39(10):393-398.

    [7] Davis J,Westfall M V,Townsend D,et al.Designing heart performance by gene transfer[J].Physiol Rev,2008,88(4):1567-1651.

    [8] Sekar R B,Kizana E,Cho H C,et al.IK1 heterogeneity affects genesis and stability of spiral waves in cardiac myocyte monolayers[J].Circ Res,2009,104(3):355-364.

    [9] Park I H,Zhao R,West J A,et al.Reprogramming of human somatic cells to pluripotency with defined factors[J].Nature,2008,451(7175):141-146.

    [10] Park I H,Arora N,Huo H,et al.Disease-specific induced pluripotent stem cells[J].Cell,2008,134(5):877-886.

    [11] Zhang J H,Wilson G F,Soerens A G,et al.Functional cardiomyocytes derived from human induced pluripotent stem cells[J].Circ Res,2009,104(4):e30-e41.

    [12] Yoshida Y,Yamanaka S.iPS cells:a source of cardiac regeneration[J].J Mol Cell Cardiol,2011,50(2):327-332.

    [13] Segers V F,Lee R T.Stem-cell therapy for cardiac disease[J].Nature,2008,451(7181):937-942.

    [14] Chimenti I,Smith R R,Li T S,et al.Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice[J].Circ Res,2010,106(5):971-980.

    [15] Gambini E,Pompilio G,Biondi A,et al.C-kit+ cardiac progenitors exhibit mesenchymal markers and preferential cardiovascular commitment[J].Cardiovasc Res,2011,89(2):362-373.

    [16] Dai B,Huang W,Xu M,et al.Reduced collagen deposition in infarcted myocardium facilitates induced pluripotent stem cell engraftment and angiomyogenesis for improvement of left ventricular function[J].J Am Coll Cardiol,2011,58(20):2118-2127.

    [17] Coppen S R,Fukushima S,Shintani Y,et al.A factor underlying late-phase arrhythmogenicity after cell therapy to the heart:global downregulation of connexin43 in the host myocardium after skeletal myoblast transplantation[J].Circulation,2008,118(14 Suppl):S138-S144.

    [18] Barnett P,van den Hoff M J.Cardiac regeneration:different cells same goal[J].Med Biol Eng Comput,2011,49(7):723-732.

    1673-2995(2013)01-0033-06

    冠心病電生理紊亂及基因、細胞療法

    Coronary artery disease is associated with electrophysiological disturbances.Numerous studies in the past few years have been demonstrated that the gene,cell therapy has to be considered as a safe therapeutic procedure in coronary heart disease.We reviewed the electrophysiological disturbances of coronary heart disease and gene,cell therapy.

    coronary artery disease;electrophysiology;gene;cell;therapy

    R541

    A

    李中言(1961-),男(漢族),主任醫(yī)師,碩士.

    2012-08-06)

    猜你喜歡
    勁松主任醫(yī)師心內(nèi)科
    顧勁松
    藝術(shù)家(2024年2期)2024-04-15 08:19:20
    風(fēng)險管理在心內(nèi)科中的應(yīng)用效果觀察
    對心內(nèi)科新護士應(yīng)用人性化帶教模式的教學(xué)效果觀察
    Simulation and experimental research of digital valve control servo system based on CMAC-PID control method①
    余勁松
    王希浩主任醫(yī)師采用補、調(diào)、通法治療閉經(jīng)經(jīng)驗
    王自立主任醫(yī)師辨濕思想探悉
    孫宏新主任醫(yī)師治療腫瘤驗案舉隅
    心內(nèi)科老年患者治療期間心源性猝死的臨床病因研究
    因需施教在心內(nèi)科臨床帶教中的觀察體會
    在线观看免费视频日本深夜| 国产精品一区二区三区四区久久| 免费人成视频x8x8入口观看| 久久精品国产自在天天线| 国产成人一区二区在线| 久99久视频精品免费| 欧美性猛交黑人性爽| 国产精品.久久久| 欧美成人精品欧美一级黄| 午夜激情福利司机影院| 国产精品日韩av在线免费观看| 免费av不卡在线播放| 国产亚洲av片在线观看秒播厂 | 国产一级毛片七仙女欲春2| 久久久精品欧美日韩精品| 国产av在哪里看| 中国美白少妇内射xxxbb| 午夜福利视频1000在线观看| 欧美精品国产亚洲| 中文欧美无线码| 亚洲丝袜综合中文字幕| 日本欧美国产在线视频| 亚洲精品色激情综合| 欧美区成人在线视频| 精品久久久久久久久久免费视频| 日韩欧美精品免费久久| 哪里可以看免费的av片| 日本成人三级电影网站| 国产大屁股一区二区在线视频| 熟女人妻精品中文字幕| 床上黄色一级片| 日韩,欧美,国产一区二区三区 | 国产综合懂色| 免费搜索国产男女视频| 黑人高潮一二区| 亚洲精品自拍成人| 免费av观看视频| 一区二区三区四区激情视频 | 99国产精品一区二区蜜桃av| 婷婷精品国产亚洲av| 99久久精品一区二区三区| 亚洲av不卡在线观看| 能在线免费看毛片的网站| 亚洲精品粉嫩美女一区| 日韩欧美精品v在线| 一区二区三区高清视频在线| 国产高清激情床上av| 久久鲁丝午夜福利片| 人人妻人人看人人澡| 小蜜桃在线观看免费完整版高清| 欧美潮喷喷水| 天堂网av新在线| 国产成人精品一,二区 | 日本黄色视频三级网站网址| 成人亚洲欧美一区二区av| av福利片在线观看| 看十八女毛片水多多多| 久久鲁丝午夜福利片| 特级一级黄色大片| 国产成人freesex在线| 亚洲性久久影院| kizo精华| 日韩在线高清观看一区二区三区| 久久久久久久久中文| 欧美日本视频| 午夜视频国产福利| 久久这里有精品视频免费| 99精品在免费线老司机午夜| 亚洲av成人精品一区久久| 天堂网av新在线| 精品久久久噜噜| 大又大粗又爽又黄少妇毛片口| 国产精品电影一区二区三区| 99久久精品一区二区三区| 亚洲欧美成人精品一区二区| 亚洲国产日韩欧美精品在线观看| 日日摸夜夜添夜夜添av毛片| www.av在线官网国产| 亚洲色图av天堂| 国产精品1区2区在线观看.| 看十八女毛片水多多多| 全区人妻精品视频| 天堂中文最新版在线下载 | 欧美一级a爱片免费观看看| 国产成人a区在线观看| 国产av麻豆久久久久久久| 国产伦精品一区二区三区四那| 午夜视频国产福利| 欧美+日韩+精品| 三级经典国产精品| 日本成人三级电影网站| 国产一级毛片七仙女欲春2| 久久久久久九九精品二区国产| 亚洲激情五月婷婷啪啪| 国产极品天堂在线| 亚洲欧美精品专区久久| 国产高清激情床上av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美激情国产日韩精品一区| 插阴视频在线观看视频| 免费大片18禁| 亚洲aⅴ乱码一区二区在线播放| 国模一区二区三区四区视频| 男插女下体视频免费在线播放| 久久国内精品自在自线图片| 国产成人aa在线观看| 成年免费大片在线观看| 如何舔出高潮| 国产亚洲av片在线观看秒播厂 | 国产精品久久久久久久电影| 12—13女人毛片做爰片一| 日产精品乱码卡一卡2卡三| 国产av在哪里看| 91av网一区二区| 国内揄拍国产精品人妻在线| 丰满的人妻完整版| АⅤ资源中文在线天堂| 亚洲最大成人av| а√天堂www在线а√下载| 在线观看美女被高潮喷水网站| 超碰av人人做人人爽久久| 91在线精品国自产拍蜜月| videossex国产| 熟女人妻精品中文字幕| 免费看日本二区| 亚洲天堂国产精品一区在线| 麻豆一二三区av精品| 尾随美女入室| 国产精品一区二区三区四区免费观看| 黄色日韩在线| 高清午夜精品一区二区三区 | 国模一区二区三区四区视频| 日本欧美国产在线视频| 夜夜夜夜夜久久久久| 中文字幕制服av| 国产色爽女视频免费观看| 少妇的逼水好多| 黄色配什么色好看| 99视频精品全部免费 在线| 一区二区三区高清视频在线| 2021天堂中文幕一二区在线观| 男人舔女人下体高潮全视频| 国产av不卡久久| 欧美一区二区亚洲| 久久久久九九精品影院| 51国产日韩欧美| 国产精品久久久久久久久免| 观看免费一级毛片| 国内揄拍国产精品人妻在线| 久久久久久久久大av| АⅤ资源中文在线天堂| 亚洲av一区综合| 美女内射精品一级片tv| 在现免费观看毛片| 日韩一区二区三区影片| 欧洲精品卡2卡3卡4卡5卡区| 免费人成在线观看视频色| 成人高潮视频无遮挡免费网站| 成人特级黄色片久久久久久久| 欧美+亚洲+日韩+国产| 亚洲精品成人久久久久久| 深夜精品福利| 深爱激情五月婷婷| 久久午夜福利片| 麻豆精品久久久久久蜜桃| 国产 一区 欧美 日韩| 成人一区二区视频在线观看| 久久鲁丝午夜福利片| 夜夜看夜夜爽夜夜摸| 99视频精品全部免费 在线| 久久久久久久久久久免费av| 日韩国内少妇激情av| 亚洲最大成人中文| 你懂的网址亚洲精品在线观看 | 国产女主播在线喷水免费视频网站 | 国内精品一区二区在线观看| 亚洲中文字幕日韩| 男人舔奶头视频| 国产极品天堂在线| 国产午夜精品久久久久久一区二区三区| 精品国产三级普通话版| 久久中文看片网| 日日干狠狠操夜夜爽| 好男人在线观看高清免费视频| 极品教师在线视频| 国产伦精品一区二区三区四那| 69人妻影院| 最后的刺客免费高清国语| 国产69精品久久久久777片| 国内久久婷婷六月综合欲色啪| 午夜免费男女啪啪视频观看| 免费av不卡在线播放| 国产三级中文精品| 男女做爰动态图高潮gif福利片| 成人特级av手机在线观看| 亚洲精品影视一区二区三区av| 精品无人区乱码1区二区| 精品久久久久久久久久久久久| 国产亚洲精品av在线| 99视频精品全部免费 在线| 欧美日本亚洲视频在线播放| 美女国产视频在线观看| 午夜亚洲福利在线播放| 简卡轻食公司| 晚上一个人看的免费电影| 啦啦啦韩国在线观看视频| 亚洲欧美日韩东京热| 久久久久久九九精品二区国产| 最新中文字幕久久久久| 久久久久久大精品| 久久午夜福利片| 国产精品伦人一区二区| 成人综合一区亚洲| 国产探花极品一区二区| 日本免费一区二区三区高清不卡| 国产一区二区三区av在线 | 日本在线视频免费播放| 97超碰精品成人国产| 熟女电影av网| 黄片wwwwww| 亚洲欧洲日产国产| 久久久久九九精品影院| 午夜精品国产一区二区电影 | 啦啦啦啦在线视频资源| 欧美潮喷喷水| 亚洲中文字幕日韩| 少妇丰满av| 欧美一区二区亚洲| 乱系列少妇在线播放| 国产av一区在线观看免费| 欧美激情国产日韩精品一区| 精品人妻偷拍中文字幕| 久久精品国产亚洲av香蕉五月| 噜噜噜噜噜久久久久久91| 亚洲va在线va天堂va国产| 成人二区视频| 国产午夜精品一二区理论片| 在线观看66精品国产| 成人三级黄色视频| 国产亚洲91精品色在线| 国产成人影院久久av| 99久国产av精品| 在线播放无遮挡| 国产极品精品免费视频能看的| 男人舔女人下体高潮全视频| 舔av片在线| 国产淫片久久久久久久久| 天堂影院成人在线观看| 国产毛片a区久久久久| 蜜臀久久99精品久久宅男| 欧美精品国产亚洲| 一边摸一边抽搐一进一小说| 人妻久久中文字幕网| 波多野结衣巨乳人妻| 国产极品精品免费视频能看的| 久久精品国产亚洲av香蕉五月| 亚洲七黄色美女视频| 欧美色欧美亚洲另类二区| 色播亚洲综合网| 国产精品一二三区在线看| 看黄色毛片网站| 色哟哟哟哟哟哟| 日韩欧美三级三区| 18禁在线无遮挡免费观看视频| 麻豆精品久久久久久蜜桃| 久久这里有精品视频免费| 国产免费一级a男人的天堂| 高清日韩中文字幕在线| 国产成人a∨麻豆精品| 久久精品久久久久久久性| 国产伦精品一区二区三区四那| 身体一侧抽搐| av免费在线看不卡| 亚洲av熟女| 免费看日本二区| 国产伦在线观看视频一区| 久久久午夜欧美精品| 男女边吃奶边做爰视频| 久久九九热精品免费| 亚洲精品乱码久久久v下载方式| 国产成人一区二区在线| 日本与韩国留学比较| 97在线视频观看| 麻豆成人午夜福利视频| 免费观看精品视频网站| 日本黄色视频三级网站网址| 美女黄网站色视频| 在线观看午夜福利视频| 中文字幕制服av| 欧美不卡视频在线免费观看| 国产精品无大码| 18禁在线播放成人免费| 少妇人妻精品综合一区二区 | 人体艺术视频欧美日本| av免费在线看不卡| 性色avwww在线观看| 国产在线精品亚洲第一网站| 精品不卡国产一区二区三区| 精品一区二区免费观看| 欧美xxxx黑人xx丫x性爽| 别揉我奶头 嗯啊视频| av女优亚洲男人天堂| 亚洲人成网站高清观看| 日本黄色视频三级网站网址| 久久久久久久久大av| 国产成人影院久久av| 99久久成人亚洲精品观看| 波野结衣二区三区在线| 26uuu在线亚洲综合色| 成人午夜高清在线视频| 极品教师在线视频| 国产成人freesex在线| 欧美日韩精品成人综合77777| 亚洲欧美日韩卡通动漫| 精品久久久久久成人av| 看十八女毛片水多多多| 草草在线视频免费看| 99久久无色码亚洲精品果冻| 日本三级黄在线观看| 波野结衣二区三区在线| 久久久久久久久大av| 免费观看的影片在线观看| 成人美女网站在线观看视频| 小说图片视频综合网站| 婷婷六月久久综合丁香| 亚洲高清免费不卡视频| 亚洲国产精品久久男人天堂| h日本视频在线播放| 久久久成人免费电影| 最后的刺客免费高清国语| 国产av一区在线观看免费| 成人特级黄色片久久久久久久| 久久久久久久久久黄片| 午夜福利视频1000在线观看| 天堂网av新在线| 日韩欧美 国产精品| 九色成人免费人妻av| 国产片特级美女逼逼视频| 久久这里有精品视频免费| 久久99精品国语久久久| 一级二级三级毛片免费看| 蜜桃亚洲精品一区二区三区| 人妻制服诱惑在线中文字幕| 成人三级黄色视频| 99国产精品一区二区蜜桃av| 别揉我奶头 嗯啊视频| 在线天堂最新版资源| 天堂√8在线中文| 久99久视频精品免费| 日日摸夜夜添夜夜添av毛片| 美女大奶头视频| av卡一久久| 亚洲欧美日韩高清在线视频| 我的老师免费观看完整版| 狂野欧美激情性xxxx在线观看| 99久国产av精品国产电影| 成人欧美大片| 波多野结衣高清无吗| 我要搜黄色片| 国内久久婷婷六月综合欲色啪| 高清午夜精品一区二区三区 | 简卡轻食公司| 亚洲国产精品国产精品| 国产高清不卡午夜福利| 日韩精品青青久久久久久| 亚洲无线在线观看| 欧美成人精品欧美一级黄| 国产伦一二天堂av在线观看| 久久精品国产自在天天线| 日韩欧美精品免费久久| 亚洲三级黄色毛片| 日韩精品青青久久久久久| 观看美女的网站| 高清毛片免费看| 国产精品一区二区性色av| or卡值多少钱| 亚洲精品乱码久久久v下载方式| 亚洲电影在线观看av| 成年女人永久免费观看视频| 蜜桃亚洲精品一区二区三区| 在线观看免费视频日本深夜| 精品久久国产蜜桃| 欧美色欧美亚洲另类二区| www.av在线官网国产| 国产私拍福利视频在线观看| 亚洲欧美中文字幕日韩二区| 午夜免费男女啪啪视频观看| 中文欧美无线码| 欧美成人一区二区免费高清观看| 99热精品在线国产| 亚洲欧美精品专区久久| 欧美成人一区二区免费高清观看| 日韩大尺度精品在线看网址| 国产三级在线视频| 97热精品久久久久久| 免费人成在线观看视频色| 国产一区二区三区av在线 | 一个人看视频在线观看www免费| 菩萨蛮人人尽说江南好唐韦庄 | 亚州av有码| 可以在线观看的亚洲视频| 日韩,欧美,国产一区二区三区 | 精品国产三级普通话版| 一本一本综合久久| 欧美日韩国产亚洲二区| 亚洲综合色惰| 可以在线观看的亚洲视频| 亚洲最大成人中文| 国产精品一区二区三区四区久久| 国产69精品久久久久777片| 一个人看的www免费观看视频| 床上黄色一级片| 特大巨黑吊av在线直播| 亚洲中文字幕一区二区三区有码在线看| 国产一区二区亚洲精品在线观看| 国产亚洲欧美98| 99视频精品全部免费 在线| a级毛片免费高清观看在线播放| 亚洲欧美精品综合久久99| 熟女电影av网| 九九热线精品视视频播放| 日本三级黄在线观看| 日本免费一区二区三区高清不卡| 校园人妻丝袜中文字幕| 日本一本二区三区精品| 2021天堂中文幕一二区在线观| videossex国产| 久久亚洲国产成人精品v| 亚洲av男天堂| 日本撒尿小便嘘嘘汇集6| 欧美最新免费一区二区三区| 床上黄色一级片| 久久精品国产亚洲av天美| 中文字幕av成人在线电影| 最近中文字幕高清免费大全6| 国产精品麻豆人妻色哟哟久久 | 最近的中文字幕免费完整| 亚洲性久久影院| 国产高清视频在线观看网站| 青春草视频在线免费观看| 此物有八面人人有两片| 久久久精品欧美日韩精品| 中文在线观看免费www的网站| 亚洲精品自拍成人| 一本久久精品| 国产免费男女视频| 深夜精品福利| 如何舔出高潮| 国产爱豆传媒在线观看| 男女视频在线观看网站免费| 赤兔流量卡办理| 久久久久久久久大av| 青春草国产在线视频 | 男女下面进入的视频免费午夜| 成人av在线播放网站| 老熟妇乱子伦视频在线观看| 国国产精品蜜臀av免费| 高清在线视频一区二区三区 | 中文字幕av在线有码专区| 精品国产三级普通话版| 国产中年淑女户外野战色| 熟女电影av网| 日本av手机在线免费观看| 亚洲三级黄色毛片| 国产高清激情床上av| 亚洲成a人片在线一区二区| 日韩欧美 国产精品| 99久久无色码亚洲精品果冻| 免费av观看视频| 99热网站在线观看| 欧美成人免费av一区二区三区| 两个人的视频大全免费| 丝袜美腿在线中文| 国产在线男女| 美女黄网站色视频| 久久久国产成人精品二区| 日韩人妻高清精品专区| 欧美zozozo另类| 久久久久免费精品人妻一区二区| 亚洲内射少妇av| 内地一区二区视频在线| 最好的美女福利视频网| 日本欧美国产在线视频| 免费av不卡在线播放| 国产精品精品国产色婷婷| 国产欧美日韩精品一区二区| 久久久久久伊人网av| 久久99热6这里只有精品| 国产精品一区二区性色av| 少妇猛男粗大的猛烈进出视频 | av专区在线播放| 久久婷婷人人爽人人干人人爱| 亚洲一区高清亚洲精品| 国内精品美女久久久久久| 亚洲高清免费不卡视频| 免费看光身美女| 国产视频首页在线观看| 久久人妻av系列| 亚洲乱码一区二区免费版| 99久国产av精品国产电影| 婷婷精品国产亚洲av| 日本av手机在线免费观看| 精品久久久久久久人妻蜜臀av| 久久久久久久久久黄片| 又黄又爽又刺激的免费视频.| 国产精品久久久久久精品电影小说 | 欧美高清性xxxxhd video| 在线天堂最新版资源| 国产精品人妻久久久影院| 一卡2卡三卡四卡精品乱码亚洲| av天堂在线播放| 亚洲国产色片| av.在线天堂| 美女内射精品一级片tv| 婷婷亚洲欧美| or卡值多少钱| 欧美最黄视频在线播放免费| 久久久久久伊人网av| 久久精品国产亚洲av天美| 亚洲乱码一区二区免费版| 国产精品久久久久久精品电影小说 | 亚洲国产精品sss在线观看| 麻豆精品久久久久久蜜桃| 精品一区二区三区人妻视频| 中国美女看黄片| 欧美最新免费一区二区三区| 午夜亚洲福利在线播放| 久久久久久久久中文| 久久久久久国产a免费观看| 观看免费一级毛片| 免费av毛片视频| 亚洲av成人精品一区久久| 五月伊人婷婷丁香| 欧美丝袜亚洲另类| 精品熟女少妇av免费看| 美女内射精品一级片tv| 国产白丝娇喘喷水9色精品| 乱人视频在线观看| 欧美变态另类bdsm刘玥| 久久人人爽人人爽人人片va| 国产成人a区在线观看| 国产私拍福利视频在线观看| 国产91av在线免费观看| 亚洲成人中文字幕在线播放| 国产单亲对白刺激| 此物有八面人人有两片| 精品一区二区三区视频在线| 不卡一级毛片| 国产精品嫩草影院av在线观看| 熟女电影av网| 亚洲精品久久国产高清桃花| 少妇熟女aⅴ在线视频| 少妇裸体淫交视频免费看高清| 91精品一卡2卡3卡4卡| 国产一区二区在线av高清观看| 欧美最黄视频在线播放免费| 国产高清视频在线观看网站| 真实男女啪啪啪动态图| 国产蜜桃级精品一区二区三区| 日本在线视频免费播放| 精品一区二区免费观看| 久久精品国产亚洲av天美| 久久亚洲精品不卡| 欧美另类亚洲清纯唯美| 亚洲精品成人久久久久久| 成人二区视频| 免费看a级黄色片| 狂野欧美白嫩少妇大欣赏| 麻豆久久精品国产亚洲av| 国产精华一区二区三区| 国产极品精品免费视频能看的| 日本一二三区视频观看| 欧美最新免费一区二区三区| 99国产精品一区二区蜜桃av| 九草在线视频观看| 女人十人毛片免费观看3o分钟| 欧美人与善性xxx| 超碰av人人做人人爽久久| 内射极品少妇av片p| 一级二级三级毛片免费看| av在线亚洲专区| 久久久精品欧美日韩精品| 中文资源天堂在线| 国产精品女同一区二区软件| 国产成人一区二区在线| 少妇裸体淫交视频免费看高清| 国产免费男女视频| 一夜夜www| 欧美激情久久久久久爽电影| 两个人视频免费观看高清| 国产精品一区二区三区四区免费观看| 免费人成视频x8x8入口观看| av天堂中文字幕网| 美女cb高潮喷水在线观看| 国产精品一区二区性色av| 人妻少妇偷人精品九色| 日韩人妻高清精品专区| 欧美色欧美亚洲另类二区| 日本色播在线视频| 99久国产av精品| 久久99热这里只有精品18| 中文在线观看免费www的网站| 国产成年人精品一区二区| 国产精品电影一区二区三区| 亚洲精品国产成人久久av| 91狼人影院| 成人午夜高清在线视频| 亚洲av二区三区四区| 亚洲欧美清纯卡通| 麻豆久久精品国产亚洲av| 国产成人aa在线观看| av在线观看视频网站免费| 国产精品伦人一区二区| 在线观看一区二区三区| 亚洲第一电影网av|