劉樹謙
美國西北大學(xué) 生物醫(yī)學(xué)工程系,美國伊利諾斯州 埃文斯頓
冠狀動脈病變引起的心肌缺血可導(dǎo)致心肌細(xì)胞損傷和心功能衰退,但另一方面可激活心肌保護(hù)機(jī)制,抑制心肌死亡,改進(jìn)心肌功能。哺乳動物包括人類有兩種心肌保護(hù)機(jī)制:心源性的和非心源性的。心源性機(jī)制包括保護(hù)分子釋放及心肌干細(xì)胞激活。在分子水平, adenosine , bradykinin, and opioids等小分子可以快速地(在幾小時內(nèi))從損傷的心臟細(xì)胞釋放到細(xì)胞外間隙, 作用于缺血心肌,激活G-蛋白耦合受體信息通道,進(jìn)而激活細(xì)胞活性刺激分子PI3K和Akt1,引起細(xì)胞死亡分子BAD磷酸化,以此抑制心肌細(xì)胞死亡[1-6]。隨著小分子的釋放, 損傷心臟細(xì)胞及激活的白細(xì)胞也可在幾天之內(nèi)表達(dá)多種生長因子,包括成纖維細(xì)胞增長因子1和2,血管內(nèi)皮生長因子,和胰島素樣生長因子。這些因子可激活酪氨酸激酶耦合受體及PI3K-Akt1和MEK-ERK1/2信息通道,進(jìn)而刺激心肌細(xì)胞修復(fù)[7-20]。在細(xì)胞水平,心肌損傷可激活心源性干細(xì)胞。這些細(xì)胞可分化成心肌細(xì)胞, 進(jìn)而促進(jìn)心肌修復(fù),改進(jìn)心肌功能[21-23]。
非心源性心肌保護(hù)機(jī)制主要涉及系統(tǒng)器官和組織。骨髓和肝臟是目前發(fā)現(xiàn)的主要心肌保護(hù)器官。隨著心肌缺血,骨髓可釋放造血干細(xì)胞和血管內(nèi)皮前體細(xì)胞于血液循環(huán)系統(tǒng), 部分游離骨髓細(xì)胞可以進(jìn)入缺血性心肌,促進(jìn)心肌修復(fù)[24-27]。與此同時,心肌缺血引起心肌與血液促炎因子如interlekin-6的水平增加。這些因子可作用于肝臟,引發(fā)肝細(xì)胞表達(dá)心肌保護(hù)因子,包括-1-acid glycoprotein 2 (AGP2),bone morphogenetic protein binding endothelial regulator (BMPER),fibroblast growth factor 21 (FGF21), neuregulin 4 (NRG4), 和 trefoil factor 3 (TFF3)[53]。這些保護(hù)因子可釋放于血液內(nèi),作用于缺血心肌,進(jìn)而減少心肌損傷[28]。肝臟的另一個心肌保護(hù)機(jī)制是將肝細(xì)胞游離和釋放于循環(huán)系統(tǒng)[29]。部分游離肝細(xì)胞可隨血流進(jìn)入缺血心肌[30]。這些細(xì)胞可能釋放心肌保護(hù)因子,提升心肌保護(hù)因子的局部水平,因而到達(dá)迅速保護(hù)心肌的目的[28,30]。這里,作者將主要討論應(yīng)用現(xiàn)代生物技術(shù)和設(shè)備對肝臟的心肌保護(hù)作用的測定和評估。
心肌缺血可導(dǎo)致肝細(xì)胞表達(dá)心肌保護(hù)分泌蛋白因子。這些蛋白因子可以被釋放入血液循環(huán)系統(tǒng),隨血流進(jìn)入缺血心肌,因而保護(hù)心肌,減少心肌損傷[28-29]。這里我們將討論三個問題: 這些蛋白因子是怎么發(fā)現(xiàn)的, 蛋白因子的長期心肌保護(hù)功能以及作用機(jī)制。
在小鼠冠狀動脈結(jié)扎誘發(fā)的心肌局部缺血模型,肝細(xì)胞可在一到三天內(nèi)增進(jìn)九個分泌蛋白基因的表達(dá),包括AGP2, BMPER, chemokine (C-X-C motif)ligand 13 (CXCL13),FGF21, NRG4, PRG4, serum amyloid A1 (SAA1)和 A2 (SAA2),及TFF3[5,28]。鑒于這些蛋白在心肌缺血時表達(dá),它們可能包括心肌保護(hù)因子。為識別其中的心肌防護(hù)因子,我們進(jìn)行了功能篩選試驗。在冠狀動脈結(jié)扎之后,我們對心肌缺血小鼠立即進(jìn)行肝分泌蛋白靜脈注射(每組小鼠僅注射一種蛋白,50 ng/gm 體重, PBS為對照劑)。SAA1 和SAA2沒有進(jìn)行篩選試驗, 因為這兩種蛋白經(jīng)常引起組織淀粉樣病變和組織功能損傷[5,28]。在肝分泌蛋白注射后24 h,小鼠左心室被用于心肌梗塞測試。與PBS比較,注射AGP2,BMPER, FGF21, NRG4, 或TFF3導(dǎo)致顯著心肌梗塞減少。相比而言,注射CXCL13或PRG4沒有引起顯著心肌梗塞改變。這些觀察顯示,AGP2, BMPER, FGF21, NRG4和TFF3有心肌保護(hù)的作用。在心肌缺血后一到三天,這些蛋白在肝細(xì)胞和血液都顯著增加[28]。而心肌細(xì)胞死亡正好發(fā)生在這一時期[28]??梢娺@些蛋白是為心肌保護(hù)而生。
在以前的研究中,上述五個分子是從不同的細(xì)胞類種被發(fā)現(xiàn)的,并有著不同的功用[31]。AGP2,也稱為 orosomucoid 2 (ORM2),是肝細(xì)胞合成的急性炎癥反應(yīng)血液蛋白。其由201 氨基酸組成,分子量為23.6 kDa。AGP2的表達(dá)受多個促炎因子的調(diào)控,包括糖皮質(zhì)激素,IL1,IL6和TNF。AGP2的以知功能包括調(diào)控炎癥和免疫反應(yīng)[32]。比如,AGP2可以抑制T淋巴細(xì)胞發(fā)育和增長[32];抑制嗜中性粒細(xì)胞活性和增長[33];抑制血小板聚合[34];刺激單核細(xì)胞和巨噬細(xì)胞表達(dá)和分泌細(xì)胞因子,包括IL1,IL6,IL12 和腫瘤壞死因子[35];以及刺激成纖維細(xì)胞增殖和促進(jìn)傷口愈合[36]。
BMPER, 也稱為 crossveinless 2, 是由 685 氨基酸組成 , 其分子量為76 kDa。BMPER 最處發(fā)現(xiàn)于Flk-1陽性血管內(nèi)皮細(xì)胞。該分子可釋放于細(xì)胞外空間,通過與BMP4相互作用來影響細(xì)胞的活性[32,57]。 BMP4的作用主要是參與調(diào)控Smad信號傳導(dǎo),控制中胚層發(fā)育,促進(jìn)血管內(nèi)皮細(xì)胞分化和血管形成,以及刺激成骨細(xì)胞和軟骨細(xì)胞增長。但是,BMP4對BMPER的影響是有爭議的。許多調(diào)查表明BMPER抑制BMP4的活性[38-40],但也有人表明BMPER刺激BMP4的活性[41-43]。最近研究提供了解決這個爭議的證據(jù)。BMPER可刺激或抑制BMP4的活性,其影響依賴于BMPER的相對水平。當(dāng)BMPER的水平超過BMP4,BMPER可掩蓋BMP4受體,從而抑制BMP4的活性。反之,BMPER刺激BMP4的活性[44]。
FGF21是由209氨基酸組成,其分子量為22.3kDa,屬于成纖維細(xì)胞生長因子家族[45]。FGF21主要在肝臟表達(dá)。胸腺和脂肪組織也有表達(dá),但表達(dá)程度較低[6,46]。大多數(shù)成纖維細(xì)胞生長因子有調(diào)節(jié)細(xì)胞增殖和分化的作用,而FGF21已知參與調(diào)節(jié)血糖和血脂代謝[47-48]。據(jù)報,F(xiàn)GF21有以下具體的代謝功能:[1]刺激細(xì)胞的葡萄糖攝取和代謝從而減少血糖水平; [2]誘導(dǎo)胰島素表達(dá)和分泌;[3]調(diào)節(jié)脂肪細(xì)胞內(nèi)脂肪酸代謝;[4]減少血漿低密度脂蛋白和增加高密度脂蛋白水平[47,49-53]。FGF21現(xiàn)已用于治療糖尿病, 血脂紊亂和肥胖的研究。
NRG4, 也稱為 heregulin 4 (HRG4),由115氨基酸組成,分子量為12.7kDa,主要在胰腺和骨骼肌表達(dá)[54]。NRG4是一個細(xì)胞膜蛋白,其細(xì)胞外領(lǐng)域含有一表皮增長因子的部分。當(dāng)合成后,NRG4既分布于細(xì)胞膜。其細(xì)胞膜外部分可由蛋白酶切割游離。游離NRG4可作用于酪氨酸激酶耦合受體HER4,進(jìn)而調(diào)控細(xì)胞活性。NRG4的主要功用是刺激ErbB4陽性細(xì)胞生長,促進(jìn)神經(jīng)元軸突或枝狀突起延伸,調(diào)控胰腺島細(xì)胞發(fā)育[54-55]。
TFF3由80氨基酸組成,分子量為8.6 kDa,主要在胃腸道的杯狀細(xì)胞表達(dá)。三環(huán)狀氨基酸排列為該分子的結(jié)構(gòu)特征。TFF3的主要功用是在生理條件下維持胃腸道黏膜完整性;促進(jìn)損傷黏膜愈合和修復(fù)[56-57]。體外測試證明,TFF3可增強(qiáng)腸道內(nèi)的黏蛋白聚合,以致形成穩(wěn)定的胃腸道黏膜層。該黏膜層對胃腸系統(tǒng)有保護(hù)作用。
肝源性心肌保護(hù)因子的主功能是增加心肌對缺氧的耐受性,減少心肌死亡和改進(jìn)心肌收縮功能。我們使用組織化學(xué)和血液動力學(xué)方法評估肝因子對心肌的長期保護(hù)作用。當(dāng)五個肝因子,包括AGP2,BMPER,F(xiàn)GF21,NRG4,和TFF3,按心肌缺血時血液肝因子濃度比注入心肌缺血的老鼠(靜脈注射,每12小時一次,連續(xù)注射三天),心肌梗塞范圍在五,十,和三十天有很大程度減少[28]。連續(xù)注射三天的原因是這一期間正是心肌細(xì)胞死亡的時間。三天以后開始注射沒有顯著療效。進(jìn)而,五肝因子注射顯著改進(jìn)了左心室dp/dt和收縮指數(shù)。這些結(jié)果支持肝因子的心肌保護(hù)作用[28]。有一點應(yīng)該強(qiáng)調(diào),既然肝臟可產(chǎn)生心肌保護(hù)因子,為什么仍然需要注射這些因子來保護(hù)心肌。這是因為在心肌缺血以后這些蛋白因子的表達(dá)大約需要一天的時間。在這段時間,心肌在肝源性保護(hù)因子達(dá)到有效水平前已開始死亡。因此,注射心肌防護(hù)因子是必要的,而且是越快越好[28]。
一個重要的議題是肝蛋白因子如何保護(hù)缺血心肌。每一個蛋白因子都有一不同的作用機(jī)制。目前,我們已經(jīng)研究了其中有兩個因子:FGF21和TFF3[58-59]。FGF21可作用于心肌細(xì)胞酪氨酸激酶耦合FGF受體 1 (FGFR1), 進(jìn)而激活細(xì)胞活性刺激分子PI3K和Akt1,引起細(xì)胞死亡分子BAD磷酸化[58]。當(dāng)BAD處于脫磷酸狀態(tài),可與抗細(xì)胞凋亡分子Bcl-2和Bcl-XL結(jié)合,從而抑制Bcl-2和Bcl-XL的抗細(xì)胞凋亡作用,導(dǎo)致細(xì)胞死亡增加。相反,當(dāng)BAD處于磷酸化狀態(tài),Bcl-2和Bcl-XL由BAD釋放出來,不再受BAD的抑制,導(dǎo)致細(xì)胞死亡減少,缺血心肌得以保護(hù)[30]。TFF3也可激活PI3K和Akt1,但其心肌細(xì)胞受體有待研究[59]。 可見,F(xiàn)GF21和TFF3激活細(xì)胞內(nèi)的共同信號傳導(dǎo)途徑。
心肌缺血可導(dǎo)致肝臟細(xì)胞游離并釋放于血液循環(huán)系統(tǒng)。部分游離肝細(xì)胞可隨血流進(jìn)入缺血心肌,進(jìn)而保護(hù)心肌[28,30]。這里我們將討論兩個問題:肝細(xì)胞是如何釋放的以及肝臟細(xì)胞如何保護(hù)缺血心肌。
隨著心肌缺血的誘發(fā),肝細(xì)胞可在三到天五內(nèi)出現(xiàn)于血液循環(huán)系統(tǒng)。一個基本問題是如何確認(rèn)循環(huán)肝細(xì)胞。我們建立了一個肝臟細(xì)胞特異黃熒光蛋白表達(dá)的小鼠模型[29]。循環(huán)肝細(xì)胞可根據(jù)黃色熒光蛋白來辨認(rèn)。循環(huán)肝細(xì)胞的數(shù)量在心肌缺血后5天內(nèi)可達(dá)到約白血球的1%,之后逐漸減少。部分游離肝細(xì)胞可隨血流進(jìn)入缺血心肌[30]。這些細(xì)胞在心肌缺血30天后基本消失。下面, 筆者將主要討論肝細(xì)胞是如何游離和釋放的。
缺血心肌以及在心肌病灶內(nèi)激活的白血球可釋放促炎因子interleukin 6 (IL6)。 該因子可進(jìn)一步激活循環(huán)白血球。這些白血球可粘附于肝臟血管內(nèi)皮細(xì)胞,遷移到肝組織, 表達(dá)并釋放基質(zhì)蛋白酶 2 (MMP2)。MMP2進(jìn)而分解肝細(xì)胞外基質(zhì),導(dǎo)致肝細(xì)胞游離。游離肝細(xì)胞隨血流進(jìn)入肝中央靜脈及腔靜脈[29]。這些細(xì)胞可在靜脈, 肺循環(huán), 左心房, 和左心室系統(tǒng)生存。但是,一但游離肝細(xì)胞進(jìn)入體動脈,這些細(xì)胞在動脈血流剪應(yīng)力的作用下分解。所以, 在周邊動脈和靜脈是很難發(fā)現(xiàn)游離肝細(xì)胞的[5]。由于冠狀動脈相對較短,進(jìn)入冠狀動脈的游離肝細(xì)胞不會全部被分解,部分細(xì)胞滯留于心肌。在心肌缺血誘發(fā)五至十天后,IL6和MMP2的表達(dá)和釋放減少,肝細(xì)胞游離程度下降。
進(jìn)入缺血心肌的肝細(xì)胞對心肌細(xì)胞有保護(hù)作用。雖然這些肝細(xì)胞如何保護(hù)心肌的機(jī)制仍未完全了解,但有一點比較明確,既進(jìn)入心肌的肝細(xì)胞可釋放心肌保護(hù)因子[28,30]。與釋放于血液比較,直接釋放于局部缺血心肌將迅速提升保護(hù)因子的濃度,有利于迅速有效地保護(hù)心肌。有一點應(yīng)該說明,游離肝細(xì)胞僅出現(xiàn)于心肌缺血部位,但不出現(xiàn)在正常心肌。對這一現(xiàn)象的機(jī)制仍待研究。
在該項研究中,我們采用了兩種主要生物技術(shù)和設(shè)備:cDNA microarray analysis 和 flow cytometry。cDNA microarray analysis可用于系統(tǒng)性監(jiān)測基因在某一細(xì)胞種類的表達(dá)。通過測定小鼠心肌缺血誘發(fā)的肝臟細(xì)胞全基因表達(dá), 我們發(fā)現(xiàn)了如上所述的九個表達(dá)增強(qiáng)的蛋白, 其中包括五個心肌防護(hù)蛋白。Flow cytometry 可用于測定細(xì)胞種類和蛋白表達(dá).我們就是使用了這個方法發(fā)現(xiàn)了心肌缺血時循環(huán)的肝細(xì)胞。cDNA microarray analysis[60-61]和 flow cytometry[62-64]的技術(shù),設(shè)備以及作用原理已在文獻(xiàn)中詳細(xì)討論,這里不再重復(fù)??梢?,這些生物技術(shù)和設(shè)備在發(fā)現(xiàn)肝臟對局部缺血心肌的保護(hù)上起了至關(guān)重要的作用。
以上研究表明,心肌損傷可誘發(fā)系統(tǒng)性自體保護(hù)措施。肝臟活化是其中措施之一。肝臟已知有多種功能,如調(diào)控新陳代謝、產(chǎn)生膽汁、解毒、和產(chǎn)生血漿蛋白等。除這些功能之外, 肝臟也起心肌保護(hù)的作用。這一發(fā)現(xiàn)對理解心肌保護(hù)機(jī)制以及開發(fā)心肌保護(hù)措施有重要的意義。
[1]Bell SP,Sack MN,Patel A,et al.Opioid receptor stimulation mimics ischemic preconditioning in human heart muscle[J].J Am Coll Cardiol,2000,(36):2296-2302.
[2]Bell RM,Yellon DM.Bradykinin limits infarction when administered as an adjunct to reperfusion in mouse heart:the role of P18K, Akt and eNOS[J].J Mol Cell Cardiol,2003,(35):185-193.
[3]Cohen MV,Downey JM.Adenosine:trigger and mediator of cardioprotection[J].Basic Res Cardiol,2008,(103):203-215.
[4]Gerczuk PZ,Kloner RA.An update on cardioprotection: a review of the latest adjunctive therapies to limit myocardial infarction size in clinical trials[J].J Am Coll Cardiol,2012,(59):969-978.
[5]Liu SQ,Wu YH.Liver cell-mediated alleviation of acute ischemic myocardial injury[J].Front Biosci (Elite Ed),2010,(2):711-724.
[6]Nishimura T,Nakatake Y,Konishi M,et al.Identification of a novel FGF, FGF-21, preferentially expressed in the liver[J].Biochim Biophys Acta,2000,(1492):203-206.
[7]DeBosch BJ,Muslin AJ.Insulin signaling pathways and cardiac growth[J].J Mol Cell Cardiol,2008,(44):855-864.
[8]Detillieux KA,Sheikh F,Kardami E,et al.Biological activities of fibroblast growth factor-2 in the adult myocardium[J].Cardiovasc Res,2003,(57):8-19.
[9]Gerber HP,McMurtrey A,Kowalski J,et al.Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 30-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation[J].J Biol Chem,1998,(273):30336-30343.
[10]Hausenloy DJ,Yellon DM.Cardioprotective growth factors[J].Cardiovascular Research,2009,(83):179-194.
[11]House SL,Bolte C,Zhou M,et al.Cardiac-specific overexpression of fibroblast growth factor-2 protects against myocardial dysfunction and infarction in a murine model of low-flow ischemia[J].Circulation,2003,(108):3140-3148.
[12]Htun P,Ito WD,Hoefer IE,et al.Intramyocardial infusion of FGF-1 mimics ischemic preconditioning in pig myocardium[J].J Mol Cell Cardiol,1998,(30):867-877.
[13]Jiang ZS,Srisakuldee W,Soulet F,et al.Non-angiogenic FGF-2 protects the ischemic heart from injury,in the presence or absence of reperfusion[J].Cardiovasc Res,2004,(62):154-166.
[14]Kawata H,Yoshida K,Kawamoto A,et al.Ischemic preconditioning upregulates vascular endothelial growth factor mRNA expression and neovascularization via nuclear translocation of protein kinase C in the rat ischemic myocardium[J].Circ Res,2001,(88):696-704.
[15]Luo Z,Diaco M,Murohara T,et al.Vascular endothelial growth factor attenuates myocardial ischemia-reperfusion injury[J].Ann Thorac Surg,1997,(64):993-998.
[16]Sack MN,Yellon DM.Insulin therapy as an adjunct to reperfusion after acute coronary ischemia:a proposed direct myocardial cell survival effect independent of metabolic modulation[J].J Am Coll Cardiol,2003,(41):1404-1407.
[17]Suleiman MS,Singh RJ,Stewart CE.Apoptosis and the cardiac action of insulin-like growth factor I[J].Pharmacol Ther,2007,(114):278-294.
[18]Virag JA,Rolle ML,Reece J,et al.Fibroblast growth factor-2 regulates myocardial infarct repair:effects on cell proliferation,scar contraction,and ventricular function[J].Am J Pathol,2007,(171):1431-1440.
[19]Yamamura T,Otani H,Nakao Y,et al.IGF-I differentially regulates Bcl-xL and Bax and confers myocardial protection in the rat heart[J].Am J Physiol Heart Circ Physiol,2001, 280:H1191-H1200.
[20]Yamashita K,Kajstura J,Discher DJ,et al.Reperfusion-activated Akt kinase prevents apoptosis in transgenic mouse hearts overexpressing insulin-like growth factor-1[J].Circ Res,2001,(88):609-614.
[21]Ahn A,Frishman WH,Gutwein A,et al.Therapeutic angiogenesis: a new treatment approach for ischemic heart disease—part I[J].Cardiol Rev,2008,(16):163-171.
[22]Leri A,Kajstura J,Anversa P.Role of cardiac stem cells in cardiac pathophysiology:a paradigm shift in human myocardial biology[J].Circ Res,2011,(109):941-961.
[23]Torella D,Ellison GM,Karakikes I,et al.Growth-factor-mediated cardiac stem cell activation in myocardial regeneration[J].Nature Clinical Practice Cardiovascular Medicine,2007,4(suppl 1):S46-S51.
[24]Iwakura A,Shastry S,Luedemann C,et al.Estradiol enhances recovery after myocardial infarction by augmenting incorporation of bone marrow-derived endothelial progenitor cells into sites of ischemia-induced neovascularization via endothelial nitric oxide synthase-mediated activation of matrix metalloproteinase-9[J].Circulation,2006,(113):1605-1614.
[25]Kucia M,Dawn B,Hunt G,et al.Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction[J].Circ Res,2004,(95):1191-1199.
[26]Orlic D,Kajstura J,Chimenti S,et al.Mobilized bone marrow cells repair the infarcted heart, improving function and survival[J].PNAS,2001,(98):10344-10349.
[27]Shintani S,Murohara T,Ikeda H,et al.Mobilization of endothelial progenitor cells in patients with acute myocardial infarction[J].Circulation,2001,(103):2776-2779.
[28]Liu SQ,Ren YP,Zhang L-Q,et al.Cardioprotective proteins upregulated in the liver in response to experimental myocardial ischemia[J].Am J Physiol Heart and Circ,2012,(303):H1446-1458.
[29]Liu SQ,Tefft BJ,Liu C,et al.Regulation of hepatic cell mobilization in experimental myocardial ischemia[J].Cell Mol Bioeng,2011,(4):693-707.
[30]Liu SQ,Tefft BJ,Roberts D,et al.Cardioprotective mechanisms activated in response to myocardial ischemia[J].Mol Cell Biomech,2011,(8):319-338.
[31]Liu SQ,Wu YH.Potential cardioprotective role of liver cellsecreted factors in myocardial ischemia[J].Current Topics in Biochemical Research,2009,(11):65-77.
[32]Fournier T,Najet Medjoubi-N,Dominique Porquet.Alpha-1-acid glycoprotein[J].Biochimica et Biophysica Acta,2000,(1482):157-171.
[33]Lainé E,Couderc R,Roch-Arveiller M,et al.Modulation of human polymorphonuclear neutrophil functions by -1-acid glycoprotein[J].Inflammation,1990,(14):1-9.
[34]Andersen P,Eika C.Thrombin-,epinephrine- and collageninduced platelet aggregation inhibited by 1-acid glycoprotein[J].Scand J Haematol,1980,(24):365-372.
[35]Su SJ,Yang BC,Wang YS,et al._1-Acid glycoprotein-induced tumor necrosis factor-αsecretion of human monocytes is enhanced by serum binding proteins and depends on protein tyrosine kinase activation[J].Immunopharmacology,1999, (41):21-29.
[36]Liu HM,Takagaki K,Schmid K.In vitro nerve-growthpromoting activity of human plasma 1-acid glycoprotein[J].J Neurosci Res,1988,(20):64-72.
[37]Ikeya M,Kawada M,Kiyonari H,et al.Essential pro-Bmp roles of crossveinless 2 in mouse organogenesis[J].Developme nt,2006,(133):4463-4473.
[38]Moser M,Olav Binder,Yaxu Wu,et al.BMPER,a Novel Endothelial Cell Precursor-Derived Protein,Antagonizes Bone Morphogenetic Protein Signaling and Endothelial Cell Differentiation[J].Mol Cell Biol,2003,(23):5664-5679.
[39]Binnerts ME,Wen X,Cante-Barrett K,et al.Human Crossveinless-2 is a novel inhibitor of bone morphogenetic proteins[J].Biochem Biophys Res Commun,2004,(315):272- 280.
[40]Coles E,Christiansen J,Economou A,et al.A vertebrate crossveinless 2 homologue modulates BMP activity and neural crest cell migration[J].Development,2004,(131):5309-5317.
[41]Kamimura M,Matsumoto K,Koshiba-Takeuchi K,et al.Vertebrate crossveinless 2 is secreted and acts as an extracellular modulator of the BMP signaling cascade[J].Dev Dyn,2004,(230):434-445.
[42]Ralston A,Blair SS.Long-range Dpp signaling is regulated to restrict BMP signaling to a crossvein competent zone[J].Dev Biol,2005,(280):187-200.
[43]Rentzsch F,Zhang J,Kramer C,et al.Crossveinless 2 is an essential positive feedback regulator of Bmp signaling during zebrafi sh gastrulation[J].Development,2006,(133):801-811.
[44]Kelley R,Ren R,Pi X,et al.A concentration-dependent endocytic trap and sink mechanism converts Bmper from an activator to an inhibitor of Bmp signaling[J].J Cell Biol,2009,(184):597-609.
[45]Fukumoto S.Actions and mode of actions of FGF19 subfamily members[J].Endocrine Journal,2008,(55):23-31.
[46]Ryde′n M.Fibroblast growth factor 21:an overview from a clinical Perspective[J].Cell Mol Life Sci,2009,(66):2067-2073.
[47]Dostálová I,Haluzíková D,Haluzík M.Fibroblast Growth Factor 21:A Novel Metabolic Regulator With potential Therapeutic Properties in Obesity/Type 2 Diabetes Mellitus[J].Physiol Res,2009,(58):1-7.
[48]Itoh N,Ornitz DM.Evolution of the Fgf and Fgfr gene families[J].Trends Genet,2004,(20):563-569.
[49]Badman MK,Pissios P,Kennedy AR,et al.Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states[J].Cell Metab,2007, (5):426-437.
[50]Guerre-Millo M,Gervois P,Raspé E,et al.Peroxisome proliferatoractivated receptor alpha activators improve insulin sensitivity and reduce adiposity[J].J Biol Chem,2000,(275):16638-16642.
[51]Hotta Y,Nakamura H,Konishi M,et al.Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver[J].Endocrinology,2009,(150):4625-4633.
[52]Inagaki T,Dutchak P,Zhao G.Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21[J].Cell Metab,2007,(5):415-425.
[53]Kharitonenkov A,Shiyanova TL,Koester A,et al.FGF-21 as a novel metabolic regulator[J].J Clin Invest,2005,(115):1627-1635.
[54]Hayes NVL,RJ Newsam,AJ Baines,et al.Characterization of the cell membrane-associated products of the Neuregulin 4 gene[J].Oncogene,2008,(27):715-720.
[55]Falls DL.Neuregulins:functions,forms,and signaling strategies[J].Experimental Cell Research,2003,(284):14-30.
[56]Sands B E,Podolsky D K.The trefoil peptide family[J].Annu Rev Physiol,1996,(58):253-273.
[57]Wong WM,Poulsom R,Wright NA.Trefoil peptides[J].Gut,1999,(44):890-895.
[58]Liu SQ,Tefft BJ,Kharitonenkov A,et al.Fibroblast growth factor 21 mediated protection of ischemic myocardium[J].Circ Res,2011,(109):AP278(abstract).
[59]Liu SQ,Liu C,Zhang B,et al.Cardioprotective role of ischemiainduced trefoil factor 3[J].Circulation,2011,(124):A13509(abstract).
[60]Gorreta F,Carbone W,Barzaghi D.Genomic profiling:cDNA arrays and oligoarrays[J].Methods Mol Biol,2012,(823):89-105.
[61]Manning M,Hudgins L,Professional Practice and Guidelines Committee.Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities[J].Genet Med,2010,(12):742-745.
[62]Bendall SC,Nolan GP,Roederer M,et al.A deep profiler's guide to cytometry[J].Trends Immunol,2012,(33):323-332.
[63]Chattopadhyay PK,Roederer M.Cytometry:today's technology and tomorrow's horizons[J].Methods,2012,(57):251-258.
[64]Virgo PF,Gibbs GJ.Flow cytometry in clinical pathology[J].Ann Clin Biochem,2012,(49):17-28.
[65]Fazel SS,Chen L,Angoulvant D,et al.Activation of c-kit is necessary for mobilization of reparative bone marrow progenitor cells in response to cardiac injury[J].FASEB J,2008,(22):930-940.
[66]Feingold KR,Grunfeld C,Heuer JG,et al.FGF21 is increased by inflammatory stimuli and protects leptin-deficient ob/ob mice from the toxicity of sepsis[J].Endocrinology,2012,(153):2689-2700.
[67]Ferreira-Martins J,Ogórek B,Cappetta D,et al.Cardiomyogenesis in the developing heart is regulated by c-kit-positive cardiac stem cells[J].Circ Res,2012,(110):701-715.
[68]Fryer RM,Hsu AK,Gross GJ.ERK and p38 MAP kinase activation are components of opioid-induced delayed cardioprotection[J].Basic Res Cardiol,2001,(96):136-142.
[69]Harari D,Tzahar E,Romano J,et al.Neuregulin-4: a novel growth factor that acts through the ErbB-4 receptor tyrosine kinase[J].Oncogene,1999,(18):2681-2689.
[70]Ibrahimi OA,Zhang F,Hrstka SC,et al.Kinetic model for FGF,FGFR,and proteoglycan signal transduction complex assembly[J].Biochemistry,2004,(43):4724-4730.
[71]Kharitonenkov A.FGFs and metabolism[J].Curr Opin Pharmacol,2009,(9):805-810.
[72]Lovén J,Orlando DA,Sigova AA,et al.Revisiting global gene expression analysis[J].Cell,2012,(151):476-482.
[73]Mohammadi M,Olsen SK,Ibrahimi OA.Structural basis for fibroblast growth factor receptor activation[J].Cytokine Growth Factor Rev,2005,(16):107-137.
[74]Murphy E.Primary and secondary signaling pathways in early preconditioning that converge on the mitochondria to produce cardioprotection[J].Circ Res,2004,(94):7-16.
[75]van der Westhuyzen DR,de Beer FC,Webb NR.HDL cholesterol transport during inflammation[J].Curr Opin Lipidol, 2007,(18):147-151.
[76]Wente W,Efanov AM,Brenner M,et al.Fibroblast growth factor-21 improves pancreatic-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways[J].Diabetes,2006,(55):2470-2478.
[77]Zhang X,Ibrahimi OA,Olsen SK,et al.Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family[J].J Biol Chem,2006,(281):15694-15700.
[78]Zhao Y,Dunbar JD,Kharitonenkov A.FGF21 as a therapeutic reagent[J].Adv Exp Med Biol,2012,(728):214-28.