• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of metastasis-associated genes in colorectal cancer through an integrated genomic and transcriptomic analysis

    2013-01-08 11:23:20XiaoboLiSihuaPeng
    Chinese Journal of Cancer Research 2013年6期

    Xiaobo Li,Sihua Peng

    1Department of Computer Science and Technology,College of Engineering,Lishui University,Lishui 323000,China; 2School of Science and Technology,Zhejiang International Studies University,Hangzhou 310012,China; 3Department of Biological Technology,School of Fisheries and Life Science,Shanghai Ocean University,Shanghai 201306,China

    Introduction

    Colorectal cancer (CRC) is one of the most common types of cancer.In 2007,it was estimated that nearly 1.2 million new cases of CRC were diagnosed throughout the world,and about 630,000 deaths were estimated to occur from CRC,accounting for 8% of all cancer deaths (1).The vast majority of CRC deaths are due to the metastasis.CRC is highly curable when it is diagnosed at an early stage.However,CRC is less likely to be curable when it is detected at an advanced stage (when distant metastasis occurs).When CRC is confined to the colon or rectum,the 5-year survival may be as high as 90%.The 5-year survival rate is 68% for CRC patients who are diagnosed at the regional stage,while for patients with metastasis,is as much lower as 11% (2).It is estimated that approximately 60%CRC patients will eventually develop with metastasis (3).Thus,identification of CRC metastasis genes is one of the most important issues in CRC research.

    DNA copy number changes can have a great impact on oncogenes and tumor suppressor genes (4).DNA copy number amplification will enhance the product or activity of oncogenes,and DNA copy number deletion may lead to inactivation of tumor suppressor genes.Numerous studies have revealed that DNA copy number changes have a direct role on gene expression values.Hymanet al.(5) compared DNA copy number and expression levels of the genes in breast cancer,and found that both high-level and low-level changes of DNA copy number have a great impact on gene expression values,with 44% of the highly amplified genes being overexpressed,and 10.5% of the overexpressed genes showing an increase in gene copy number.Tsafriret al.(6)investigated the relationships between DNA copy number and gene expression levels in CRC,and showed that changes in expression level are correlated with alterations in DNA content across many large regions of the genome.

    Comparative genomic hybridization (CGH) is a powerful method for molecular cytogenetic analysis of DNA copy number changes (7).CGH technology can detect either chromosomal gains or chromosomal losses across the whole genome.In our previous study (8),15 important chromosomal aberration sites,including 6 most common gains of chromosomal regions of 7p,7q11-32,8q,13q,20p and 20q,and 9 most common losses of 1p13-36,4p15,4q33-34,8p12-23,15q13-14,15q24-25,17p,18p and 18q,were indentified in CRC.

    Due to the rapid advance of microarray techniques,large amounts of microarray data have been deposited into public databases like Gene Expression Omnibus (GEO) (9),and the analysis of these data is usually limited to one single platform at a time.However,recent years have seen a few studies to conduct integrated analysis across multiple platforms (10-13).In this study,for the purpose of mining CRC metastasis-related genes,we present an integrated analysis of microarray data,by combining with evidence acquired from CGH data.

    Materials and methods

    Data

    Gene expression profile data and associated clinical information of patients were obtained at GEO (9) website(http://www.ncbi.nlm.nih.gov/geo/,Series GSE2109).Samples of pathological stage 0 or 1 were treated as earlystage CRC,and samples of pathological stage 4 were treated as late-stage CRC.We obtained 55 early-stage primary CRC samples (pathological stage: 0 or 1; Group 1),56 late-stage primary CRC samples (pathological stage: 4;Group 2),and 34 colorectal metastatic cancer (Group 3).The 34 metastatic sites include liver 26,lung 4,omentum 2,peritoneum 1 and abdominal wall mass 1 (Table S1) (14).

    Group 1vs.Group 2 was combined into PRI data set,which was used to classify between early-stage primary CRC and late-stage primary CRC.Group 2vs.Group 3 was used to classify between late-stage primary CRC and colorectal metastatic cancer,and was joined into META data set.

    All samples from the GSE2109 database are detected by Affymetrix Human Genome U133 Plus 2.0 arrays containing 54,675 probes.The gene expression values obtained from the database site have been calculated and normalized by Microarray Suite 5.0 (MAS5.0,Affymetrix,Inc.).In order to make distributions of each sample identical,the quantile algorithm (15) was used for further normalization (14).

    Integrated genomic and transcriptomic analysis

    The information obtained from CGH analysis was used for integrated genomic and transcriptomic analysis (8).Since the six most important amplified chromosomal regions of 7p,7q11-32,8q,13q,20p and 20q,and the 9 most important deleted chromosomal regions of 1p13-36,4p15,4q33-34,8p12-23,15q13-14,15q24-25,17p,18p and 18q were determined in our previous study,the above regions were further investigated to identify metastasisrelated genes in CRC.The integrated analysis is base on the assumption that oncogenes are present in chromosomal amplification regions,while tumor suppressor genes being located in chromosomal deletion fragments (16).

    Gene expression profile data were analyzed to identify metastasis-related genes in CRC.The workflow diagram of integrated analysis of genomic and transcriptomic data is shown inFigure 1: fi rstly,Significant Analysis of Microarray(SAM) (17) is used to detect significantly differentially expressed genes across the whole genome.Next,the significantly differentially expressed genes located in the important chromosomal aberration regions are selected,and we choose the genes whose expression changes and copy number changes are consistent.In the chromosomal amplification sites,the up-regulated genes are selected,and the down-regulated genes are selected in the chromosomal deletion sites.The selected genes are called as the genomic and transcriptomic overlapping genes (overlapping genes).In the third step,the overlapping gene sets are analyzed by using the Database for Annotation,Visualization and Integrated Discovery (DAVID) (18,19).Finally,a gene selection algorithm is employed to identify metastasisassociated genes in CRC.

    Figure 1 Workflow diagram of integrated analysis of genomic and transcriptomic data.

    SAM

    SAM is a statistical method proposed by Tusheret al.(17)in 2001,which is mainly used for determining whether the changes in gene expression are statistically significant.The SAM package is available at the following website: http://www-stat.stanford.edu/~tibs/SAM/.

    SAM identifies significant genes by gene specifict-test,and it uses non-parametric statistical methods when the data may not follow a normal distribution.SAM uses repeated permutations of the data to determine whether the expression of any genes was significantly associated with the response variable.The use of permutation-based method can avoid the parametric assumptions of the distribution of single genes,which is the advantage of the method compared to other statistical techniques assuming the equal variance or gene independence (17).

    SAM calculates the valuediof genei,and this value is used to measure the strength of the relationship between gene expression and the response variable.The valuediis calculated as follows (20):

    whereriis the linear regression coefficient of genei,siis the standard error ofri,s0is an exchangeability factor,andnis the number of genes.

    SAM uses false discovery rate (FDR) to estimate the number of falsely significant genes.The formula is as follows (20):

    where the numerator of the formula is median (or 90th percentile) of the number of falsely called genes,and the denominator is the number of obtained significant genes.Generally,FDR is controlled less than 5%.SAM uses q-value to determine the lowest FDR,which is similar to the well-known P-value,but modified under multiple-testingsituations.The q-value measures the significance of genei,and the corresponding q-value decreases asdiincreases (20).

    Table 1 Number of significantly up-regulated or downregulated probes in the 15 important chromosomal aberration regions in PRI data set

    Enrichment analysis

    The DAVID (18,19) is utilized to analyze enriched gene ontology and pathway for overlapping gene sets.The Functional Annotation Chart tool is used to discover enriched annotations.The Functional Annotation Clustering tool is employed to cluster the related functional annotations into groups.

    Gene selection algorithm

    Gene selection procedure is conducted on the overlapping gene sets.SVM-T-RFE gene selection algorithm (14) is applied to generate ranked gene set,where the gene scores rank from high to low.The number of gene sets is reduced from original number to 1,and the leave-one-out crossvalidation (LOOCV) method is used to assess performance of the classifiers.The gene set with the least number and highest accuracy is chosen as the minimum gene set.

    Results

    Overlapping gene sets of PRI and META data sets

    SAM analysis was conducted on PRI data sets,unpaired two-samplet-test was used,permutation number was set to 100,delta=0.866,and FDR was set to 4.82%.Totally,801 significantly up-regulated probes and 379 significantly down-regulated probes were screened out between earlystage primary CRC and late-stage primary CRC.Gene expression level changes of the significantly up-regulated or down-regulated probes in 15 important chromosomal aberration regions were analyzed (Table 1).It is worth noting that there were more significantly up-regulated probes in the chromosomal amplified regions (89vs.10),and more significantly down-regulated probes in the chromosomal deleted regions (72vs.62).The difference between the two groups were statistically significant as determined by the fisher’s exact test (two-tailed,P=1.045e-12).The results show that an increase or decrease of genomic DNA copy number has a direct impact on the gene expression levels.

    SAM analysis was also conducted on META data sets,unpaired two-samplet-test was used,permutation number was set to 100,delta=0.951,and FDR was set to 4.59%.T otally,892 significantly up-regulated probes and 48 significantly downregulated probes were detected between late-stage primary CRC and colorectal metastatic cancer.Gene expression level changes of the significantly up-regulated or down-regulated probes in 15 important chromosomal aberration regions were analyzed(Table 2).There was no statistically significant difference in upor down-regulated probes between chromosomal amplified sites and deleted sites as determined by the fi sher’s exact test (twotailed,P=0.319).It is speculated that other genomic alterations,such as point mutations,may have an impact on the expression value changes,and these changes cannot be detected by using CGH technology.No significantly down-regulated genes were found in certain chromosomal amplified regions,such as +13q,in both PRI and META data sets.

    The overlapping gene sets were selected in which the gene expression changes and copy number changes were consistent.In other word,up-regulated genes were selected in chromosomal amplification sites,and down-regulated genes were selected in chromosomal deletion sites.The overlapping gene sets were obtained in PRI data sets (Tables 3,4) and META data sets (Tables 5,6),respectively.

    Enrichment analysis

    DAVID database was used to analyze the overlapping genesets in PRI and META data sets.The Functional Annotation Chart tool was applied to analyze enriched annotations.Thirty-seven significant gene ontology and pathway (EASE score <0.05) were identified in the overlapping gene list of PRI data sets,and a detailed list is shown inTable S2.The top three significant gene annotations include organelle membrane (GO:0031090),organelle part (GO:0044422),and cellular protein complex assembly (GO:0043623).In the overlapping gene list of META data sets,79 significant gene ontology and pathway (EASE score <0.05) were identified,and a detailed list is shown inTable S3.The top three significant gene annotations include regulation of response to external stimulus (GO:0032101),extracellular space (GO:0005615),and regulation of signal transduction(GO:0009966).

    Table 2 Number of significantly up-regulated or downregulated probes in the 15 important chromosomal aberration regions in META data set

    The Functional Annotation Clustering tool was applied to cluster functionally related annotations into a group,and the default settings were used (classification stringency is medium).In the overlapping gene sets of PRI data sets,the most enriched cluster is biological process of cellular component organization and cellular component biogenesis,and a detailed list is shown inTable S4(enrichment score >1.5).The most enriched cluster in the overlapping gene sets of META data sets is cellular components of extracellular region,and a detailed list is shown inTable S5(enrichment score >1.5).

    Table 3 Overlapping gene sets of PRI data set (up-regulated probes)

    Table 3 (continued)

    Table 3 (continued)

    Table 4 Overlapping gene sets of PRI data set (down-regulated probes)

    Table 4 (continued)

    Table 4 (continued)

    Table 5 Overlapping gene sets of META data set (up-regulated probes)

    Table 5 (continued)

    Table 5 (continued)

    Table 6 Overlapping gene sets of META data set (down-regulated probes)

    SVM-T-RFE gene selection algorithm

    SVM-T-RFE gene selection algorithm was applied to select informative genes in PRI data set.The initial overlapping gene sets (PRI-GS-OL) of PRI data set contained 161 probes.SVM-T-RFE gene selection algorithm generates ranked gene set,where the genes rank from high to low score.The number of genes was reduced from 161 to 1,and LOOCV method was used to assess the performance of the classifier.Parameterθin SVM-T-RFE gene selection algorithm was selected from finite set {0,0.01,0.02,...0.98,0.00,1.0},where each element increases from 0 to 1 by a step of 0.01.When parameterθwas set to 0.51,a minimum gene set was obtained with the minimum number (14) of genes,and the highest classification accuracy (100%) (Figure 2).

    Table 7shows the minimum gene set of PRI data set.Secreted frizzled-related protein 4 (SFRP4) (21),and RAB27B,member RAS oncogene family (RAB27B) (22,23)were reported to be associated with CRC or its metastasis.

    SVM-T-RFE gene selection algorithm was also carried out to select informative genes in META data set.The initial overlapping gene sets (META-GS-OL) contained 70 probes.When parameterθwas set to 0.36,a minimum gene set was obtained with the minimum number (14) of genes,and the highest classification accuracy (100%) (Figure 3).

    Table 8gives the gene list of the minimum gene set in META data set.Evidence shows that hepatocyte growth factor (HGF) (24),and cytochrome P450,family 3,subfamily A,polypeptide 4 (CYP3A4) (25) are related to CRC or its metastasis.

    Discussion

    In recent years,due to the rapid development of molecular biology experimental techniques,a large amount of data has been accumulated,including genome,transcriptome and proteome detection platform.Previous studies often focus on data from a single platform,and rarely address the problem of integration of data from a variety of platforms.In this study,we present an integrated strategy,by combining microarray data with CGH information,in an attempt to indentify CRC metastasis-related genes.

    Figure 2 Prediction accuracy of the overlapping gene sets (PRIGS-OL) obtained from PRI data set.The probe number was reduced from 161 to 1.

    Figure 3 Prediction accuracy of the overlapping gene sets (METAGS-OL) obtained from META data set.The probe number was reduced from 70 to 1.

    Table 7 The minimum gene set selected in PRI dataset (gene scores rank from high to low)

    In the minimum gene sets selected from PRI data set,at least two genes were found to have direct evidence of the associations with CRC.SFRP4,located in the region of 7p14.1,is a member of the secreted frizzled related proteins(sFRPs) family.The sFRPs are able to bind and inhibit Wnt signalling pathways.SFRP4 expression was reported to be upregulated in CRC (21),and the up-regulation level was found to be 2.7 folds in PRI data set.RAB27B,whose chromosomal location is on 18q21.2,is a member of RAS oncogene family.RAB27B was reported to be associated with poor prognosis in human breast tumors,and crucial for the invasiveness andmetastasis of breast cancer cell lines (22).Donget al.(23)reported that RAB27B may serve as a valuable prognostic predictor for hepatocellular carcinoma patients,and they also found a close relationship between RAB27B expression and clinicopathological characteristics and prognosis in CRC.

    Table 8 The minimum gene set selected in META dataset (gene scores rank from high to low)

    At least two genes in the minimum gene sets of META data set were found to be associated with CRC.HGF,located in 7q21.1,regulates cell proliferation,migration,and morphogenesis by binding to the receptor of protooncogene c-met.Previous studies indicated that the HGF/Met pathway plays a role in the progression of CRC,and c-met gene overexpression contributes to the metastatic phenotype of CRC (24).CYP3A4,whose chromosomal location is also on 7q21.1,is a member of the cytochrome P450 superfamily,which catalyzes many reactions involved in drug metabolism as well as the synthesis of cholesterol,steroids and other lipids.CYP3A4 was reportedly the highest frequency of strong immunoreactivity of P450 in normal colon and there was significant correlation between its immunoreactivity and CRC stage (25).

    Our results demonstrated that integrated analysis is an effective strategy for mining cancer-associated genes.There are corresponding oncogenes and tumor suppressor genes in chromosomal amplification and deletion regions.CRC metastasis,as the advanced stage of colorectal tumorigenesis,is a complicated,multi-step biological process.CRC metastasis has rarely been systematically addressed by previous studies,and the molecular mechanism remains far from being completely elucidated.Although many of the selected genes need to be validated in further molecular experiments,the preliminary results show that multiple oncogenes and tumor suppressor genes participate in the process of CRC metastasis.Moreover,the gene expression profiles of our study were downloaded from one single data set (GSE2109),and heterogeneous microarray data sets can be combined to discover metastasis-related genes in CRC in the future work (26).In addition,network-based approach can be used to integrate genomic,transcriptomic,and proteomic data,in an attempt to pinpoint significant genes and highlight the molecular mechanisms underlying CRC metastasis (27).In conclusion,in-depth study of these genes will lead to a better understanding of the molecular mechanisms of CRC metastasis and provide potential biomarkers and therapeutic targets for CRC metastasis.

    Acknowledgements

    This study was supported by a grant from the National Natural Science Foundation of China (Grant No.61373057),and a grant from the Zhejiang Provincial Natural Science Foundation of China (Grant No.Y1110763).

    Disclosure:The authors declare no conflict of interest.

    1.ACS.Global Cancer Facts and Figures 2007.Atlanta:American Cancer Society; 2007.

    2.ACS.Colorectal Cancer Facts and Figures 2008-2010.Atlanta: American Cancer Society; 2010.

    3.Boige V,Malka D,Elias D.Hepatic arterial infusion of oxaliplatin and intravenous LV5FU2 in unresectable liver metastases from colorectal cancer after systemic chemotherapy failure.Ann Surg Oncol 2008;15:219-26.

    4.Pollack JR,Sorlie T,Perou CM,et al.Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors.Proc Natl Acad Sci U S A 2002;99:12963-8.

    5.Hyman E,Kauraniemi P,Hautaniemi S,et al.Impact of DNA amplification on gene expression patterns in breast cancer.Cancer Res 2002;62:6240-5.

    6.Tsafrir D,Bacolod M,Selvanayagam Z,et al.Relationship of gene expression and chromosomal abnormalities in colorectal cancer.Cancer Res 2006;66:2129-37.

    7.Kallioniemi A,Kallioniemi OP,Sudar D,et al.Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors.Science 1992;258:818-21.

    8.Li X,Chen J,Lu BJ,et al.-8p12-23 and +20q Are Predictors of Subtypes and Metastatic Pathways in Colorectal Cancer: Construction of Tree Models Using Comparative Genomic Hybridization Data.OMICS 2011;15:37-47.

    9.Barrett T,Wilhite SE,Ledoux P,et al.NCBI GEO:archive for functional genomics data sets--update.Nucleic Acids Res 2013;41:D991-5.

    10.Natrajan R,Weigelt B,Mackay A,et al.An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like,HER2 and luminal cancers.Breast Cancer Res Treat 2010;121:575-89.

    11.Huang N,Shah PK,Li C.Lessons from a decade of integrating cancer copy number alterations with gene expression profiles.Brief Bioinform 2012;13:305-16.

    12.Curtis C,Shah SP,Chin SF,et al.The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups.Nature 2012;486:346-52.

    13.Rakosy Z,Ecsedi S,Toth R,et al.Integrative genomics identifies gene signature associated with melanoma ulceration.PLoS One 2013;8:e54958.

    14.Li X,Peng S,Chen J,et al.SVM-T-RFE: A novel gene selection algorithm for identifying metastasis-related genes in colorectal cancer using gene expression profiles.Biochem Biophys Res Commun 2012;419:148-53.

    15.Bolstad BM,Irizarry RA,Astrand M,et al.A comparison of normalization methods for high density oligonucleotide array data based on variance and bias.Bioinformatics 2003;19:185-93.

    16.Li XB.Mathematical modeling of carcinogenesis based on chromosome aberration data.Chin J Cancer Res 2009;21:240-6.

    17.Tusher VG,Tibshirani R,Chu G.Significance analysis of microarrays applied to the ionizing radiation response.Proc Natl Acad Sci U S A 2001;98:5116-21.

    18.Dennis G Jr,Sherman BT,Hosack DA,et al.DAVID:Database for annotation,visualization,and integrated discovery.Genome Biol 2003;4:p3.

    19.Huang W,Sherman BT,Lempicki RA.Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.Nat Protoc 2009;4:44-57.

    20.Chu G,Jun Li,Narasimhan B,et al.SAM Significance Analysis of Microarrays-Users guide and technical document.Available online: http://www-stat.stanford.edu/~tibs/SAM/sam.pdf

    21.Feng Han Q,Zhao W,Bentel J,et al.Expression of sFRP-4 and beta-catenin in human colorectal carcinoma.Cancer Lett 2006;231:129-37.

    22.Hendrix A,Maynard D,Pauwels P,et al.Effect of the secretory small GTPase Rab27B on breast cancer growth,invasion,and metastasis.J Natl Cancer Inst 2010;102:866-80.

    23.Dong WW,Mou Q,Chen J,et al.Differential expression of Rab27A/B correlates with clinical outcome in hepatocellular carcinoma.World J Gastroenterol 2012;18:1806-13.

    24.Di Renzo MF,Olivero M,Giacomini A,et al.Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer.Clin Cancer Res 1995;1:147-54.

    25.Kumarakulasingham M,Rooney PH,Dundas SR,et al.Cytochrome p450 profile of colorectal cancer:identification of markers of prognosis.Clin Cancer Res 2005;11:3758-65.

    26.Park PJ,Kong SW,Tebaldi T,et al.Integration of heterogeneous expression data sets extends the role of the retinol pathway in diabetes and insulin resistance.Bioinformatics 2009;25:3121-7.

    27.Shi M,Beauchamp RD,Zhang B.A network-based gene expression signature informs prognosis and treatment for colorectal cancer patients.PLoS One 2012;7:e41292.

    婷婷色综合大香蕉| 亚洲人成77777在线视频| 九色亚洲精品在线播放| 中文字幕精品免费在线观看视频| 久久热在线av| 久久人人爽av亚洲精品天堂| 多毛熟女@视频| www.熟女人妻精品国产| 国产高清videossex| 男女国产视频网站| 国产片内射在线| 日本猛色少妇xxxxx猛交久久| 夫妻午夜视频| av一本久久久久| 国产亚洲欧美精品永久| 又粗又硬又长又爽又黄的视频| 国产精品三级大全| 久久精品久久久久久噜噜老黄| 美女福利国产在线| 18在线观看网站| 夫妻性生交免费视频一级片| 久久久久久久久久久久大奶| 男女免费视频国产| 最近最新中文字幕大全免费视频 | 视频区图区小说| 国产成人精品无人区| 大话2 男鬼变身卡| 人成视频在线观看免费观看| 最近最新中文字幕大全免费视频 | 大片免费播放器 马上看| 男男h啪啪无遮挡| 国产成人精品久久二区二区免费| 丝袜美足系列| 午夜福利视频精品| 亚洲一区中文字幕在线| 少妇粗大呻吟视频| 国产在线视频一区二区| 日本一区二区免费在线视频| 日韩免费高清中文字幕av| 成人国产一区最新在线观看 | 午夜福利影视在线免费观看| 久久国产精品男人的天堂亚洲| 成在线人永久免费视频| 狂野欧美激情性xxxx| 欧美人与性动交α欧美软件| 欧美精品高潮呻吟av久久| 国产高清不卡午夜福利| 精品久久蜜臀av无| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品国产av在线观看| 亚洲黑人精品在线| 国产人伦9x9x在线观看| 亚洲专区国产一区二区| 在线精品无人区一区二区三| 91国产中文字幕| 久久午夜综合久久蜜桃| 一边亲一边摸免费视频| 可以免费在线观看a视频的电影网站| 9191精品国产免费久久| 天天影视国产精品| 国产精品 国内视频| www.精华液| 一边摸一边抽搐一进一出视频| 亚洲第一av免费看| 久久免费观看电影| 国产成人av激情在线播放| 丰满饥渴人妻一区二区三| 18禁国产床啪视频网站| 一区二区三区精品91| 亚洲欧洲精品一区二区精品久久久| 97人妻天天添夜夜摸| 新久久久久国产一级毛片| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲精品久久久久5区| 你懂的网址亚洲精品在线观看| 一本久久精品| 99久久99久久久精品蜜桃| 丰满饥渴人妻一区二区三| 免费少妇av软件| 国产一区有黄有色的免费视频| 蜜桃在线观看..| 久久国产精品大桥未久av| 汤姆久久久久久久影院中文字幕| 国产麻豆69| 中国国产av一级| netflix在线观看网站| 久热爱精品视频在线9| 成人国产一区最新在线观看 | 日本午夜av视频| 国产亚洲午夜精品一区二区久久| 精品国产国语对白av| 久久精品国产a三级三级三级| 女人久久www免费人成看片| 国产极品粉嫩免费观看在线| 最近手机中文字幕大全| 巨乳人妻的诱惑在线观看| 久久99一区二区三区| 久久久国产一区二区| 亚洲国产精品成人久久小说| 日本黄色日本黄色录像| 可以免费在线观看a视频的电影网站| 久久久久网色| 免费在线观看完整版高清| 欧美精品一区二区免费开放| 好男人视频免费观看在线| 欧美av亚洲av综合av国产av| a级毛片在线看网站| 伦理电影免费视频| 蜜桃国产av成人99| 亚洲九九香蕉| av一本久久久久| 亚洲精品国产区一区二| 免费女性裸体啪啪无遮挡网站| 大码成人一级视频| 国产亚洲一区二区精品| 人体艺术视频欧美日本| 制服人妻中文乱码| 亚洲av在线观看美女高潮| 你懂的网址亚洲精品在线观看| 大片电影免费在线观看免费| 国产亚洲一区二区精品| 欧美激情高清一区二区三区| 欧美国产精品一级二级三级| 亚洲国产欧美日韩在线播放| 少妇裸体淫交视频免费看高清 | 亚洲免费av在线视频| 一级毛片女人18水好多 | 成人三级做爰电影| 韩国高清视频一区二区三区| 国产av精品麻豆| 少妇的丰满在线观看| 最近手机中文字幕大全| 黑人巨大精品欧美一区二区蜜桃| 色94色欧美一区二区| 国产成人影院久久av| 啦啦啦在线观看免费高清www| 黄色视频在线播放观看不卡| 欧美日本中文国产一区发布| 婷婷丁香在线五月| 国产精品99久久99久久久不卡| 亚洲成人国产一区在线观看 | 波多野结衣av一区二区av| 欧美精品一区二区大全| 黑人欧美特级aaaaaa片| 亚洲欧美激情在线| 精品亚洲成a人片在线观看| 久久影院123| 国产日韩一区二区三区精品不卡| 中文字幕av电影在线播放| 久久久精品区二区三区| 欧美精品高潮呻吟av久久| 男女床上黄色一级片免费看| 黄频高清免费视频| 亚洲人成电影免费在线| 中文字幕最新亚洲高清| 一边摸一边抽搐一进一出视频| 亚洲图色成人| 免费在线观看完整版高清| 亚洲国产欧美一区二区综合| 操美女的视频在线观看| 久久久久久久精品精品| 老司机在亚洲福利影院| 亚洲av成人不卡在线观看播放网 | 在线观看一区二区三区激情| 巨乳人妻的诱惑在线观看| 97精品久久久久久久久久精品| 黄色怎么调成土黄色| 一边摸一边做爽爽视频免费| 91麻豆精品激情在线观看国产 | 天天躁夜夜躁狠狠躁躁| 免费av中文字幕在线| 一区二区三区四区激情视频| 男人舔女人的私密视频| 国产精品香港三级国产av潘金莲 | 啦啦啦视频在线资源免费观看| 超碰成人久久| 精品少妇一区二区三区视频日本电影| 午夜影院在线不卡| 老司机影院毛片| 国产极品粉嫩免费观看在线| 中文字幕最新亚洲高清| 不卡av一区二区三区| 久久久久久人人人人人| 欧美老熟妇乱子伦牲交| 日韩av在线免费看完整版不卡| 亚洲综合色网址| 亚洲欧美中文字幕日韩二区| 精品人妻一区二区三区麻豆| 夫妻性生交免费视频一级片| 国产成人av教育| 一区二区三区四区激情视频| 少妇粗大呻吟视频| 男人添女人高潮全过程视频| 精品少妇黑人巨大在线播放| 婷婷色麻豆天堂久久| 午夜av观看不卡| 国产片内射在线| 日韩 亚洲 欧美在线| av欧美777| 啦啦啦 在线观看视频| 飞空精品影院首页| 国产91精品成人一区二区三区 | 丝袜美足系列| 晚上一个人看的免费电影| 国产主播在线观看一区二区 | 亚洲精品国产色婷婷电影| 国产片特级美女逼逼视频| 亚洲国产毛片av蜜桃av| 久久中文字幕一级| 少妇人妻久久综合中文| 99国产精品99久久久久| 999久久久国产精品视频| 日韩熟女老妇一区二区性免费视频| 波多野结衣一区麻豆| 国产日韩一区二区三区精品不卡| 秋霞在线观看毛片| 两个人免费观看高清视频| 电影成人av| 欧美另类一区| 国产亚洲一区二区精品| 欧美精品一区二区大全| 99九九在线精品视频| 成人午夜精彩视频在线观看| 一级毛片 在线播放| 一边摸一边做爽爽视频免费| 纵有疾风起免费观看全集完整版| 大片免费播放器 马上看| 久久毛片免费看一区二区三区| 又大又黄又爽视频免费| 亚洲三区欧美一区| 大话2 男鬼变身卡| 国产免费一区二区三区四区乱码| 亚洲av美国av| 激情五月婷婷亚洲| 91字幕亚洲| 亚洲国产欧美一区二区综合| 国产免费一区二区三区四区乱码| 国产一区二区三区综合在线观看| 久久久国产一区二区| 18禁观看日本| 欧美成狂野欧美在线观看| av电影中文网址| 国产伦理片在线播放av一区| 大片电影免费在线观看免费| 午夜福利视频在线观看免费| 一区二区av电影网| 少妇 在线观看| 国产免费现黄频在线看| 91老司机精品| 蜜桃在线观看..| 国产成人欧美在线观看 | 色婷婷av一区二区三区视频| 飞空精品影院首页| 电影成人av| av国产久精品久网站免费入址| 久久亚洲国产成人精品v| 99热国产这里只有精品6| 亚洲欧美日韩另类电影网站| 成在线人永久免费视频| 国产1区2区3区精品| 午夜免费观看性视频| 欧美人与性动交α欧美精品济南到| 午夜福利视频精品| 欧美日本中文国产一区发布| 久久久精品94久久精品| 国产又爽黄色视频| 精品久久久久久电影网| 久久人人97超碰香蕉20202| 日韩一本色道免费dvd| 大片免费播放器 马上看| 亚洲男人天堂网一区| 一边亲一边摸免费视频| 搡老岳熟女国产| 汤姆久久久久久久影院中文字幕| 日韩 亚洲 欧美在线| 国产免费现黄频在线看| 国产激情久久老熟女| 久久精品久久精品一区二区三区| 久久九九热精品免费| 国产成人91sexporn| 天堂8中文在线网| 婷婷色av中文字幕| 免费高清在线观看日韩| 一边亲一边摸免费视频| 亚洲精品日本国产第一区| 亚洲少妇的诱惑av| 日本a在线网址| 啦啦啦在线观看免费高清www| 黄色视频在线播放观看不卡| 黄片小视频在线播放| 欧美精品一区二区免费开放| 99国产精品99久久久久| 免费黄频网站在线观看国产| 永久免费av网站大全| 精品一区二区三区av网在线观看 | 精品亚洲乱码少妇综合久久| 国产精品一区二区在线观看99| 日韩制服骚丝袜av| 久久国产精品影院| 欧美日本中文国产一区发布| www.熟女人妻精品国产| 黄色毛片三级朝国网站| 女人被躁到高潮嗷嗷叫费观| 一二三四社区在线视频社区8| 在线观看免费午夜福利视频| 亚洲成人手机| 巨乳人妻的诱惑在线观看| 日韩一本色道免费dvd| 黄片播放在线免费| 久久久精品区二区三区| 亚洲av电影在线进入| 婷婷丁香在线五月| 国产精品国产三级国产专区5o| 成人免费观看视频高清| 久热爱精品视频在线9| 亚洲专区国产一区二区| 黄色一级大片看看| 99精品久久久久人妻精品| 日韩免费高清中文字幕av| 精品人妻在线不人妻| 欧美日韩视频精品一区| av电影中文网址| 免费看不卡的av| 一区二区三区精品91| 久久精品国产综合久久久| 青春草视频在线免费观看| 日本av免费视频播放| 一本综合久久免费| 国产一卡二卡三卡精品| 日本wwww免费看| 国产精品99久久99久久久不卡| 亚洲国产日韩一区二区| 91麻豆av在线| 啦啦啦啦在线视频资源| 黑丝袜美女国产一区| av又黄又爽大尺度在线免费看| 精品国产超薄肉色丝袜足j| 美女脱内裤让男人舔精品视频| 欧美国产精品一级二级三级| 国产爽快片一区二区三区| 男女之事视频高清在线观看 | 99久久99久久久精品蜜桃| 两个人免费观看高清视频| 日本av免费视频播放| 免费在线观看视频国产中文字幕亚洲 | 国产高清不卡午夜福利| 国产精品亚洲av一区麻豆| 国产亚洲av高清不卡| 亚洲国产日韩一区二区| 成人手机av| 亚洲av美国av| 成人国产av品久久久| 热re99久久精品国产66热6| 国产不卡av网站在线观看| 中文欧美无线码| 中文字幕av电影在线播放| 男人舔女人的私密视频| 中国美女看黄片| 99九九在线精品视频| 亚洲国产毛片av蜜桃av| 国产成人精品在线电影| 搡老乐熟女国产| 久久国产精品男人的天堂亚洲| 精品久久久久久电影网| 欧美成人午夜精品| 国产精品一区二区在线观看99| 亚洲欧洲国产日韩| 老司机深夜福利视频在线观看 | 亚洲第一av免费看| 亚洲色图 男人天堂 中文字幕| 中文字幕精品免费在线观看视频| 亚洲,欧美精品.| 一本—道久久a久久精品蜜桃钙片| 欧美成人午夜精品| 国产熟女欧美一区二区| 国产高清videossex| 国产野战对白在线观看| 超色免费av| 精品久久久精品久久久| 亚洲精品一二三| 久久久久视频综合| 亚洲精品中文字幕在线视频| 少妇裸体淫交视频免费看高清 | 久久女婷五月综合色啪小说| 精品卡一卡二卡四卡免费| 老司机影院毛片| 午夜91福利影院| 美女脱内裤让男人舔精品视频| 一本综合久久免费| 在线看a的网站| 老司机亚洲免费影院| 满18在线观看网站| a 毛片基地| 纵有疾风起免费观看全集完整版| 亚洲五月色婷婷综合| 亚洲激情五月婷婷啪啪| 久久久久久免费高清国产稀缺| 久久99精品国语久久久| 女人被躁到高潮嗷嗷叫费观| 精品久久久久久电影网| 天天影视国产精品| 一级毛片电影观看| 男女床上黄色一级片免费看| 91精品国产国语对白视频| 午夜福利免费观看在线| 欧美人与性动交α欧美软件| 亚洲av欧美aⅴ国产| 97精品久久久久久久久久精品| 亚洲人成电影观看| 老汉色av国产亚洲站长工具| 久久久久久久精品精品| 亚洲成色77777| 一级毛片我不卡| 日本a在线网址| 9热在线视频观看99| 中国美女看黄片| 国产片特级美女逼逼视频| 亚洲黑人精品在线| 国产亚洲一区二区精品| 国产欧美日韩综合在线一区二区| 99久久人妻综合| 亚洲欧美成人综合另类久久久| 午夜免费成人在线视频| av又黄又爽大尺度在线免费看| 成年动漫av网址| 国产视频首页在线观看| 男女床上黄色一级片免费看| 91精品伊人久久大香线蕉| 亚洲九九香蕉| 日本欧美国产在线视频| 久久精品成人免费网站| 妹子高潮喷水视频| 亚洲人成电影免费在线| 日本91视频免费播放| 中文精品一卡2卡3卡4更新| 国产主播在线观看一区二区 | 成人免费观看视频高清| 亚洲自偷自拍图片 自拍| 精品福利永久在线观看| 亚洲人成77777在线视频| 色视频在线一区二区三区| 亚洲中文av在线| 一区二区三区乱码不卡18| 久久精品国产亚洲av高清一级| 欧美精品亚洲一区二区| 这个男人来自地球电影免费观看| 女人被躁到高潮嗷嗷叫费观| 亚洲av成人不卡在线观看播放网 | 久久青草综合色| 1024香蕉在线观看| 高清不卡的av网站| 叶爱在线成人免费视频播放| 欧美精品亚洲一区二区| 亚洲天堂av无毛| 91字幕亚洲| 亚洲精品乱久久久久久| 国产欧美日韩一区二区三 | 热re99久久国产66热| 你懂的网址亚洲精品在线观看| 丝袜脚勾引网站| 亚洲国产欧美一区二区综合| 美女视频免费永久观看网站| 一区二区av电影网| 国产精品香港三级国产av潘金莲 | 国产精品久久久人人做人人爽| 免费久久久久久久精品成人欧美视频| 国产91精品成人一区二区三区 | 少妇的丰满在线观看| 久久久精品免费免费高清| 我的亚洲天堂| 夫妻性生交免费视频一级片| 黄色视频在线播放观看不卡| 日本午夜av视频| 国产在线一区二区三区精| 精品国产一区二区久久| 在线观看人妻少妇| 国产人伦9x9x在线观看| 日韩熟女老妇一区二区性免费视频| 国产精品久久久久成人av| 交换朋友夫妻互换小说| 99热全是精品| 久久这里只有精品19| 男人添女人高潮全过程视频| 天堂8中文在线网| 亚洲av日韩精品久久久久久密 | 亚洲成色77777| 亚洲精品日本国产第一区| 国产黄频视频在线观看| 韩国精品一区二区三区| 欧美中文综合在线视频| 国产成人一区二区在线| 美国免费a级毛片| 亚洲一区二区三区欧美精品| 亚洲国产成人一精品久久久| 91麻豆av在线| 在线精品无人区一区二区三| 亚洲欧美清纯卡通| 久久天躁狠狠躁夜夜2o2o | av片东京热男人的天堂| 在线观看免费视频网站a站| 亚洲欧美日韩高清在线视频 | 亚洲男人天堂网一区| 国产免费一区二区三区四区乱码| 久久久亚洲精品成人影院| 性色av一级| 两人在一起打扑克的视频| h视频一区二区三区| 国产一区二区 视频在线| 免费高清在线观看日韩| 少妇 在线观看| 国产极品粉嫩免费观看在线| 日韩精品免费视频一区二区三区| 亚洲精品久久午夜乱码| 亚洲九九香蕉| 一区二区三区激情视频| 国产成人一区二区三区免费视频网站 | 黑丝袜美女国产一区| 欧美精品亚洲一区二区| 视频区图区小说| 在线观看免费视频网站a站| 国产99久久九九免费精品| 51午夜福利影视在线观看| 亚洲欧美一区二区三区国产| 国产成人av教育| 久久亚洲精品不卡| 国产1区2区3区精品| 交换朋友夫妻互换小说| 纯流量卡能插随身wifi吗| 久久久国产一区二区| 亚洲国产日韩一区二区| a级毛片黄视频| 美女主播在线视频| 日韩精品免费视频一区二区三区| 亚洲精品av麻豆狂野| 51午夜福利影视在线观看| 超碰97精品在线观看| 中文字幕色久视频| 欧美变态另类bdsm刘玥| 在线观看免费高清a一片| 国产女主播在线喷水免费视频网站| 婷婷成人精品国产| 一级毛片 在线播放| a级片在线免费高清观看视频| 国产成人精品久久二区二区免费| 亚洲精品自拍成人| 午夜免费成人在线视频| 亚洲国产精品一区三区| 美女脱内裤让男人舔精品视频| 亚洲欧美激情在线| 欧美黄色淫秽网站| 久热这里只有精品99| 亚洲精品国产色婷婷电影| 午夜福利免费观看在线| 秋霞在线观看毛片| 极品人妻少妇av视频| 1024香蕉在线观看| 亚洲精品国产av成人精品| 丝袜人妻中文字幕| 国产深夜福利视频在线观看| 色综合欧美亚洲国产小说| 19禁男女啪啪无遮挡网站| 女人爽到高潮嗷嗷叫在线视频| 1024视频免费在线观看| 国产日韩欧美亚洲二区| 国产激情久久老熟女| videosex国产| 午夜两性在线视频| 成年女人毛片免费观看观看9 | 七月丁香在线播放| 午夜免费男女啪啪视频观看| 女人爽到高潮嗷嗷叫在线视频| 国产精品av久久久久免费| 国产亚洲av高清不卡| 色婷婷av一区二区三区视频| 久久久久久人人人人人| av福利片在线| 日本五十路高清| 久久中文字幕一级| 亚洲av成人精品一二三区| 久久久久久人人人人人| 国产成人一区二区三区免费视频网站 | 国产成人a∨麻豆精品| 久久女婷五月综合色啪小说| 亚洲精品国产av成人精品| 国产成人精品无人区| 色精品久久人妻99蜜桃| 热re99久久精品国产66热6| 黄色片一级片一级黄色片| 亚洲国产毛片av蜜桃av| 国产精品 欧美亚洲| 国产精品二区激情视频| 啦啦啦视频在线资源免费观看| 欧美激情高清一区二区三区| 在现免费观看毛片| 亚洲激情五月婷婷啪啪| 飞空精品影院首页| 菩萨蛮人人尽说江南好唐韦庄| 日本91视频免费播放| 777米奇影视久久| 欧美老熟妇乱子伦牲交| 美女福利国产在线| 成年美女黄网站色视频大全免费| 精品福利观看| 亚洲精品自拍成人| 在线亚洲精品国产二区图片欧美| 免费不卡黄色视频| 日韩精品免费视频一区二区三区| 两个人看的免费小视频| 国产三级黄色录像| 欧美性长视频在线观看| 大香蕉久久成人网| 国产在线一区二区三区精| 成人国语在线视频| 两个人免费观看高清视频| 脱女人内裤的视频|