• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of chloride salt concentration on unconfined compression strength of cement-treated Lianyungang soft marine clay

    2013-01-08 08:39:27ZhangDingwenCaoZhiguoFanLibinDengYongfeng
    關(guān)鍵詞:年青外祖母男子

    Zhang Dingwen Cao Zhiguo Fan Libin Deng Yongfeng

    (School of Transportation, Southeast University, Nanjing 210096, China)

    Soft marine clay deposits around the coast of Lianyungang and Yancheng regions in Jiangsu province. Its natural water content varies from 50% to 110% and the liquidity indices of the marine clay are in the range of close to or more than one. In particular, the salt concentration is high in pore water of marine soft soil. Due to its very high water content, low shear strength and high salt concentration, the disposal of marine clay at construction sites is a challenge encountered by engineers. An improvement of the super soft soil within a short period to serve as a geomaterial is necessary in ocean and geotechnical engineering practise.

    The deep mixing method is an attractive ground improvement technique for high water content soft clay. In the deep mixing method, powder cement or slurry cement is injected into the natural soil at the required depth and a blade is pushed into the ground to mix the soil and cement. This technique has been increasingly used worldwide, especially in Europe, North America and Asia since its development in Sweden and Japan in 1970s[1]. The deep mixing method was introduced to China in the early 1980s. Because this technique can effectively reduce the compressibility and permeability and increase the strength of soft ground, it rapidly spread throughout China in the 1990s, especially for controlling seepage and as a cut-off barrier, reduction of settlement, prevention of sliding failure and increasing the bearing capacity of the ground[2-5].The bond strength of cement-treated soil is controlled by many factors such as soil gradation, types of clay minerals, organic matter, pH, slat concentration, mixing energy and so on. Numerous researchers have performed experimental studies on the fundamental mechanical properties and engineering behaviour of soil-cement in the past four decades[6-9].

    This study, therefore, aims to quantify the influence of the sodium chloride salt concentration on the strength of cement stabilized Lianyungang soft marine clays. Clay with various sodium chloride salt concentrations was prepared artificially and stabilized by ordinary Portland cement with different contents. A series of UCS tests were performed on cement stabilized clay specimens after desired curing periods. Based on the experimental results, a new parameter, termed as porosity-salt concentration/cement content (PSC) ratio, is found to be appropriate to describe the effect of salt on the strength of cement-treated soil.

    1 Materials and Method

    1.1 Materials

    1.1.1 Soil sample

    The Lianyungang marine clay used in this investigation was obtained from the Liezikou bridge construction field, Guannan County, Jiangsu Province, China. Clay was sampled at 2.0 m depth under the ground surface. The properties of Lianyungang marine clay samples are shown in Tab.1. The clay has a high plasticity with a liquid limit of 58.7% and a plastic limit of 33.8%. The total salt concentration is quite high, with a value of 46.16 g/L. Tab.2 presents the chemical analysis results of the pore water of Lianyungang marine clay. The results show that the dominant salt composition in the pore water is sodium chloride. Based on the sieving and hydrometer analysis (see Fig.1), the soil used in this research consists of 2.8% sand and 97.2% fines (53.5% silt and 43.7% clay), indicating that the Lianyungang marine clay is composed of silt and clay fractions. The pH value of the pore water of natural clay is about 7.8, which is close to neutrality. Liu et al.[15]reported that the most predominant clay minerals in Lianyungang marine deposits were illite-smectite mixed-layer mineral and illite. These results indicate that the Lianyungang marine clay has not only high water content, high void ratio, high compressibility, but also contains a much higher content of sodium chloride salt.

    Tab.1 Properties of Lianyungang marine clay

    Tab.2 Chemical analysis results of pore water of Lianyungang marine clay

    Fig.1 Soil particle distribution curve

    1.1.2 Cement

    Ordinary Portland cement type I is used to investigate the effect of the cement content (the ratio of cement weight to weight of the dry soil, termed asaw) on the strength of stabilized clay.

    1.2 Test method

    In order to investigate the effect of the salt concentration, the clays were treated to eliminate the salt by the wash method first. The wash method was applied as follows: the Lianyungang marine clay from the construction field was air-dried, crushed down, sieved, and dipped in distilled water for 24 h. Salt in the soft soil was removed after repeating this process 5 times. After that, the desired content of sodium chloride salt was added into the washed soil and mixed thoroughly for 10 min by a miniature mixing machine. Their sodium chloride salt concentrations (ratios of the sodium chloride salt weight to the dry soil weight, termed asCs), were 2.5%, 5.0%, 7.5% and 10.0%.

    The clay was then mixed with 10%, 15% and 20% cement by mass of dry soil. In order to eliminate the effects of differences in water content, the samples were prepared to contain the same water content of 70% (i.e. 1.2 times liquid limit) by adding the distilled water into the clay. Kitchen stand mixers were used to mix the cement into the clay for a total mixing time of 10 min until a homogenous clay-water-cement paste was attained. To ensure thorough mixing, the sides of the bowl were continuously scraped and the mixer was stopped as often as needed to scrape off any materials packed onto the bottom of the bowl. Upon completion of mixing, the soil was compacted into plastic tubes with an internal diameter of 50 mm and a height of 100 mm (see Fig.2). All the samples were compacted by hand vibrating to eliminate the entrapped air. The samples were cured at a temperature of about 20 ℃ and a humidity of 95% for the desired curing periods. The samples were removed and carefully extruded from the plastic molds after curing the desired periods. The UCS tests were run on specimens after curing periods of 7, 14 and 28 d according to the procedure of ASTM D2166-06 at a strain rate of 1% per minute. Before the UCS test, the diameter, height and weight of the specimens were measured with accuracies of about 0.1 mm and 0.01 g.

    Fig.2 Picture of prepared specimens

    2 Test Results and Discussion

    2.1 Effect of salt concentration on the UCS

    Since the UCS after curing 28 d is usually used as the design value, the UCS after curing 28 d is discussed hereafter. Fig.3 shows the UCS of the cement stabilized clay after curing 28 d vs. salt concentration, where each data point represents the mean of three specimens. The measured UCS of specimens after curing 7 d and 14 d exhibits the same trend as that after curing 28 d. It can be seen that the UCS of the specimens increases with the increase in cement content and curing time, indicating that a great amount of hydration compounds such as calcium silicate hydrate and calcium aluminate hydrate gels is formed. Compared with the UCS of undisturbed natural sample (i.e. 15 kPa), the results indicate that the addition of cement induces a drastic strength improvement of Lianyungang marine clay and cement stabilization is an attractive and successful method to improve the engineering properties of the Lianyungang soft marine clay.

    Fig.3 UCS of specimens vs. salt concentration

    Fig.3 also indicates that the salt concentration has a great effect on the strength of cement-treated Lianyungang marine clay. It can be seen that the UCS decreases approximately linearly with the increase in the salt concentration. For instance, for specimens with a cement of 20% and a salt concentration of 2.5%, the 28-d UCS is 1.54 MPa. Nevertheless, if the salt concentration is increased to 10.0%, the 28-d UCS is only 1.146 MPa. This leads to the conclusion that the presence of sodium chloride salt in soil has a detrimental effect on the process of the cementation of cement-soil mixtures. This finding agrees with the experimental results of Sinat[16]and Xing et al[12]. However, an increase in strength with salt content in cement-treated clay was reported by Miura et al.[17], Onitsuka et al.[18]and Nor[19]. It should be noted that the strength increase with the increase in the salt concentration was achieved in cement- or lime-treated clay with a high humic acid content. It is generally accepted that the presence of the organic matter in the clay acts to the detriment of the strength of cement or lime stabilized clays. The salt contributes to coagulate with the organic cation, which leaves the clay particles exposed to cement or lime for pozzolanic reaction content, as a result, the strength of cement- or lime-treated soil increases with the increase in salt concentration.

    2.2 Prediction model of UCS of cement-treated salt-rich clay

    Lorenzo and Bergado[8]reported that the after-curing void ratio (et) and cement content (aw) are the fundamental parameters to characterize the strength and compressibility of cement-admixed clay at high water contents. Fig.4 shows the UCS as a function of the after-curing voids/cement content ratio (et/aw, defined as the after-curing voids divided by the cement content). It can be seen that it is not possible to establish a unique relationship between these two factors. The results differ from those obtained by Lorenzo and Bergado[8]where the after-curing voids/cement content ratio was found to be a useful parameter in the analysis of the strength development of materials that the writers studied. However, in their study the salt concentration of the soil was not reported and constant, so that the after-curing voids/cement content ratio does not reflect the influence of salt concentration.

    Fig.4 UCS vs. et/aw ratio

    As mentioned above, the UCS of cement-treated soil is dependent on the cement content, the salt concentration, the curing time and the total water content, and so on; therefore, a new parameter, termed as the PSC ratio, is proposed to relate the UCS values and those factors.

    翠姨越來越瘦了,哥哥去到外祖母家看了她兩次,也不過是吃飯,喝酒,應(yīng)酬了一番。而且說是去看外祖母的。在這里年青的男子,去拜訪年青的女子,是不可以的。哥哥回來也并不帶回什么歡喜或是什么新的憂郁,還是一樣和大家打牌下棋。

    (1)

    wherenis the porosity.

    Since the structure of the cement-treated soil is dependent on cement content, soil mineral, curing time and water content in the cement-water-soil mixture, it is logical to utilize a parameter that combines the effects of these factors. The porositynis adopted in this study to take into account the effect of water content primarily. The porosity can be determined by void ratioeusing Eq.(2), which can be determined by the solid-liquid-air phase concept using Eq. (3) with the predetermined indices of specific gravity, water contentw, and bulk density. The bulk density is calculated according to the dimensions of the specimen measured before the UCS test. For convenience of use by engineers in practise, water content here refers to the water in the soil before the mix of cement (i.e. 70% in this study). A composite specific gravity, based on the soil, cement and sodium chloride salt mass percentages in the specimen, is used. The specific gravity values of the soil, the cement, and the sodium chloride salt are 2.72, 3.10 and 2.165, respectively. Sodium chloride salt is simply assumed as a solid phase, although it would react with hydrated products and form complicated forms. Such an assumption is useful to derive the values of the specific gravity of mixed soils.

    (2)

    (3)

    whereGsis the composite specific gravity of the treated soil (dimensionless);γis the unit weight of the treated soil (kN/m3);γwis the unit weight of water (kN/m3).

    Fig.5 shows the UCS of the cement stabilized clay after curing 28 d vs. the PSC ratio. It can be seen that the unconfined compressive strengths increase with the decrease in the ratio. As expected, the increase in cement content, the reduction of water content and the decrease in salt concentration results in a reduction of the ratio, consequently, yielding an increase of unconfined compressive strength. A good correlation (coefficient of determination,R2>0.97) can be observed between this ratio and the UCS of the soil-cement mixture, which can be expressed as

    PSC=Aln(UCS)+B

    (4)

    whereAis the slope of the linear regression, andBis the intercept with ordinate. Furthermore, all the fitting curves representing various salt concentrations present a similar format. The parametersAandBare dependent upon the salt concentration, as observed in Fig.6.

    Fig.5 UCS vs. PSC ratio

    Fig.6 Parameters A and B vs. salt concentration

    It is important to point out that the slopes of the fitting lines and the intercepts change linearly with the increase in the salt concentrationCsand the parameters can be fit very well by the following equations:

    A=-0.012Cs-0.016

    (5)

    B=0.117 4Cs+0.123

    (6)

    Substituting Eqs. (5) and (6) into Eq. (4) gives

    PSC=(-0.012Cs-0.016)ln(UCS)+(0.011 74Cs+0.123)

    (7)

    Eq.(7) relates the UCS of cement-treated soil to the cement content, the salt concentration and the water content of the soil. This equation is very practical for finding the right design parameters. For instance, using Eq.(7), the engineer can choose the amount of cement to provide the soil-cement mixture that meets the strength required by the project for Lianyungang marine clay with a given salt concentration.

    It should be pointed out that those parameters in the empirical equation depend on the used materials (soil, cement and salt type). Therefore, one trying to stabilize a different soil has to carry out a similar testing program and develop the relevant equation using this approach.

    3 Conclusions

    1) The presence of sodium chloride salt in soil has a detrimental effect on the UCS of cement-treated Lianyungang soft marine clay.

    2) The PSC ratio is shown to be an appropriate parameter to evaluate the effect of the salt concentration on the UCS of the soil-cement mixture.

    3) An empirical equation is proposed to predict the UCS of cement-treated Lianyungang marine clay taking the effect of salt into account. It is possible that those parameters in the empirical equation depend on the used materials (soil, cement and salt type).

    Although this study provides information of the UCS of cement-treated Lianyungang marine clay, the microstructure mechanism of adverse effect of salt on the UCS of cement-treated soils requires additional research.

    [1]Bruce D A, Bruce M E C, Dimillio A F. Dry mix methods: a brief overview of international practice[C]//ProceedingsofInternationalConferenceonDryMixMethodsforDeepSoilStabilization. Rotterdam, Netherlands, 1999: 15-25.

    [2]Porbaha A, Tanaka H, Kobayashi M. State of the art in deep mixing technology: part Ⅱ. applications[J].GroundImprovement, 1998,2(3): 125-139.

    [3]Han J, Zhou H T, Ye F. State-of-practice review of deep soil mixing techniques in China[J].JournalofTransportationResearchRecord, 2002,1808: 49-57.

    [4]Liu S Y, Hryciw R D. Evaluation and quality control of dry-jet-mixed clay soil-cement columns by standard penetration test[J].JournalofTransportationResearchRecord, 2003,1849: 47-52.

    [5]Xu C, Ye G B. Deformation and bearing capacity of composite foundation with cement-soil mixed pile[J].ChineseJournalofGeotechnicalEngineering, 2005,27(5): 600-604.(in Chinese)

    [6]Coastal Development Institute of Technology.Thedeepmixingmethod—principle,designandconstruction[M]. Rotterdam,Netherlands: A. A. Balkema Publishers, 2002.

    [7]Horpibulsuk S, Miura N, Nagaraj T S. Assessment of strength development in cement admixed high water content clays with Abram’s law as basis[J].Géotechnique, 2003,53(4): 439-444.

    [8]Lorenzo G A, Bergado D T. Fundamental parameters of cement-admixed clay-new approach[J].JournalofGeotechnicalandGeoenvironmentalEngineering,ASCE, 2004,130(10):1042-1050.

    [9]Shen S L, Han J, Miura N. Laboratory evaluation of mixing energy consumption and its influence on soil-cement strength[J].JournalofTransportationResearchRecord, 2004,1868: 23-30.

    [10]Moh Z C. Soil stabilization with cement and sodium additives[J].JournalofSoilMechanicsandFoundationDivision,ASCE, 1962,88(6): 81-105.

    [11]Angelova R. Effect of some chemical additives on the strength development of soil-cement[C]//ProceedingsoftheInternationalConferenceontheImplicationsofGroundChemistryandMicrobiologyforConstruction. Bristol, UK, 1992: 147-159.

    [12]Xing H F, Yang X M, Xu C, et al. Strength characteristics and mechanisms of salt-rich soil-cement[J].EngineeringGeology, 2009,103(1/2): 33-38.

    [13]Modmoltin C, Voottipruex P. Influence of salts on strength of cement-treated clays[J].GroundImprovement, 2009,162(2):15-26.

    [14]Modmoltin C, Lu J M, Onitsuka K. Influence of humic acid and salt concentration on lime stabilised Ariake clays and microstructure research[J].ChineseJournalofGeotechnicalEngineering, 2004,26(2): 281-286.

    [15]Liu S Y, Shao G H, Du Y J. Depositional and geotechnical properties of marine clays in Lianyungang, China[J].EngineeringGeology, 2011,121(1): 66-74.

    [16]Sinat K. Influence of storage conditions on geotechnical properties of Ariake clay and on its chemical stabilization[D]. Saga, Japan: Saga University, 2006.

    [17]Miura N, Taesiri Y, Koga Y, et al. Practical of improvement of Ariake clay by mixing admixtures[C]//ProceedingsoftheInternationalSymposiumonShallowSeaandLowLand. Saga, Japan, 1998: 159-168.

    [18]Onitsuka K, Modmoltin M, Kouno M, et al. Effect of organic matter on lime and cement stabilized Ariake clay[J].JournalofGeotechnicalEngineering,JSCE, 2004,729(Ⅲ-62): 1-13.

    [19]Nor Z B M Y. Stabilisation of organic clay using lime-added salt[D]. Skudai, Malaysia: Universiti Teknologi Malaysia, 2007.

    猜你喜歡
    年青外祖母男子
    外祖母的美味(節(jié)選)
    對(duì)歌趁年青
    歌海(2021年2期)2021-06-22 02:25:59
    年青一代應(yīng)助力長(zhǎng)輩科學(xué)用網(wǎng)
    2019年下半年男子棋手等級(jí)分
    棋藝(2019年8期)2019-12-25 01:25:06
    回憶我的外祖母——堅(jiān)強(qiáng)獨(dú)立的女“水客”廖德英
    文史春秋(2019年9期)2019-10-23 05:18:54
    占先
    智族GQ(2019年7期)2019-08-26 09:31:36
    從男子力保衛(wèi)戰(zhàn)開始
    男子買執(zhí)照騙47萬拆遷款
    菊香依存
    滿臉通紅
    激情在线观看视频在线高清| 91大片在线观看| 正在播放国产对白刺激| 亚洲午夜精品一区,二区,三区| 国产三级在线视频| 国产成年人精品一区二区| 中文字幕人妻丝袜一区二区| 午夜a级毛片| 欧美av亚洲av综合av国产av| 久久这里只有精品中国| 久久精品国产亚洲av高清一级| 国产精品美女特级片免费视频播放器 | 欧美日韩乱码在线| 1024手机看黄色片| 别揉我奶头~嗯~啊~动态视频| 好男人在线观看高清免费视频| 日韩有码中文字幕| 女警被强在线播放| 色综合婷婷激情| 99久久久亚洲精品蜜臀av| 久久精品国产亚洲av香蕉五月| 搡老妇女老女人老熟妇| 国产亚洲欧美98| 成人欧美大片| 91九色精品人成在线观看| 99国产精品99久久久久| 黑人欧美特级aaaaaa片| 亚洲一区中文字幕在线| 一进一出好大好爽视频| 国产av又大| 国产成人av激情在线播放| 夜夜看夜夜爽夜夜摸| 免费av毛片视频| 久久中文字幕人妻熟女| or卡值多少钱| 亚洲中文av在线| 亚洲av美国av| 精品久久久久久久末码| 亚洲天堂国产精品一区在线| 动漫黄色视频在线观看| 深夜精品福利| 日本一区二区免费在线视频| 亚洲国产欧美网| 男人舔奶头视频| 美女午夜性视频免费| 一进一出抽搐gif免费好疼| 伊人久久大香线蕉亚洲五| 巨乳人妻的诱惑在线观看| 免费观看人在逋| 成人国语在线视频| 激情在线观看视频在线高清| 一a级毛片在线观看| 18禁国产床啪视频网站| 欧美黄色片欧美黄色片| av有码第一页| 狠狠狠狠99中文字幕| 国产成人欧美在线观看| 一二三四在线观看免费中文在| 一区福利在线观看| 在线观看午夜福利视频| 中文字幕最新亚洲高清| 久久久久久人人人人人| 国产精品av视频在线免费观看| 亚洲片人在线观看| 亚洲精品久久成人aⅴ小说| 久久天堂一区二区三区四区| 人成视频在线观看免费观看| 日本三级黄在线观看| 777久久人妻少妇嫩草av网站| 在线观看一区二区三区| 男人的好看免费观看在线视频 | 亚洲精品一区av在线观看| 日本 av在线| 久久精品国产清高在天天线| 1024香蕉在线观看| 国产成年人精品一区二区| 中国美女看黄片| 欧美大码av| 精品少妇一区二区三区视频日本电影| 在线永久观看黄色视频| 麻豆国产av国片精品| 欧美最黄视频在线播放免费| 婷婷亚洲欧美| 黑人巨大精品欧美一区二区mp4| 一区二区三区激情视频| 又粗又爽又猛毛片免费看| 国产精品免费一区二区三区在线| 欧美色视频一区免费| 啦啦啦韩国在线观看视频| 天天躁夜夜躁狠狠躁躁| 欧美成人性av电影在线观看| 蜜桃久久精品国产亚洲av| 国产精品98久久久久久宅男小说| 日本五十路高清| 日韩 欧美 亚洲 中文字幕| 久久精品aⅴ一区二区三区四区| 在线免费观看的www视频| 亚洲aⅴ乱码一区二区在线播放 | 国产高清视频在线观看网站| 成人av在线播放网站| 波多野结衣巨乳人妻| 日韩欧美国产一区二区入口| 亚洲七黄色美女视频| 一级作爱视频免费观看| 欧美日韩福利视频一区二区| 又爽又黄无遮挡网站| 黄色丝袜av网址大全| 在线观看免费视频日本深夜| 岛国视频午夜一区免费看| 99在线视频只有这里精品首页| 天堂av国产一区二区熟女人妻 | 18禁美女被吸乳视频| 人人妻人人澡欧美一区二区| 欧美一区二区精品小视频在线| av国产免费在线观看| 日日干狠狠操夜夜爽| 日韩欧美在线二视频| 在线观看免费视频日本深夜| 欧美日韩中文字幕国产精品一区二区三区| 亚洲欧美激情综合另类| 婷婷精品国产亚洲av| 久久这里只有精品中国| 丝袜美腿诱惑在线| 国模一区二区三区四区视频 | 国产视频内射| 欧美日韩国产亚洲二区| 亚洲,欧美精品.| 欧美乱妇无乱码| 日日摸夜夜添夜夜添小说| 午夜福利在线在线| 亚洲五月天丁香| 黑人欧美特级aaaaaa片| 在线观看66精品国产| 神马国产精品三级电影在线观看 | 最新在线观看一区二区三区| 精品国内亚洲2022精品成人| 一进一出抽搐gif免费好疼| 中文字幕熟女人妻在线| 精品久久久久久久久久久久久| 亚洲一区二区三区色噜噜| 淫秽高清视频在线观看| 国产激情久久老熟女| 久久香蕉精品热| 黄色女人牲交| 露出奶头的视频| 免费人成视频x8x8入口观看| 女警被强在线播放| 亚洲欧美日韩高清在线视频| 久久国产乱子伦精品免费另类| 亚洲aⅴ乱码一区二区在线播放 | 九九热线精品视视频播放| 欧美黄色淫秽网站| 日本黄色视频三级网站网址| 国内毛片毛片毛片毛片毛片| 99久久国产精品久久久| 一卡2卡三卡四卡精品乱码亚洲| 91老司机精品| 超碰成人久久| 99re在线观看精品视频| 亚洲人成电影免费在线| 欧美 亚洲 国产 日韩一| 在线永久观看黄色视频| 久久久久久亚洲精品国产蜜桃av| 亚洲电影在线观看av| 国产精品日韩av在线免费观看| 精品无人区乱码1区二区| 亚洲人成网站高清观看| 99久久99久久久精品蜜桃| 一边摸一边做爽爽视频免费| 午夜福利18| 色精品久久人妻99蜜桃| 欧美乱码精品一区二区三区| 悠悠久久av| 男女午夜视频在线观看| 长腿黑丝高跟| 日日干狠狠操夜夜爽| 国产69精品久久久久777片 | 丰满人妻一区二区三区视频av | 欧美日韩亚洲综合一区二区三区_| 精品久久久久久成人av| 黄色 视频免费看| 日韩欧美三级三区| а√天堂www在线а√下载| 久久九九热精品免费| 国产成人欧美在线观看| 亚洲av成人一区二区三| 99热只有精品国产| 欧美色欧美亚洲另类二区| 国产精品99久久99久久久不卡| 哪里可以看免费的av片| 法律面前人人平等表现在哪些方面| 色哟哟哟哟哟哟| 在线观看美女被高潮喷水网站 | 18禁裸乳无遮挡免费网站照片| 亚洲一区高清亚洲精品| 久久久久免费精品人妻一区二区| 亚洲av美国av| 国产单亲对白刺激| 老司机靠b影院| 精品国产乱码久久久久久男人| 级片在线观看| 国产三级在线视频| 成人av在线播放网站| 9191精品国产免费久久| 国产一区二区三区视频了| 中文字幕人成人乱码亚洲影| 琪琪午夜伦伦电影理论片6080| 给我免费播放毛片高清在线观看| 一级毛片高清免费大全| 亚洲男人天堂网一区| 成年免费大片在线观看| 欧美三级亚洲精品| 日韩欧美免费精品| 高潮久久久久久久久久久不卡| 少妇人妻一区二区三区视频| 两性夫妻黄色片| 亚洲欧美日韩高清在线视频| 老熟妇乱子伦视频在线观看| 亚洲乱码一区二区免费版| 老汉色av国产亚洲站长工具| 1024手机看黄色片| 欧美精品亚洲一区二区| 日本免费a在线| 50天的宝宝边吃奶边哭怎么回事| 久久精品夜夜夜夜夜久久蜜豆 | 在线观看免费视频日本深夜| 欧美成人性av电影在线观看| 亚洲国产欧美网| 99国产极品粉嫩在线观看| 亚洲熟妇中文字幕五十中出| 一边摸一边抽搐一进一小说| 欧美国产日韩亚洲一区| 人人妻人人澡欧美一区二区| 成人av在线播放网站| 精品福利观看| 日韩欧美免费精品| 一级毛片高清免费大全| 日韩欧美一区二区三区在线观看| 精品久久久久久久末码| 性欧美人与动物交配| 国产成人av激情在线播放| 久久香蕉精品热| netflix在线观看网站| 亚洲美女视频黄频| 国产成人aa在线观看| 婷婷精品国产亚洲av| 国产一区二区三区在线臀色熟女| 成人18禁在线播放| 精品不卡国产一区二区三区| 最好的美女福利视频网| 亚洲无线在线观看| 久久性视频一级片| 黄色毛片三级朝国网站| 日本精品一区二区三区蜜桃| 国产精品 欧美亚洲| 天天躁夜夜躁狠狠躁躁| 久9热在线精品视频| 亚洲av五月六月丁香网| 叶爱在线成人免费视频播放| 丁香六月欧美| 欧美黑人欧美精品刺激| 亚洲欧美激情综合另类| 不卡av一区二区三区| 国产亚洲精品第一综合不卡| 久久久久久久午夜电影| 狂野欧美白嫩少妇大欣赏| 国产午夜精品论理片| 亚洲熟妇中文字幕五十中出| 法律面前人人平等表现在哪些方面| 日韩欧美国产一区二区入口| 免费在线观看黄色视频的| 久热爱精品视频在线9| 午夜福利免费观看在线| 99精品在免费线老司机午夜| 中文字幕人妻丝袜一区二区| xxxwww97欧美| 岛国在线观看网站| 精华霜和精华液先用哪个| 两个人视频免费观看高清| 成熟少妇高潮喷水视频| 亚洲一区二区三区不卡视频| 久久久国产精品麻豆| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品999在线| 免费在线观看黄色视频的| 全区人妻精品视频| 这个男人来自地球电影免费观看| 黄色成人免费大全| 69av精品久久久久久| 免费观看精品视频网站| 亚洲 欧美 日韩 在线 免费| 国产91精品成人一区二区三区| 中国美女看黄片| 亚洲天堂国产精品一区在线| 日韩 欧美 亚洲 中文字幕| 欧美色欧美亚洲另类二区| 成人av一区二区三区在线看| 日本一二三区视频观看| 精品少妇一区二区三区视频日本电影| 欧美成人性av电影在线观看| 国产精品乱码一区二三区的特点| 久久人妻福利社区极品人妻图片| 99久久99久久久精品蜜桃| 国产av一区二区精品久久| 免费看十八禁软件| 亚洲天堂国产精品一区在线| 亚洲国产高清在线一区二区三| 99精品欧美一区二区三区四区| 老司机福利观看| 人人妻人人澡欧美一区二区| 欧美色欧美亚洲另类二区| 午夜福利高清视频| 欧美人与性动交α欧美精品济南到| 久久香蕉精品热| 中文字幕熟女人妻在线| 国产69精品久久久久777片 | 国产亚洲精品av在线| 久久国产乱子伦精品免费另类| 黄色片一级片一级黄色片| 色哟哟哟哟哟哟| 日本在线视频免费播放| 午夜影院日韩av| 美女 人体艺术 gogo| 999精品在线视频| 嫁个100分男人电影在线观看| 香蕉久久夜色| 免费av毛片视频| 日韩高清综合在线| 50天的宝宝边吃奶边哭怎么回事| 大型黄色视频在线免费观看| cao死你这个sao货| 亚洲专区字幕在线| 丝袜美腿诱惑在线| 搞女人的毛片| 欧美日韩中文字幕国产精品一区二区三区| 脱女人内裤的视频| 麻豆国产97在线/欧美 | 久久精品国产亚洲av香蕉五月| 免费看日本二区| 亚洲中文字幕一区二区三区有码在线看 | 婷婷亚洲欧美| 免费电影在线观看免费观看| 久久久久性生活片| 亚洲真实伦在线观看| 操出白浆在线播放| 日韩精品青青久久久久久| 久99久视频精品免费| 999久久久精品免费观看国产| 欧美成人一区二区免费高清观看 | 日韩欧美一区二区三区在线观看| 国产单亲对白刺激| 夜夜看夜夜爽夜夜摸| АⅤ资源中文在线天堂| 老司机午夜十八禁免费视频| 老司机深夜福利视频在线观看| 一进一出好大好爽视频| 国产又黄又爽又无遮挡在线| 国产精品免费一区二区三区在线| 黄色a级毛片大全视频| 精品乱码久久久久久99久播| 欧美久久黑人一区二区| 亚洲精品色激情综合| 欧美中文综合在线视频| 91字幕亚洲| 久久久久久久午夜电影| 亚洲av电影不卡..在线观看| 变态另类成人亚洲欧美熟女| 啦啦啦免费观看视频1| 俺也久久电影网| 麻豆一二三区av精品| 神马国产精品三级电影在线观看 | 大型黄色视频在线免费观看| 狂野欧美白嫩少妇大欣赏| 91字幕亚洲| 久久久精品国产亚洲av高清涩受| 18禁观看日本| 久久这里只有精品19| 亚洲 国产 在线| bbb黄色大片| 亚洲av成人不卡在线观看播放网| 亚洲精华国产精华精| 欧美最黄视频在线播放免费| 国内少妇人妻偷人精品xxx网站 | 欧美在线一区亚洲| 亚洲色图av天堂| 最近最新免费中文字幕在线| 日本黄色视频三级网站网址| 成年人黄色毛片网站| 麻豆久久精品国产亚洲av| 在线观看午夜福利视频| 91在线观看av| 亚洲自拍偷在线| 亚洲五月天丁香| 一级毛片女人18水好多| 亚洲国产看品久久| 精品欧美一区二区三区在线| 两个人免费观看高清视频| √禁漫天堂资源中文www| 免费av毛片视频| 最新美女视频免费是黄的| 狂野欧美白嫩少妇大欣赏| 在线观看免费视频日本深夜| 久久中文字幕人妻熟女| 成人一区二区视频在线观看| 国产欧美日韩一区二区三| 国产v大片淫在线免费观看| 亚洲专区中文字幕在线| www.www免费av| 在线十欧美十亚洲十日本专区| 极品教师在线免费播放| 精品久久久久久久久久免费视频| 香蕉av资源在线| 久久伊人香网站| 亚洲精品久久成人aⅴ小说| 久久中文字幕人妻熟女| 高潮久久久久久久久久久不卡| 久久精品夜夜夜夜夜久久蜜豆 | 麻豆一二三区av精品| 国产精品一区二区三区四区久久| 成人欧美大片| 久久精品影院6| 欧美成人免费av一区二区三区| 国产乱人伦免费视频| videosex国产| 狂野欧美激情性xxxx| 91字幕亚洲| 制服诱惑二区| 人妻夜夜爽99麻豆av| 99久久国产精品久久久| 丁香欧美五月| 久久久久精品国产欧美久久久| 国产成年人精品一区二区| 丁香六月欧美| 一个人免费在线观看电影 | 久久这里只有精品中国| 正在播放国产对白刺激| 午夜福利欧美成人| e午夜精品久久久久久久| 一边摸一边做爽爽视频免费| 免费观看人在逋| 亚洲欧美日韩高清在线视频| 国产av一区二区精品久久| 欧美一级毛片孕妇| 制服人妻中文乱码| 又紧又爽又黄一区二区| 国产亚洲精品久久久久5区| 日本一本二区三区精品| 啦啦啦免费观看视频1| 亚洲人与动物交配视频| 中文亚洲av片在线观看爽| 狠狠狠狠99中文字幕| 欧美日韩国产亚洲二区| 亚洲无线在线观看| 人妻丰满熟妇av一区二区三区| 欧美黑人精品巨大| 性欧美人与动物交配| 少妇粗大呻吟视频| 欧美成人一区二区免费高清观看 | 午夜福利在线在线| 美女扒开内裤让男人捅视频| 88av欧美| 国产熟女xx| 久久亚洲真实| 日韩中文字幕欧美一区二区| 99久久国产精品久久久| 色噜噜av男人的天堂激情| 成人18禁高潮啪啪吃奶动态图| 十八禁网站免费在线| 啦啦啦观看免费观看视频高清| 久久精品国产清高在天天线| 欧美中文日本在线观看视频| 日本免费一区二区三区高清不卡| 在线观看午夜福利视频| 成人国产综合亚洲| 免费观看人在逋| 亚洲av五月六月丁香网| 国产欧美日韩一区二区精品| 久久国产乱子伦精品免费另类| 日本在线视频免费播放| 国产精品九九99| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品久久二区二区免费| 69av精品久久久久久| 国产精品久久久久久久电影 | 宅男免费午夜| 亚洲国产中文字幕在线视频| 欧美av亚洲av综合av国产av| 操出白浆在线播放| 亚洲国产高清在线一区二区三| 一级片免费观看大全| 欧美三级亚洲精品| 国产区一区二久久| 免费av毛片视频| 麻豆一二三区av精品| 两个人视频免费观看高清| 亚洲精品在线美女| 欧美黄色淫秽网站| 日韩欧美三级三区| 久久久久免费精品人妻一区二区| 免费看十八禁软件| 日韩欧美国产一区二区入口| 精品日产1卡2卡| 国产又色又爽无遮挡免费看| 日韩欧美在线二视频| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲av成人一区二区三| 天堂√8在线中文| 91大片在线观看| 午夜免费观看网址| 中文字幕av在线有码专区| 欧美成人性av电影在线观看| 麻豆久久精品国产亚洲av| 国产成人一区二区三区免费视频网站| 久久精品aⅴ一区二区三区四区| 日日夜夜操网爽| 日日干狠狠操夜夜爽| 国产午夜福利久久久久久| 成年免费大片在线观看| 宅男免费午夜| 国产午夜精品论理片| 色播亚洲综合网| av福利片在线观看| 国产成人影院久久av| 免费无遮挡裸体视频| 搡老妇女老女人老熟妇| 老司机深夜福利视频在线观看| 成在线人永久免费视频| 亚洲午夜理论影院| 久久久久久国产a免费观看| 欧美性长视频在线观看| 久9热在线精品视频| 巨乳人妻的诱惑在线观看| 精品国产乱子伦一区二区三区| 日本免费a在线| 999久久久精品免费观看国产| 亚洲成a人片在线一区二区| 1024香蕉在线观看| 国产精品亚洲美女久久久| 国产精华一区二区三区| 国产野战对白在线观看| 成人18禁高潮啪啪吃奶动态图| 麻豆国产97在线/欧美 | 久久欧美精品欧美久久欧美| 在线观看日韩欧美| 欧美一区二区精品小视频在线| 午夜精品久久久久久毛片777| 老汉色∧v一级毛片| 中文字幕精品亚洲无线码一区| avwww免费| 一级毛片高清免费大全| 久久精品成人免费网站| 亚洲精品一区av在线观看| 久久伊人香网站| 在线免费观看的www视频| 最新美女视频免费是黄的| 国产欧美日韩一区二区三| 亚洲欧洲精品一区二区精品久久久| 两个人免费观看高清视频| 成人18禁在线播放| 亚洲男人天堂网一区| 天堂影院成人在线观看| 国产av不卡久久| 搡老熟女国产l中国老女人| 国产精华一区二区三区| 久久人人精品亚洲av| 99热这里只有精品一区 | 波多野结衣高清作品| 久久久久国产精品人妻aⅴ院| 成人av在线播放网站| 老司机在亚洲福利影院| 91成年电影在线观看| 人人妻人人看人人澡| or卡值多少钱| 国产免费男女视频| 母亲3免费完整高清在线观看| 黄色 视频免费看| 蜜桃久久精品国产亚洲av| 国产精品爽爽va在线观看网站| 中文亚洲av片在线观看爽| 成年女人毛片免费观看观看9| 亚洲精品美女久久久久99蜜臀| 老熟妇乱子伦视频在线观看| 99热6这里只有精品| 免费在线观看完整版高清| 欧美绝顶高潮抽搐喷水| 亚洲色图 男人天堂 中文字幕| 五月伊人婷婷丁香| 成人精品一区二区免费| 黄频高清免费视频| 麻豆成人av在线观看| 制服诱惑二区| 亚洲全国av大片| 国产视频内射| 美女午夜性视频免费| 欧美国产日韩亚洲一区| 久久精品影院6| 中文资源天堂在线| 午夜福利视频1000在线观看| 午夜福利欧美成人| 9191精品国产免费久久| 欧美成狂野欧美在线观看| 国内揄拍国产精品人妻在线| 中文资源天堂在线| 久久香蕉激情| 国产欧美日韩一区二区三| 欧美 亚洲 国产 日韩一| 18禁黄网站禁片午夜丰满| 久久中文看片网| 婷婷亚洲欧美| 桃色一区二区三区在线观看| 亚洲精品美女久久av网站| 亚洲国产日韩欧美精品在线观看 | 国产亚洲精品久久久久久毛片| 一本一本综合久久| 亚洲 国产 在线|