• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flexural behaviors of double-reinforced ECC beams

    2013-01-08 08:26:24YanYuanXuYunWangXunPanJinlong

    Yan Yuan Xu Yun Wang Xun Pan Jinlong

    (Key Laboratory of Concrete and Pre-Stressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China)

    Nowadays, concrete is the most widely used building material, which has the maturest construction technology and an irreplaceable role in building modern infrastructures. However, conventional concrete is a kind of brittle cementitious material with low tensile strength and crack resistance, limited deformability and bad impact resistance, leading to limitations for its further applications in the future[1]. Since the 1970s, fiber reinforced concrete (FRC) with high performance in strength, durability, and fluidity has become a major developing trend for the requirements of tall buildings and long-span bridges. However, the FRC still shows tensile softening after the peak tensile strength is reached. For further improving the durability and the seismic resistance of structures, fiber reinforced cementitious materials with super-high ductility have gradually become a new popular area in recent years.

    In 1992, Li and Leung[2]proposed a design method for a kind of engineered cementitious composites (ECC) based on micromechanics. ECC is a cementitious material with a fiber volume fraction of 2%, and shows strain-hardening behavior under uniaxial tension accompanied with fine cracks (smaller than 60 μm). ECC has been developed for applications in the construction industry[3-5]. For properly designed ECC material, it has very good ductility with the ultimate tensile strain of more than 3%, which is nearly more than 300 times the initial cracking strain of normal concrete[6]. When concrete is fully or partially substituted by ECC in the concrete structures, deformability, durability[7]and seismic resistance can be significantly increased, which has been demonstrated by many research works. Moreover, super high deformability of ECC can also contribute to the bond strength between ECC and steel reinforcement. When the steel reinforcement reaches yielding strength, cracks in ECC can be well controlled in size and ECC can continue to bear load, resulting in increased stiffness and load bearing capacity for the structure. Also, the high shear strength of ECC can significantly reduce the use of stirrups in structural elements. Consequently, steel can be saved and the construction process becomes easier. Meanwhile, ECC maintains a great energy absorption capacity. When it is applied to some key parts of structures, not only seismic collapse can be avoided, but also crack widths after the earthquake will be reduced, which considerably reduces the repair cost of the damaged structures[8]. Therefore, the application of ECC in structural members not only can improve the ductility of structures, but also can effectively control crack width and propagation. As a result, the durability of structures can be improved. In this paper, based on the design theory of the reinforced concrete structure, theoretical studies are conducted on the flexural properties of double-reinforced ECC beams. As evident differences exist between the mechanical behaviors of ECC and normal concrete, the double-reinforced ECC beams have distinctly different deformation and mechanical characteristics from the normal RC beams, such as the stress distribution in the tension and compression zones. The load capacities for different loading stages are derived. To demonstrate the validity of the proposed calculation methods, experimental study on a double-reinforced beam is carried out. Finally, parametric studies are conducted to study the effects of the material properties of ECC and the steel reinforcement ratio on the flexural behaviors of beams.

    1 Basic Assumptions

    According to the Chinese code for the design of concrete structures (GB 50010—2010), the following assumptions are acceptable for analyzing the flexural behaviors of double-reinforced ECC flexural members.

    1) The cross section of the ECC beam remains plane under external loading.

    2) There is no relative sliding between the steel reinforcement and the ECC material.

    3) The tensile strength of ECC is fully considered.

    4) A bilinear constitutive model is used to describe the stress-strain behavior of ECC[9](see Fig.1), whereσtcandεtcare the initial cracking strength and strain of ECC in tension;σtuandεtuare the ultimate strength and strain of ECC in tension;σccandεccare the initial cracking strength and strain of ECC in compression;σcuandεcuare the ultimate strength and strain of ECC in compression.

    Fig.1Stress-strain relationship for ECC material. (a) In tension; (b) In compression

    5) An ideal elastoplastic stress-strain relationship is assumed for the steel reinforcement (see Fig.2).

    Fig.2 Stress-strain relationship of steel reinforcement

    2 Theoretical Analysis of Double-Reinforced ECC Beam

    The loading process for the reinforced ECC beam can be divided into three stages, i.e., the elastic stage, the cracking stage and the ultimate failure stage.

    2.1 Elastic stage

    When the external moment is small, there are no cracks in the tension side. Assuming that all the materials are in the elastic stage, stresses and strains in ECC are linearly distributed along the cross section. And the stress of the steel reinforcement remains at a low level. Therefore, the moment-curvature relationship is an approximate straight line in this stage. Fig.3 shows the stress and strain distributions of the ECC beam in this stage. The stresses along the cross section can be given by

    (1)

    whereεtis the tensile strain of the most outside fiber of the beam;ε(x) andσ(x) are the strain and stress for an arbitrary point on the beam, respectively;cis the height of the central axis of the section.

    Fig.3 Stress and strain distributions of ECC beam in elastic stage

    2.2 Cracking stage

    At the end of this stage, the most outside fiber of the beam reaches the initial cracking strain of ECC, and the beam starts to enter the second stage, i.e., the cracking stage. When the external moment is relatively small, the maximum compressive strain in ECC is lower thanεcc, so the compression zone is still in the elastic stage. With the increase in the external moment, the maximum compressive strain in ECC is greater thanεcc, and the compression zone enters the plastic stage.

    Fig.4 shows the stress and strain distributions of the ECC beam when the compression zone is still in the elastic stage. The stresses along the cross section are given by

    (2)

    whereais the height of the tensile plastic zone.

    Fig.4 Stress and strain distributions of ECC beam in cracking stage with a linear stress distribution in compression zone

    With the increase in the external moment, the maximum compressive strain of ECC in the compression zone is greater thanεcc, and the compression zone starts to enter the plastic stage. Fig.5 shows the stress and strain distributions of the ECC beam in this stage. The stresses along the cross section are given by whereeis the height of the compressive plastic zone from the bottom of the beam.

    (3)

    In this stage, when the most outside fiber of the compression zone reaches the ultimate compression strain, the beam is considered to fail due to the compression failure of ECC. For this failure mode, ECC in the compression zone reaches its ultimate compression strain before the tensile steel reinforcement reaches its yielding strain.

    Fig.5 Stress and strain distributions of ECC beam in cracking stage with a bilinear stress distribution in compression zone

    2.3 Ultimate failure stage

    With the further increase in the external moment, the tensile steel reinforcement enters the yielding stage, and the cross section starts to get into the third stage, i.e. the ultimate failure stage. There are three different strain distributions of ECC and steel reinforcement, which are given as follows:

    Through the above analyses on different stages of the steel double-reinforced ECC beam, the moment-curvature curve can be obtained.

    3 Experimental Verification of Theoretical Model

    In this paper, the test results of a double-reinforced ECC beam are compared with the theoretical calculation results to verify the validity of the derived equations.

    3.1 Introduction of experiments

    A four-point bending test is carried out to study the flexural behavior of the double reinforced ECC beam. During the test, three linear variable differential transformers (LVDTs) are used to record data of the deflections in the midspan. Along the depth of the middle of the beam, three strain gauges are attached with 35, 150 and 265 mm from the bottom of the beam. They are used to analyze the strain distributions during the loading process. Other three strain gauges are attached to the tensile steel reinforcement with 40, 80 and 120 mm from the midspan for recording strains of the steel reinforcement. A hydraulic jack is used to apply load on the beam, and the force from the hydraulic jack is recorded by a pressure sensor. The test beam is loaded to failure (i.e., the residual load was lower than 80% of the peak load) before unloaded. Fig.6 shows the specimen dimension information and arrangement of the instruments. The length of the beam is 2 350 mm, and the section is 200 mm in width and 300 mm in depth. According to the test results of material properties, the initial cracking strain and strength of ECC are 0.21 Pa and 3 MPa; the ultimate tension and compression strain are 0.03 and 0.004, and the corresponding stresses are 4.5 and 35 MPa, respectively. The elastic modulus and yielding strength of the steel reinforcement are 200 GPa and 460 MPa, respectively.

    Fig.6 Dimensions of beam and loading configurations (unit: mm)

    3.2 Comparisons between test and theoretical results

    Fig.7 shows the moment-tensile steel reinforcement strain curves and moment-curvature curves from experimental and theoretical calculations. According to the comparisons, the moment-tensile steel reinforcement strain curve from the theoretical calculation shows good consistency with the test results. The theoretical yielding moment is 82.78 kN· m, which is only 3.8% higher than the test result 79.77 kN· m. The theoretical moment-curvature curve also shows good consistency with the test result. Especially when the curvature is less than 3.09×10-5mm-1, the theoretical yielding curvatureφyis 1.66×10-5mm-1which is only 5% less than the test result. However, after the curvature reaches 3.09×10-5mm-1, due to the faster development of cracks, stiffness of the beam starts to degrade, leading to deviation of the theoretical results from the test results. Finally, the theoretical ultimate bearing capacity is 88.32 kN· m, which is 7.8% higher than that of the test result (81.90 kN· m). And the theoretical curvature is 3.66×10-5mm-1, which is smaller than the test result (4.84×10-5mm-1). Overall, the calculation curves of moment-tensile steel reinforcement strain and moment-curvature are in good consistency with the test results.

    Fig.7 Comparison of calculation and test. (a) Moment-tensile steel reinforced strain curves; (b) Moment-curvature curves

    4 Parametric Studies

    Based on the parameters of the test, parametric studies are conducted for discussing the effects of the compression strength, ultimate compression strain, tension strength of ECC and the steel reinforcement ratioρ. The effects of these parameters on the ductility, ultimate curvatureφuand ultimate bearing capacityMuof reinforced ECC beams are shown in Tab.1.

    Tab.1 Parameters and corresponding ductility

    4.1 Effects of ultimate compression strength and strain of ECC material

    The correlation curves of Figs.8 to 11 show how the ultimate compression strength and the ultimate compression strain of ECC influence the ultimate bearing capacity and the ultimate curvature of the cross section. According to Fig.8 and Fig.9, both the ultimate curvature and the ultimate bearing capacity increase with the ultimate compression strength of ECC. When the ultimate compression strength increases from 25 to 60 MPa, the corresponding curvature doubles, and the ductility of the reinforced ECC beam shows an increase of 150%. Meanwhile, the ultimate bearing capacity increases only 16%. Therefore, the ultimate compression strength of ECC material plays an important role in the flexural performance of the ECC beams.

    As shown in Fig.10 and 11, both the ultimate curvature and the ultimate bearing capacity linearly increase with the ultimate compression strain of ECC. With the ultimate compression strain increasing from 0.004 to 0.006, the ultimate curvature shows an increase of approximately 50% and the ductility an increase of 40%. However, the ultimate bearing capacity improves only about 1%. Because the height of the central axis remains at 225 mm from the bottom of the beam, the ultimate curvature increases linearly with the ultimate compression strain.

    Fig.8 σcu vs. φu

    Fig.9 σcu vs. Mu

    Fig.10 εcu vs. φu

    Fig.11 εcu vs. Mu

    4.2 Effects of ultimate tension strength of ECC material

    Fig.12 and 13 show the correlations ofφuvs.σtuandMuvs.σtu, respectively. It is shown that the ultimate curvature and ductility degrade as the tensile strength of ECC material increases. However, the corresponding load bearing capacity increases with the tensile strength of ECC. In a word, the ultimate curvature and the bearing capacity are affected slightly with the increase in the ultimate tensile strength of ECC from 4 to 6 MPa. Within nd the bearing capacity are affected slightly

    Fig.12 φu vs. σtu

    Fig.13 Mu vs. σtu

    4.3 Effects of steel reinforcement ratio of beams

    Figs.14 and 15 show the correlation curves ofρvs.φuandρvs.Mu, respectively. As the steel reinforcement ratio becomes higher, the height of the central axis becomes smaller, so does the magnitude of curvature. Fig.15 shows that the ultimate bearing capacity increases with the steel reinforcement ratio, but the height of the central axis degrades with it. In the compression zone, because both the force and the force arm increase, the ultimate bearing capacity improves significantly. Therefore, the increase in the reinforcement ratio can improve the ultimate bearing capacity of beams to some extent, but it will lead to degradation of ductility at the same time.

    Fig.14 φu vs. ρ

    Fig.15 Mu vs. ρ

    5 Conclusion

    This paper focuses on theoretical and experimental research on the flexural behaviors of double-reinforced ECC beams. Based on the assumption of the plane section remaining plane in bending and simplified constitutive models of materials, calculation methods of the load carrying capacities for different critical stages are proposed. Also, these calculation methods are demonstrated by comparing the test results with the calculation results. Finally, parametric studies on compression strength, ultimate compression strain, tension strength of ECC material and the steel reinforcement ratio are conducted. The results show that the increase in the compression strength of ECC will greatly improve the load bearing capacity, curvature and ductility of beams. The increase in the ultimate compression strain can significantly improve the ultimate curvature and ductility, but it has little effect on the load bearing capacity of beams. The tensile strength of ECC has little effect on the flexural behaviors of ECC beams. The increase in the steel reinforcement ratio can lead to a significant improvement of the load bearing capacity and stiffness of beams, but degradation of the ductility of beams.

    [1]Li Zongjin.Advancedconcretetechnology[M]. New Jersey: John Wiley & Sons, 2011:13-14.

    [2]Li V C, Leung C K Y. Steady state and multiple cracking of short random fiber composites [J].ASCEJournalofEngineeringMechanics, 1992,188(11):2246-2264.

    [3]Kim Y Y, Fischer G, Li V C. Performance of bridge deck link slabs designed with ductile engineered cementitious composite [J].ACIStructuralJournal, 2004,101(6): 792-801.

    [4]Lepech M D, Li V C. Application of ECC for bridge deck link slabs [J].MaterialsandStructures, 2009,42(9): 1185-1195.

    [5]Lepech M D, Li V C. Sustainable pavement overlays using engineered cementitious composites [J].InternationalJournalofPavementResearchandTechnology, 2010,3(5): 241-250.

    [6]Christopher K Y L, CheungY N, Zhang J. Fatigue enhancement of concrete beam with ECC layer [J].CementandConcreteResearch, 2007,29(6):465-473.

    [7]Kesner K, Billington S L. Investigation of infill panels made from engineered cementitious composites for seismic strengthening and retrofit [J].ASCEJournalofStructuralEngineering, 2005,131(11):1712-1720.

    [8]Billington S L. Damage-tolerant cement based materials for performance based earthquake engineering design: research needs[C]//ProceedingsoftheFifthInternationalConferenceonFractureMechanicsofConcreteandConcreteStructures. Vail, Colorado, USA, 2004:53-60.

    [9]Maalej M, Li V C. Flexural/tensile-strength ratio in engineered cementitious composites [J].JournalofMaterialsinCivilEngineering, 1994,6(4):513-528.

    国产日韩一区二区三区精品不卡| 亚洲国产av影院在线观看| 久久久久久久久久人人人人人人| 天天躁夜夜躁狠狠躁躁| 国产精品一区www在线观看| 一级毛片 在线播放| 久久国产精品大桥未久av| 国产色爽女视频免费观看| 男人爽女人下面视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲一码二码三码区别大吗| 国产日韩欧美在线精品| www日本在线高清视频| 日韩av免费高清视频| 美女大奶头黄色视频| 少妇的逼水好多| 黄网站色视频无遮挡免费观看| 91在线精品国自产拍蜜月| 国产 一区精品| 亚洲人成77777在线视频| 少妇精品久久久久久久| 国产精品一区www在线观看| 亚洲情色 制服丝袜| 精品人妻偷拍中文字幕| 国产又色又爽无遮挡免| 女人被躁到高潮嗷嗷叫费观| av卡一久久| 成人国语在线视频| av.在线天堂| 另类亚洲欧美激情| 亚洲国产成人一精品久久久| 亚洲综合精品二区| 亚洲国产av影院在线观看| 极品人妻少妇av视频| 亚洲第一区二区三区不卡| 欧美变态另类bdsm刘玥| 在线亚洲精品国产二区图片欧美| 9191精品国产免费久久| 亚洲av福利一区| 国产黄色免费在线视频| 黄色一级大片看看| 亚洲欧美色中文字幕在线| 少妇熟女欧美另类| 男男h啪啪无遮挡| 一级爰片在线观看| 日韩一区二区三区影片| 精品卡一卡二卡四卡免费| 九色成人免费人妻av| 亚洲精品乱久久久久久| 亚洲精品自拍成人| 欧美日本中文国产一区发布| 高清在线视频一区二区三区| 国产黄色视频一区二区在线观看| 亚洲精品久久午夜乱码| 99久久中文字幕三级久久日本| 亚洲精品乱码久久久久久按摩| 国产成人精品福利久久| 天天影视国产精品| 超碰97精品在线观看| 亚洲精品国产av成人精品| 亚洲精品国产色婷婷电影| 人人妻人人澡人人看| 边亲边吃奶的免费视频| 久久久久精品人妻al黑| 国产xxxxx性猛交| 国产一级毛片在线| 99久久精品国产国产毛片| 在线观看国产h片| 亚洲av.av天堂| 蜜臀久久99精品久久宅男| 最近中文字幕2019免费版| 热99久久久久精品小说推荐| 久久精品国产亚洲av天美| 狂野欧美激情性bbbbbb| 国产精品久久久久久av不卡| 午夜久久久在线观看| 草草在线视频免费看| 国产精品 国内视频| 国产男女超爽视频在线观看| 免费av不卡在线播放| 午夜免费男女啪啪视频观看| 国产欧美日韩一区二区三区在线| 人妻少妇偷人精品九色| 美女福利国产在线| av一本久久久久| 桃花免费在线播放| 蜜臀久久99精品久久宅男| 最近中文字幕2019免费版| 人妻一区二区av| 免费少妇av软件| 天天躁夜夜躁狠狠躁躁| 少妇 在线观看| 丰满少妇做爰视频| 天堂8中文在线网| 久久久国产一区二区| 中文字幕最新亚洲高清| 久久久国产一区二区| 国产精品一区二区在线不卡| √禁漫天堂资源中文www| 国产成人精品婷婷| 女人精品久久久久毛片| 日本wwww免费看| 日韩中字成人| 波多野结衣一区麻豆| 成人手机av| 国产黄色免费在线视频| 久久久亚洲精品成人影院| 成人毛片60女人毛片免费| 中文字幕人妻丝袜制服| 亚洲av电影在线进入| 黄色配什么色好看| 久久久久国产网址| 久久久久精品人妻al黑| 十八禁网站网址无遮挡| 中国美白少妇内射xxxbb| 午夜免费男女啪啪视频观看| 赤兔流量卡办理| 精品人妻在线不人妻| 亚洲国产看品久久| 久久狼人影院| 美女中出高潮动态图| 日韩视频在线欧美| 免费人成在线观看视频色| 青春草视频在线免费观看| 国产日韩欧美在线精品| 在线观看一区二区三区激情| 又黄又爽又刺激的免费视频.| tube8黄色片| 国产av一区二区精品久久| 久久久精品免费免费高清| 成年人免费黄色播放视频| 久久久久精品久久久久真实原创| 国产精品久久久久久av不卡| 亚洲av在线观看美女高潮| 国产成人精品福利久久| 少妇被粗大猛烈的视频| 国产成人av激情在线播放| 下体分泌物呈黄色| 日韩视频在线欧美| 天天躁夜夜躁狠狠久久av| 黑人猛操日本美女一级片| 国产精品偷伦视频观看了| 少妇的逼好多水| 国产成人免费无遮挡视频| 成人二区视频| 尾随美女入室| 亚洲色图 男人天堂 中文字幕 | 人妻少妇偷人精品九色| 两个人免费观看高清视频| 美女大奶头黄色视频| 有码 亚洲区| 午夜激情av网站| av视频免费观看在线观看| 亚洲av日韩在线播放| 亚洲av.av天堂| 一区二区三区四区激情视频| 下体分泌物呈黄色| 久久国产精品男人的天堂亚洲 | 久久97久久精品| 国产精品嫩草影院av在线观看| 三上悠亚av全集在线观看| 久久亚洲国产成人精品v| 老司机影院毛片| 亚洲av国产av综合av卡| www.色视频.com| 久久韩国三级中文字幕| 亚洲国产成人一精品久久久| 成人综合一区亚洲| 免费高清在线观看日韩| 亚洲精品日韩在线中文字幕| 国产精品秋霞免费鲁丝片| 欧美精品av麻豆av| 久久国产亚洲av麻豆专区| 国产亚洲一区二区精品| 80岁老熟妇乱子伦牲交| 熟女电影av网| 久久久久视频综合| 亚洲国产最新在线播放| 国产精品久久久久久久久免| 亚洲国产看品久久| 久久99一区二区三区| 国产精品免费大片| 亚洲国产精品一区三区| 侵犯人妻中文字幕一二三四区| 国产日韩欧美亚洲二区| 国产成人一区二区在线| 久久99精品国语久久久| 久久ye,这里只有精品| 亚洲欧美一区二区三区国产| 青春草视频在线免费观看| 久久99一区二区三区| 一边亲一边摸免费视频| 美国免费a级毛片| 国产日韩欧美视频二区| 国产一级毛片在线| 日韩精品免费视频一区二区三区 | 亚洲精品视频女| 一级毛片电影观看| 久久久久国产精品人妻一区二区| 高清在线视频一区二区三区| 成人亚洲欧美一区二区av| 精品国产一区二区久久| 久久人人爽av亚洲精品天堂| 国产精品久久久久久精品古装| 亚洲人成网站在线观看播放| 色网站视频免费| 美女主播在线视频| 搡老乐熟女国产| 丝袜在线中文字幕| 亚洲成av片中文字幕在线观看 | 国产亚洲精品第一综合不卡 | 视频中文字幕在线观看| 婷婷色av中文字幕| 亚洲伊人色综图| 午夜福利乱码中文字幕| 色5月婷婷丁香| 满18在线观看网站| 女人精品久久久久毛片| 久久久久视频综合| 欧美 亚洲 国产 日韩一| 男女午夜视频在线观看 | 国产欧美另类精品又又久久亚洲欧美| 亚洲av免费高清在线观看| 99久久人妻综合| 欧美精品高潮呻吟av久久| 免费在线观看完整版高清| 午夜福利网站1000一区二区三区| 极品人妻少妇av视频| 啦啦啦视频在线资源免费观看| 少妇 在线观看| 亚洲国产毛片av蜜桃av| 亚洲国产日韩一区二区| 欧美人与性动交α欧美精品济南到 | 久久国产亚洲av麻豆专区| 侵犯人妻中文字幕一二三四区| av在线app专区| 在线精品无人区一区二区三| 午夜av观看不卡| 久久久精品94久久精品| 春色校园在线视频观看| 亚洲精品456在线播放app| 久久av网站| 日本午夜av视频| 久久影院123| 在线亚洲精品国产二区图片欧美| 欧美激情国产日韩精品一区| 美女脱内裤让男人舔精品视频| 中文字幕人妻熟女乱码| 丰满乱子伦码专区| 午夜激情av网站| 亚洲三级黄色毛片| 日韩一本色道免费dvd| xxx大片免费视频| 精品久久久精品久久久| 亚洲伊人色综图| 熟女av电影| 亚洲av中文av极速乱| 男人爽女人下面视频在线观看| 精品亚洲乱码少妇综合久久| 巨乳人妻的诱惑在线观看| 人人妻人人爽人人添夜夜欢视频| 亚洲av欧美aⅴ国产| 色婷婷av一区二区三区视频| 久久热在线av| 在线观看www视频免费| 久久这里有精品视频免费| 国产精品久久久久久久电影| 日韩三级伦理在线观看| 国产免费福利视频在线观看| 日本vs欧美在线观看视频| 国产成人av激情在线播放| 水蜜桃什么品种好| av视频免费观看在线观看| 久久女婷五月综合色啪小说| 2022亚洲国产成人精品| 精品久久蜜臀av无| 2021少妇久久久久久久久久久| 久久精品国产亚洲av天美| 国产精品久久久久久久电影| 国产一区二区在线观看av| xxxhd国产人妻xxx| 亚洲精品一区蜜桃| 成人亚洲精品一区在线观看| 日本与韩国留学比较| 成人国语在线视频| 国产av国产精品国产| 国产精品99久久99久久久不卡 | 黄片无遮挡物在线观看| 国产成人av激情在线播放| 热re99久久国产66热| 在线观看www视频免费| 伦精品一区二区三区| 亚洲欧洲国产日韩| 老司机亚洲免费影院| 国产在线免费精品| 只有这里有精品99| 国产男女内射视频| 亚洲国产最新在线播放| 女的被弄到高潮叫床怎么办| 成人综合一区亚洲| 最近中文字幕2019免费版| 这个男人来自地球电影免费观看 | 久久精品国产鲁丝片午夜精品| 91精品三级在线观看| 天天操日日干夜夜撸| 十分钟在线观看高清视频www| 高清不卡的av网站| 99热6这里只有精品| 日本91视频免费播放| 亚洲国产日韩一区二区| 日韩av在线免费看完整版不卡| 成人国产av品久久久| 久久久久视频综合| 黄色毛片三级朝国网站| 人妻少妇偷人精品九色| 极品少妇高潮喷水抽搐| 在线天堂中文资源库| 18在线观看网站| 高清av免费在线| 最近手机中文字幕大全| 成年av动漫网址| 99国产精品免费福利视频| 中文天堂在线官网| 成人国产av品久久久| 一边亲一边摸免费视频| 欧美日韩国产mv在线观看视频| 久久精品久久久久久久性| 免费人成在线观看视频色| 欧美日韩综合久久久久久| 日本色播在线视频| 国产视频首页在线观看| 亚洲四区av| 国产乱人偷精品视频| 亚洲在久久综合| 91午夜精品亚洲一区二区三区| 爱豆传媒免费全集在线观看| 国产1区2区3区精品| 黄网站色视频无遮挡免费观看| 亚洲精品久久成人aⅴ小说| 在线天堂最新版资源| 免费播放大片免费观看视频在线观看| 伦理电影免费视频| 妹子高潮喷水视频| 亚洲欧美精品自产自拍| 菩萨蛮人人尽说江南好唐韦庄| 精品少妇久久久久久888优播| 一二三四在线观看免费中文在 | 久久久国产精品麻豆| 一区在线观看完整版| 亚洲av电影在线观看一区二区三区| 下体分泌物呈黄色| 国产日韩欧美在线精品| 成人亚洲欧美一区二区av| 69精品国产乱码久久久| 久久久久人妻精品一区果冻| 久久久久精品性色| 亚洲国产看品久久| 永久网站在线| 色吧在线观看| 亚洲国产最新在线播放| 日韩制服丝袜自拍偷拍| 十八禁网站网址无遮挡| 91aial.com中文字幕在线观看| 国产片内射在线| 人妻系列 视频| 国产av一区二区精品久久| 男的添女的下面高潮视频| 亚洲av福利一区| 亚洲综合精品二区| videos熟女内射| 亚洲成色77777| 国产精品秋霞免费鲁丝片| 最近中文字幕高清免费大全6| 亚洲成人一二三区av| 国产精品不卡视频一区二区| a级毛片在线看网站| 日本猛色少妇xxxxx猛交久久| 日本欧美国产在线视频| 国产成人精品一,二区| 精品熟女少妇av免费看| 成人国产av品久久久| 国产视频首页在线观看| 国产精品99久久99久久久不卡 | 色吧在线观看| 春色校园在线视频观看| 国产高清三级在线| 亚洲欧美一区二区三区黑人 | 草草在线视频免费看| 王馨瑶露胸无遮挡在线观看| 久久精品国产亚洲av天美| 国产极品粉嫩免费观看在线| 亚洲色图综合在线观看| 国产欧美日韩一区二区三区在线| 国产精品久久久久久久电影| 少妇被粗大猛烈的视频| 国产成人免费无遮挡视频| 丝瓜视频免费看黄片| 色网站视频免费| 久久久久视频综合| 曰老女人黄片| 午夜免费观看性视频| a级毛片在线看网站| av一本久久久久| 午夜激情av网站| 赤兔流量卡办理| 一区二区三区精品91| 亚洲国产精品一区三区| 在线观看www视频免费| 亚洲在久久综合| 一区在线观看完整版| av卡一久久| 久久久国产欧美日韩av| 满18在线观看网站| 丰满乱子伦码专区| 啦啦啦啦在线视频资源| 国产在线免费精品| 亚洲av男天堂| 欧美国产精品va在线观看不卡| 日韩电影二区| freevideosex欧美| 国产精品一区二区在线不卡| 亚洲成人一二三区av| 国产白丝娇喘喷水9色精品| 我的女老师完整版在线观看| 亚洲av免费高清在线观看| 欧美变态另类bdsm刘玥| 最新的欧美精品一区二区| 久久99热这里只频精品6学生| 成年av动漫网址| 全区人妻精品视频| 少妇的逼好多水| 建设人人有责人人尽责人人享有的| 国产在线视频一区二区| 精品一区二区免费观看| 国产精品嫩草影院av在线观看| 久久这里有精品视频免费| 91国产中文字幕| 啦啦啦视频在线资源免费观看| 十八禁高潮呻吟视频| 满18在线观看网站| 亚洲国产精品一区三区| 成年av动漫网址| 亚洲欧美精品自产自拍| 国产视频首页在线观看| 18禁动态无遮挡网站| 99精国产麻豆久久婷婷| 免费久久久久久久精品成人欧美视频 | 在线观看国产h片| 飞空精品影院首页| 中文字幕另类日韩欧美亚洲嫩草| 精品久久国产蜜桃| 久久久久久久大尺度免费视频| 在线天堂最新版资源| 久久影院123| 涩涩av久久男人的天堂| 国产精品国产三级专区第一集| 亚洲精品aⅴ在线观看| 国产精品欧美亚洲77777| 欧美日韩亚洲高清精品| 国产免费一级a男人的天堂| 爱豆传媒免费全集在线观看| 又黄又粗又硬又大视频| 国产精品人妻久久久久久| 国产女主播在线喷水免费视频网站| 男女国产视频网站| 伊人久久国产一区二区| 日产精品乱码卡一卡2卡三| 国产免费一区二区三区四区乱码| 热99久久久久精品小说推荐| 少妇人妻久久综合中文| 人妻系列 视频| 中文字幕另类日韩欧美亚洲嫩草| 国产成人av激情在线播放| 国产又爽黄色视频| 少妇被粗大猛烈的视频| 人妻少妇偷人精品九色| 色94色欧美一区二区| 中文字幕最新亚洲高清| 考比视频在线观看| 91久久精品国产一区二区三区| 国产一区有黄有色的免费视频| av免费观看日本| 黄色视频在线播放观看不卡| 全区人妻精品视频| 久久久久久久精品精品| 男女无遮挡免费网站观看| 最黄视频免费看| 国产成人aa在线观看| 99精国产麻豆久久婷婷| 色视频在线一区二区三区| 精品视频人人做人人爽| 亚洲国产av影院在线观看| 久久99热6这里只有精品| 国产成人精品久久久久久| 中文字幕av电影在线播放| 亚洲人成网站在线观看播放| 亚洲一级一片aⅴ在线观看| 久久久久久久大尺度免费视频| 亚洲精品乱码久久久久久按摩| 一本久久精品| 岛国毛片在线播放| 中文字幕最新亚洲高清| 在线观看一区二区三区激情| 日韩伦理黄色片| 国产精品一二三区在线看| 国产成人精品无人区| 男男h啪啪无遮挡| 色5月婷婷丁香| 亚洲欧洲日产国产| 亚洲国产看品久久| 大码成人一级视频| 高清毛片免费看| 国产精品无大码| 亚洲精品第二区| 国产免费一级a男人的天堂| 99九九在线精品视频| 国产在线视频一区二区| 成人影院久久| 亚洲国产看品久久| 成人国产av品久久久| 精品少妇内射三级| 91精品三级在线观看| 国产视频首页在线观看| 久久国产精品男人的天堂亚洲 | 欧美日韩亚洲高清精品| 日产精品乱码卡一卡2卡三| 国产精品久久久久久精品电影小说| 人人妻人人澡人人爽人人夜夜| 免费大片18禁| 热99久久久久精品小说推荐| 中文精品一卡2卡3卡4更新| 精品人妻一区二区三区麻豆| 婷婷色综合大香蕉| 丰满饥渴人妻一区二区三| 亚洲激情五月婷婷啪啪| 国产片特级美女逼逼视频| 精品国产一区二区三区久久久樱花| 性色avwww在线观看| 久久久久久久久久久免费av| 校园人妻丝袜中文字幕| 97超碰精品成人国产| 夫妻午夜视频| 日韩电影二区| 亚洲国产欧美在线一区| 精品亚洲成国产av| 亚洲国产精品专区欧美| 内地一区二区视频在线| 久久精品国产自在天天线| 国产一级毛片在线| 国产精品无大码| 国产亚洲一区二区精品| 国产极品天堂在线| 一级黄片播放器| 午夜日本视频在线| 国产黄色视频一区二区在线观看| 永久免费av网站大全| 五月天丁香电影| 亚洲欧美一区二区三区黑人 | 亚洲国产最新在线播放| 亚洲经典国产精华液单| 久久 成人 亚洲| 亚洲中文av在线| 亚洲色图综合在线观看| 久久久久精品人妻al黑| 人人妻人人添人人爽欧美一区卜| 人人妻人人爽人人添夜夜欢视频| 亚洲国产精品一区三区| 亚洲,欧美精品.| 免费大片18禁| 欧美激情国产日韩精品一区| 人人澡人人妻人| 高清视频免费观看一区二区| 国产高清国产精品国产三级| 18+在线观看网站| 国产高清国产精品国产三级| 18禁国产床啪视频网站| 中文字幕最新亚洲高清| 国产伦理片在线播放av一区| 国产日韩一区二区三区精品不卡| 中国美白少妇内射xxxbb| 丰满迷人的少妇在线观看| 免费在线观看完整版高清| 青青草视频在线视频观看| 99re6热这里在线精品视频| 在线观看美女被高潮喷水网站| 99国产精品免费福利视频| av在线播放精品| 女性生殖器流出的白浆| 91精品伊人久久大香线蕉| 夫妻性生交免费视频一级片| 人妻人人澡人人爽人人| 制服丝袜香蕉在线| 人妻少妇偷人精品九色| 亚洲激情五月婷婷啪啪| 人妻系列 视频| 亚洲熟女精品中文字幕| 亚洲国产成人一精品久久久| 免费播放大片免费观看视频在线观看| 亚洲美女搞黄在线观看| av免费在线看不卡| 久久国产精品男人的天堂亚洲 | 国产精品久久久av美女十八| 日韩av免费高清视频| 人妻 亚洲 视频| 两个人看的免费小视频| 亚洲精品美女久久av网站| 在线观看免费高清a一片| 国产高清不卡午夜福利| 春色校园在线视频观看| 男女下面插进去视频免费观看 | 国产福利在线免费观看视频| 国产成人aa在线观看| 亚洲精品,欧美精品| 亚洲国产成人一精品久久久| 精品久久久久久电影网|