• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gaussian mixture model clustering with completed likelihood minimum message length criterion

    2013-01-08 08:39:04ZengHongLuWeiSongAiguo

    Zeng HongLu WeiSong Aiguo

    (1 School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)(2 College of Engineering, Nanjing Agricultural University, Nanjing 210031, China)

    The Gaussian mixture model (GMM) is commonly used as a basis for cluster analysis[1-2]. In general, the GMM-based clustering involves two problems. One is the estimation of parameters for the mixture models. The other is the model order selection for determining the number of components. The expectation-maximization (EM) algorithm is often used to estimate the parameters of the mixture model which fits the observed data. Popular model selection criteria in the literature include the Bayesian information criterion (BIC), Akaike’s information criterion (AIC), the integrated likelihood criterion (ILC), etc.

    However, most previous studies generally assume the Gaussian components for the observed data in the mixture model. If the true model is not in the family of the assumed ones, the BIC criterion tends to overestimate the correct model size regardless of the separation of the components. In the meantime, because the EM algorithm is a local method, it is prone to falling into poor local optima in such a case, leading to meaningless estimation. In order to approximate such a distribution more accurately, the feature weighted GMM, which explicitly takes the non-Gaussian distribution into account, is adopted in Refs.[3-8]. Nevertheless, the approaches in Refs.[3-8] assume that the data features are independent, which is often not the case for real applications. Based on the minimum message length (MML) criterion, Ref.[9] proposed an improved EM algorithm that can effectively avoid poor local optima. But we find that it still tends to select much more Gaussian components than necessary for fitting the data with uniform distribution, giving obscure evidence for the clustering structure of data.

    We propose a novel method to address the model selection and parameter estimation problems in the GMM-based clustering method when the true data distribution is against the assumed one. In particular, we derive an improved model selection criterion for mixture models with an explicit objective of clustering. Furthermore, with the proposed criterion as the cost function, an improved EM algorithm is developed for estimating parameters. Ultimately, the proposed method is not only able to rectify the over-fitting tendency of some representative model selection criteria, but also able to avoid poor local optima of the EM algorithm.

    1 Completed Likelihood of the Gaussian Mixture Model

    Suppose that aD-dimensional sample follows aK-component mixture distribution, then the probability density function ofycan be written as

    (1)

    (2)

    logp(Y|Θ)+logp(Z|Y,Θ)=

    (3)

    wherepnkis the conditional probability ofynbelonging to thek-th component and can be computed as

    (4)

    (5)

    where

    (6)

    2 Clustering with Completed Likelihood Minimum Message Length(CL-MML) Criterion

    2.1 Completed likelihood minimum message length cri-terion

    (7)

    (8)

    (9)

    2.2 Estimation of GMM parameters

    For the GMM, each component follows the Gaussian distribution, i.e.,p(y|θk)=G(y|μk,Σk), whereμkandΣkare the mean and the covariance matrix of thek-th Gaussian components. For a fixed model orderK, we estimate the GMM parametersΘby an improved EM algorithm, with CL-MML in Eq.(9) as the cost function. The proposed EM algorithm alternatively applies the following two steps in thet-th iteration until convergence:

    E-step: Compute the conditional expectation:

    (10)

    M-step: Update the parameters of the GMM by

    (11)

    (12)

    (13)

    3 Experiments

    We present experimental results to illustrate the effectiveness of CL-MML for GMM-based clustering (denoted as GMM+CL-MML), compared to that of BIC (denoted as GMM+BIC), MML (denoted as GMM+MML), as well as the method utilizing the feature-weighted GMM and the integrated likelihood criterion (FWGMM+ILC) for clustering[3].

    3.1 Synthetic data

    We consider a synthetic 2D data set where data from each cluster follow the uniform random distribution:

    ur(y1,y2)=

    wherer={r1,r2,r3,r4} are the parameters of the distribution. 1000 data points are generated using a 5-component uniform mixture model. Its parameters are as follows:

    w1=0.1,w2=w4=w5=0.2,w3=0.3

    r1={-1.89, 4.07, 4.89, 7.94}

    r2={1.11, 5.11, 2.47, 3.53}

    r3={5.17, 6.53, 2.77, 5.77}

    r4={4.31, 6.49, 6.29, 6.71}

    r5={5.58, 8.42,-0.77, 2.23}

    The Gaussian components are adopted to fit such a uniform mixture data set, for which the true distribution models are very different from the assumed ones. The models with the number of componentsKvarying from 1 toKmax, a number that is considered to be safely larger than the true number (i.e., 5), are evaluated.Kmaxis set to be 30 in this case. We evaluate these methods by the accuracy in estimating the model order and structure. Tab.1 illustrates the number of times that each order is selected over 50 trials. Fig.1 shows typical clustering results by these four methods.

    It can be observed that for such a data set, the GMM+BIC approach not only fails to yield a good estimation of model order (see Tab.1), but also leads to a meaningless mixture model by the standard EM (see Fig.1(a)). Although the MML criterion generates a GMM which fits the data well, it suffers from severe over-fitting as shown in Fig.1(b) and Tab.1. Since the features are assumed to be independent in FWGMM, it also tends to select more components in order to approximate the distribution of data accurately (see Fig.1(c) and Tab.1).

    Tab.1 Number of times for selected model orders over 50trials on synthetic data

    In contrast, due to the introduction of an extra penalty to the MML criterion, the proposed CL-MML criterion-based GMM clustering favors much fewer but more “powerful” components which successfully detect the clusters. The clustering result in a typical successful trial of CL-MML is shown in Fig.1(d).

    Fig.1 Typical clustering results of different methods on the synthetic data.(a) GMM+BIC;(b) GMM+MML;(c) FWGMM+ILC;(d) GMM+CL-MML

    3.2 Real data

    We also measure performance on four real-world data sets from the UCI repository. The number of classes, the number of samples and the dimensionality of each data set are summarized in Tab.2. For each data set, we randomly split the data 50 times into training and test sets. Training sets are created from 50% of the overall data points. We do not use any label in the training stage.Kmaxis still set to be 30. After model learning, we label each component by majority vote using the class labels provided for the test data, and we measure the test set classification accuracy as the matching degree between such obtained labels and the original true labels. The means and the standard deviations of the classification accuracy, as well as the number of components for each data set, over 50 trials are summarized in Tab.2. The best results are marked in bold.

    Tab.2 Comparison of different clustering approaches on real data sets

    Several trends are apparent. First, the numbers of components determined by the proposed method are generally less than those by the compared counterparts. This may be due to the reason that the distribution of a real data set often does not strictly follow the Gaussian mixture model, and most GMM-based clustering approaches tend to generate more components than necessary in order to better fit the data. However, it is found that the CL-MML can rectify the over-fitting tendency of the compared methods under such circumstances. This can be explained by the reason that it takes the separation among components into account. Secondly, the proposed method yields the most accurate results among all the approaches on these four data sets. This justifies that the proposed approach can estimate the GMM parameters more properly than the compared ones.

    4 Conclusion

    In this paper, by taking the capability of the candidate GMM to provide a relevant partition to the data into account, an improved GMM-based clustering approach is developed for the difficult scenario where the true distribution of data is against the assumed GMM. The experimental results show that the proposed method is not only able to rectify the over-fitting tendency of the compared methods for performing the model selection, but also able to obtain higher clustering accuracy compared to the existing methods.

    [1]Zeng H, Cheung Y M. Feature selection and kernel learning for local learning based clustering [J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2011,33(8):1532-1547.

    [2]Jain A K. Data clustering: 50 years beyondK-means [J].PatternRecognitionLetters, 2010,31(8):651-666.

    [3]Bouguila N, Almakadmeh K, Boutemedjet S. A finite mixture model for simultaneous high-dimensional clustering, localized feature selection and outlier rejection [J].ExpertSystemswithApplications, 2012,39(7): 6641-6656.

    [4]Law M H C, Figueiredo M A T, Jain A K. Simultaneous feature selection and clustering using mixture models [J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2004,26(9):1154-1166.

    [5]Markley S C, Miller D J. Joint parsimonious modeling and model order selection for multivariate Gaussian mixtures [J].IEEEJournalofSelectedTopicsinSignalProcessing, 2010,4(3):548-559.

    [6]Li Y, Dong M, Hua J. Localized feature selection for clustering [J].PatternRecognitionLetters, 2008,29(1):10-18.

    [7]Allili M S, Ziou D, Bouguila N, et al. Image and video segmentation by combining unsupervised generalized Gaussian mixture modeling and feature selection [J].IEEETransactionsonCircuitsandSystemsforVideoTechnology, 2010,20(10):1373-1377.

    [8]Fan W, Bouguila N, Ziou D, Unsupervised hybrid feature extraction selection for high-dimensional non-Gaussian data clustering with variational inference [J].IEEETransactionsonKnowledgeandDataEngineering,2012, in press.

    [9]Figueiredo M A F, Jain A K. Unsupervised learning of finite mixture models [J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2002,24(3): 381-396.

    [10]Wallace C S, Dowe D L. MML clustering of multi-state, Poisson, von Mises circular and Gaussian distributions [J].StatisticsandComputing, 2000,10(1): 73-83.

    av在线老鸭窝| 亚洲国产精品国产精品| 亚洲人成网站在线观看播放| 国产av码专区亚洲av| 波多野结衣一区麻豆| 大码成人一级视频| 国产成人免费无遮挡视频| 久久久久精品性色| av在线老鸭窝| 美女脱内裤让男人舔精品视频| 免费观看a级毛片全部| 777米奇影视久久| 精品国产国语对白av| 国产精品久久久久久精品古装| 亚洲欧美色中文字幕在线| av有码第一页| 日本色播在线视频| 久久午夜综合久久蜜桃| 亚洲国产精品成人久久小说| 香蕉精品网在线| 老女人水多毛片| 午夜免费男女啪啪视频观看| 波野结衣二区三区在线| 交换朋友夫妻互换小说| 18在线观看网站| 亚洲一级一片aⅴ在线观看| 搡老乐熟女国产| av不卡在线播放| 韩国高清视频一区二区三区| 精品国产超薄肉色丝袜足j| 女的被弄到高潮叫床怎么办| 国产乱人偷精品视频| 国产成人精品一,二区| 国产精品香港三级国产av潘金莲 | 婷婷色综合大香蕉| 五月伊人婷婷丁香| 成人国产av品久久久| 黄片播放在线免费| 黄频高清免费视频| 亚洲 欧美一区二区三区| 七月丁香在线播放| 色婷婷av一区二区三区视频| 中文精品一卡2卡3卡4更新| 爱豆传媒免费全集在线观看| 桃花免费在线播放| 亚洲欧美一区二区三区黑人 | 亚洲四区av| 国产精品久久久久久久久免| 韩国精品一区二区三区| 18禁观看日本| 国产成人欧美| 国产乱来视频区| 午夜精品国产一区二区电影| 国产精品久久久av美女十八| 精品亚洲乱码少妇综合久久| 婷婷色av中文字幕| 久久精品aⅴ一区二区三区四区 | 777久久人妻少妇嫩草av网站| 欧美日韩av久久| 久久久久久久久免费视频了| 男女午夜视频在线观看| 熟妇人妻不卡中文字幕| 秋霞伦理黄片| 美女中出高潮动态图| 欧美人与善性xxx| 伦精品一区二区三区| 免费在线观看完整版高清| 91精品三级在线观看| 欧美最新免费一区二区三区| 观看av在线不卡| 精品少妇久久久久久888优播| 性色av一级| 国产成人一区二区在线| 国产精品一国产av| 久久青草综合色| 在线亚洲精品国产二区图片欧美| 日韩熟女老妇一区二区性免费视频| 欧美亚洲 丝袜 人妻 在线| 午夜久久久在线观看| 热99国产精品久久久久久7| 国产又爽黄色视频| 亚洲av欧美aⅴ国产| 国产男女内射视频| 一二三四在线观看免费中文在| 一区二区日韩欧美中文字幕| 美女大奶头黄色视频| 欧美中文综合在线视频| 韩国av在线不卡| 欧美黄色片欧美黄色片| 五月伊人婷婷丁香| 午夜福利视频精品| videos熟女内射| 国产av码专区亚洲av| 久久久久国产一级毛片高清牌| 久久国内精品自在自线图片| 国产色婷婷99| 亚洲精品视频女| 青春草亚洲视频在线观看| 建设人人有责人人尽责人人享有的| 亚洲久久久国产精品| 亚洲熟女精品中文字幕| 久久韩国三级中文字幕| 日本91视频免费播放| 香蕉丝袜av| 国产精品亚洲av一区麻豆 | 欧美成人午夜免费资源| 精品国产一区二区三区久久久樱花| 国产97色在线日韩免费| 欧美日韩精品网址| 尾随美女入室| 午夜av观看不卡| 国产极品粉嫩免费观看在线| 十八禁高潮呻吟视频| 日韩制服丝袜自拍偷拍| 人妻 亚洲 视频| 精品酒店卫生间| 日韩av不卡免费在线播放| 久久99精品国语久久久| 精品国产乱码久久久久久小说| 亚洲国产欧美在线一区| 亚洲精品久久午夜乱码| 男人爽女人下面视频在线观看| 人妻少妇偷人精品九色| 亚洲天堂av无毛| 如日韩欧美国产精品一区二区三区| 亚洲人成网站在线观看播放| 国产一区二区激情短视频 | 波野结衣二区三区在线| 婷婷色麻豆天堂久久| 菩萨蛮人人尽说江南好唐韦庄| 我要看黄色一级片免费的| 精品国产一区二区三区四区第35| freevideosex欧美| 在线观看美女被高潮喷水网站| 少妇 在线观看| 久久人人爽人人片av| 一级毛片电影观看| 亚洲成人手机| 日韩 亚洲 欧美在线| 国产日韩欧美亚洲二区| 国产日韩欧美亚洲二区| 日韩电影二区| 蜜桃在线观看..| 亚洲中文av在线| 香蕉国产在线看| av一本久久久久| 黄色视频在线播放观看不卡| 91在线精品国自产拍蜜月| 观看av在线不卡| 国产熟女欧美一区二区| 黄片小视频在线播放| 亚洲少妇的诱惑av| 性色av一级| 国产精品嫩草影院av在线观看| 一边亲一边摸免费视频| 日日爽夜夜爽网站| 日韩免费高清中文字幕av| 欧美日韩亚洲高清精品| 伦理电影大哥的女人| 免费不卡的大黄色大毛片视频在线观看| 九色亚洲精品在线播放| av有码第一页| 免费久久久久久久精品成人欧美视频| 久久久久久免费高清国产稀缺| 欧美最新免费一区二区三区| 欧美另类一区| 久久久久久久大尺度免费视频| 最近中文字幕2019免费版| 国产亚洲欧美精品永久| 亚洲精品中文字幕在线视频| 日本免费在线观看一区| 日韩一卡2卡3卡4卡2021年| 少妇的丰满在线观看| 亚洲四区av| 国产精品国产三级国产专区5o| 国产精品人妻久久久影院| 一级毛片电影观看| 毛片一级片免费看久久久久| 国产精品国产三级国产专区5o| 久久精品国产a三级三级三级| 18禁国产床啪视频网站| 精品久久久久久电影网| 久久人人爽人人片av| 国产白丝娇喘喷水9色精品| 在线观看三级黄色| 秋霞在线观看毛片| 成人午夜精彩视频在线观看| 男人操女人黄网站| 精品第一国产精品| 精品卡一卡二卡四卡免费| 成人黄色视频免费在线看| 亚洲精品久久久久久婷婷小说| av有码第一页| 寂寞人妻少妇视频99o| 国产一区二区三区综合在线观看| 久久精品aⅴ一区二区三区四区 | 亚洲五月色婷婷综合| 国产高清国产精品国产三级| 日本猛色少妇xxxxx猛交久久| 免费观看a级毛片全部| 国产国语露脸激情在线看| 国产精品三级大全| av电影中文网址| 自线自在国产av| 亚洲精品一二三| 国产成人精品久久久久久| 成人国产av品久久久| 日本色播在线视频| 日韩精品有码人妻一区| 国产一区亚洲一区在线观看| 亚洲精品av麻豆狂野| 亚洲欧美精品综合一区二区三区 | 1024视频免费在线观看| videossex国产| 久久久欧美国产精品| 国产国语露脸激情在线看| 午夜激情av网站| 成人免费观看视频高清| 夫妻午夜视频| 国产深夜福利视频在线观看| 国产精品国产三级专区第一集| 精品卡一卡二卡四卡免费| 亚洲视频免费观看视频| 日韩三级伦理在线观看| 飞空精品影院首页| 中文字幕另类日韩欧美亚洲嫩草| 国产精品偷伦视频观看了| 两个人免费观看高清视频| 午夜免费男女啪啪视频观看| 亚洲第一av免费看| 精品酒店卫生间| 尾随美女入室| 亚洲,欧美,日韩| 国产在线视频一区二区| 欧美日本中文国产一区发布| 亚洲国产日韩一区二区| 日本黄色日本黄色录像| 亚洲第一青青草原| 少妇被粗大的猛进出69影院| h视频一区二区三区| 永久网站在线| 26uuu在线亚洲综合色| 国产人伦9x9x在线观看 | 久久精品久久久久久久性| 亚洲 欧美一区二区三区| 亚洲精品在线美女| 美女午夜性视频免费| 日韩熟女老妇一区二区性免费视频| 两性夫妻黄色片| www.熟女人妻精品国产| 丝袜脚勾引网站| 久久久久久久亚洲中文字幕| 伊人亚洲综合成人网| 久久韩国三级中文字幕| 中文字幕人妻丝袜一区二区 | xxxhd国产人妻xxx| 男人添女人高潮全过程视频| 极品人妻少妇av视频| 国产亚洲一区二区精品| 天天操日日干夜夜撸| 久久 成人 亚洲| 一区福利在线观看| 少妇的丰满在线观看| 亚洲精品国产av蜜桃| 纵有疾风起免费观看全集完整版| 国语对白做爰xxxⅹ性视频网站| 深夜精品福利| 亚洲精品国产色婷婷电影| 日本91视频免费播放| 丝袜人妻中文字幕| 91久久精品国产一区二区三区| 午夜福利网站1000一区二区三区| 少妇人妻久久综合中文| 精品久久久久久电影网| 激情五月婷婷亚洲| 丝袜美足系列| 久久午夜福利片| 人妻少妇偷人精品九色| 美女视频免费永久观看网站| 少妇精品久久久久久久| 韩国精品一区二区三区| 亚洲国产精品国产精品| 精品一品国产午夜福利视频| 亚洲男人天堂网一区| 国产精品一区二区在线观看99| 亚洲欧美一区二区三区黑人 | 日韩av在线免费看完整版不卡| 黄片播放在线免费| 午夜精品国产一区二区电影| 国产有黄有色有爽视频| 大片电影免费在线观看免费| 99久久精品国产国产毛片| 侵犯人妻中文字幕一二三四区| 妹子高潮喷水视频| 成年动漫av网址| 青草久久国产| 少妇熟女欧美另类| 91午夜精品亚洲一区二区三区| 超碰成人久久| 一级毛片黄色毛片免费观看视频| 国产1区2区3区精品| 亚洲第一av免费看| 各种免费的搞黄视频| www.自偷自拍.com| 日韩精品有码人妻一区| 如何舔出高潮| 在线观看免费日韩欧美大片| 9191精品国产免费久久| 国产欧美亚洲国产| 免费观看性生交大片5| 久久亚洲国产成人精品v| av一本久久久久| 精品国产超薄肉色丝袜足j| 亚洲精品av麻豆狂野| 精品少妇一区二区三区视频日本电影 | 丰满饥渴人妻一区二区三| 18禁动态无遮挡网站| 精品少妇一区二区三区视频日本电影 | 青草久久国产| 久久影院123| 久久国内精品自在自线图片| 在线观看免费视频网站a站| 青草久久国产| 国产在视频线精品| 热99久久久久精品小说推荐| 免费在线观看黄色视频的| 美女国产高潮福利片在线看| 十八禁网站网址无遮挡| 成年女人毛片免费观看观看9 | 亚洲精品国产av成人精品| 久久久久久久久久久免费av| 久久青草综合色| 亚洲,欧美精品.| 各种免费的搞黄视频| 妹子高潮喷水视频| 9191精品国产免费久久| 99久久人妻综合| 国产黄色免费在线视频| 婷婷色综合www| 免费在线观看完整版高清| 成人国语在线视频| 侵犯人妻中文字幕一二三四区| 亚洲国产日韩一区二区| 国产精品欧美亚洲77777| 高清在线视频一区二区三区| 日本av免费视频播放| 国产 精品1| 色94色欧美一区二区| 天美传媒精品一区二区| 精品视频人人做人人爽| 日韩制服骚丝袜av| 男人爽女人下面视频在线观看| 久久久久久久久久久免费av| 综合色丁香网| av视频免费观看在线观看| 久久久久国产一级毛片高清牌| 18禁动态无遮挡网站| 视频在线观看一区二区三区| 欧美人与性动交α欧美软件| 日韩,欧美,国产一区二区三区| 色哟哟·www| 久久久国产欧美日韩av| av福利片在线| 少妇 在线观看| 一级毛片黄色毛片免费观看视频| 国产av国产精品国产| 久久久久久久亚洲中文字幕| 街头女战士在线观看网站| 不卡av一区二区三区| 国产一区二区激情短视频 | 91久久精品国产一区二区三区| 亚洲精品国产av蜜桃| 日韩av不卡免费在线播放| 亚洲国产最新在线播放| av视频免费观看在线观看| 久久这里只有精品19| 黄网站色视频无遮挡免费观看| 大话2 男鬼变身卡| 人妻少妇偷人精品九色| 国产精品国产三级专区第一集| 国产乱来视频区| 久久精品亚洲av国产电影网| 欧美日韩亚洲高清精品| 久久精品国产自在天天线| 中文字幕亚洲精品专区| 性少妇av在线| 免费少妇av软件| 一级片'在线观看视频| 青春草视频在线免费观看| 国产亚洲欧美精品永久| 18+在线观看网站| 伦理电影免费视频| 91精品三级在线观看| av国产精品久久久久影院| 欧美+日韩+精品| 中国国产av一级| 国产精品麻豆人妻色哟哟久久| 观看av在线不卡| 最近的中文字幕免费完整| 夫妻性生交免费视频一级片| 人人澡人人妻人| 久久久精品免费免费高清| 久久久久久伊人网av| 中文字幕亚洲精品专区| 纵有疾风起免费观看全集完整版| 国产成人a∨麻豆精品| 99re6热这里在线精品视频| 在线观看三级黄色| 国产深夜福利视频在线观看| 视频在线观看一区二区三区| 国产免费一区二区三区四区乱码| 捣出白浆h1v1| 日本猛色少妇xxxxx猛交久久| 亚洲图色成人| 最新的欧美精品一区二区| 色播在线永久视频| 蜜桃在线观看..| 欧美精品国产亚洲| 日韩制服丝袜自拍偷拍| 久久99蜜桃精品久久| 下体分泌物呈黄色| 1024视频免费在线观看| 久热久热在线精品观看| 久久久精品国产亚洲av高清涩受| 精品亚洲成国产av| 夫妻午夜视频| 久久久久精品人妻al黑| 一级片免费观看大全| 久久久久精品性色| 成人手机av| 老汉色∧v一级毛片| 国产国语露脸激情在线看| 91成人精品电影| 成人国语在线视频| 国产av一区二区精品久久| 久久影院123| 成年人免费黄色播放视频| 好男人视频免费观看在线| 免费女性裸体啪啪无遮挡网站| a 毛片基地| 一级片免费观看大全| 在线观看www视频免费| 国产熟女午夜一区二区三区| 啦啦啦啦在线视频资源| 欧美亚洲 丝袜 人妻 在线| 国产精品国产三级国产专区5o| 午夜av观看不卡| 日本av手机在线免费观看| 精品人妻熟女毛片av久久网站| 久久久久人妻精品一区果冻| 十八禁网站网址无遮挡| 天天躁日日躁夜夜躁夜夜| 性高湖久久久久久久久免费观看| 熟女少妇亚洲综合色aaa.| 高清av免费在线| 久久精品国产亚洲av天美| 久久99蜜桃精品久久| 女性被躁到高潮视频| 99re6热这里在线精品视频| 大片电影免费在线观看免费| 狠狠精品人妻久久久久久综合| 电影成人av| 午夜91福利影院| 亚洲国产看品久久| 黄片无遮挡物在线观看| 精品国产国语对白av| 久久久精品免费免费高清| 国产欧美日韩综合在线一区二区| 亚洲欧美中文字幕日韩二区| 国产白丝娇喘喷水9色精品| 精品午夜福利在线看| 丰满饥渴人妻一区二区三| 亚洲成人av在线免费| 国产精品三级大全| 亚洲精品国产av蜜桃| 免费女性裸体啪啪无遮挡网站| 国产视频首页在线观看| av在线老鸭窝| 久久精品国产自在天天线| 免费看av在线观看网站| 亚洲国产精品999| 一级毛片 在线播放| 男人舔女人的私密视频| 日本av免费视频播放| 激情视频va一区二区三区| 国产精品一国产av| 久久久a久久爽久久v久久| 国产精品欧美亚洲77777| 日韩,欧美,国产一区二区三区| 夜夜骑夜夜射夜夜干| 日韩人妻精品一区2区三区| 一区二区三区激情视频| 久久久久精品久久久久真实原创| 青春草视频在线免费观看| 在线观看美女被高潮喷水网站| 久久久久久久久久人人人人人人| 欧美日韩av久久| av免费观看日本| 午夜福利视频在线观看免费| www.熟女人妻精品国产| 色94色欧美一区二区| 9热在线视频观看99| 波多野结衣一区麻豆| tube8黄色片| 亚洲av电影在线观看一区二区三区| 大香蕉久久网| 欧美日韩av久久| 日韩中字成人| 亚洲少妇的诱惑av| 亚洲av男天堂| 欧美av亚洲av综合av国产av | 99久久精品国产国产毛片| 岛国毛片在线播放| 搡老乐熟女国产| 国产xxxxx性猛交| 一级毛片 在线播放| 涩涩av久久男人的天堂| 国产成人91sexporn| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧洲国产日韩| 老司机亚洲免费影院| 精品少妇一区二区三区视频日本电影 | 久久久久视频综合| 老汉色∧v一级毛片| 1024视频免费在线观看| 我要看黄色一级片免费的| 精品酒店卫生间| 天堂8中文在线网| 久久精品熟女亚洲av麻豆精品| 国产成人免费观看mmmm| 性色av一级| 亚洲激情五月婷婷啪啪| 美国免费a级毛片| 国产在线视频一区二区| 精品一区在线观看国产| 欧美av亚洲av综合av国产av | 婷婷色综合大香蕉| 飞空精品影院首页| 亚洲av中文av极速乱| www日本在线高清视频| 寂寞人妻少妇视频99o| 精品久久久精品久久久| 亚洲精品,欧美精品| 丝袜喷水一区| 色视频在线一区二区三区| 永久网站在线| 久久久久久人人人人人| 大片电影免费在线观看免费| av有码第一页| 免费黄色在线免费观看| 桃花免费在线播放| 人妻一区二区av| 亚洲av免费高清在线观看| 欧美人与性动交α欧美精品济南到 | 叶爱在线成人免费视频播放| 在线观看www视频免费| 久久久久国产一级毛片高清牌| 欧美日本中文国产一区发布| a 毛片基地| 日本wwww免费看| 熟女av电影| 超碰成人久久| 欧美bdsm另类| 国产又色又爽无遮挡免| 亚洲国产最新在线播放| 日本av免费视频播放| 精品国产一区二区三区四区第35| 日日爽夜夜爽网站| 亚洲激情五月婷婷啪啪| 91成人精品电影| 久久久久久久精品精品| 久久久久久久久久久久大奶| 自线自在国产av| av天堂久久9| 成年美女黄网站色视频大全免费| 欧美日韩亚洲高清精品| 一级毛片电影观看| 熟女电影av网| 飞空精品影院首页| 欧美少妇被猛烈插入视频| 欧美最新免费一区二区三区| 丰满饥渴人妻一区二区三| 在线观看三级黄色| 国产白丝娇喘喷水9色精品| 人妻系列 视频| 久久久久国产一级毛片高清牌| 精品酒店卫生间| 少妇熟女欧美另类| 精品久久蜜臀av无| 成年人免费黄色播放视频| 久久久久国产精品人妻一区二区| 日韩精品有码人妻一区| 欧美av亚洲av综合av国产av | 国产亚洲欧美精品永久| 国产又色又爽无遮挡免| 国产人伦9x9x在线观看 | 97在线视频观看| 伦精品一区二区三区| 国精品久久久久久国模美| 国产白丝娇喘喷水9色精品| 欧美日韩国产mv在线观看视频| 国产熟女欧美一区二区| 在现免费观看毛片| 日韩一本色道免费dvd| 三级国产精品片| 欧美日韩成人在线一区二区| 黄色 视频免费看| 国产福利在线免费观看视频| 水蜜桃什么品种好| 18在线观看网站| 久热久热在线精品观看| 精品久久久久久电影网| 国产又爽黄色视频| 91久久精品国产一区二区三区| 在线精品无人区一区二区三|