• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of regularized logistic regression for movement-related potentials-based EEG classification

    2013-01-08 08:38:58HuChenchenWangHaixian

    Hu Chenchen Wang Haixian

    (Research Center for Learning Science, Southeast University, Nanjing 210096, China)

    Brain-computer interface (BCI) is a system to help patients with severe motor disabilities (e.g., amyotrophic lateral sclerosis, cerebral vascular accident and cerebral palsy) to express their intentions and manipulate the external environment. Moreover, it provides a new way of entertainment through which people can play electronic games without finger movement[1-5]. A variety of noninvasive technologies of electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) can be applied to BCI. Nevertheless, the EEG is commercially affordable and friendly operable. It also has excellent temporal resolution[6]. Our BCI research focuses on EEG signals.

    The BCI system contains signal acquisition, preprocessing, feature extraction, feature selection and pattern matching that converts input signals into commands. The key point of BCI is signal processing, which has two purposes: feature extraction and classification. Current research typically uses features extracted by principal component analysis (PCA)[7], independent component analysis (ICA)[8], and common spatial pattern (CSP)[9]. The favorite classifications include linear discriminate analysis (LDA)[10], neural network (NN), and support vector machine (SVM)[11]. For the classification problem, the estimation of posterior probability plays an important role and the posterior probability can be directly used to predict labels of testing trials[12]. Logistic regression (LR) is a popular binary classification method based on the posterior probability and is often applied in EEG signal processing. The main advantage of LR is that it computes a probability value rather than a score and no prior feature extraction is required[13-14]. Meanwhile, the regression coefficients resemble CSP filters that transform original high-dimensional EEG data into a low-dimensional feature space which contains beneficial information for classification. However, LR is a global linear approach that ignores manifold information between different EEG trials. Besides, when few EEG trials contain outliers, the performance of LR may be deteriorated. Therefore, it is useful to incorporate the manifold regularization into LR[15].

    The family of algorithms based on manifold learning[16], such as isometric map (ISOMAP), locally linear embedding (LLE), Laplace eigenmaps, and locality preserving projection (LPP)[17], is developed to preserve the topological structure of data points. In this paper, we combine the LPP regularizer term with sparse logistic regression (SLR)[18-19], called local sparse logistic regression (LSLR). The goal of the LSLR approach is to preserve the neighborhood information of original feature space in the framework of SLR. Computationally, to obtain the weighing vector, we use a bound optimization method with a component-wise update procedure. We demonstrate the effectiveness of our proposed method on an EEG-based BCI competition data set.

    1 Methods

    1.1 Sparse logistic regression

    LetD={(X1,y1),…,(Xn,yn)}be a given data set.Xiis a raw EEG signal denoted by aT×Cmatrix, whereTis the number of recording time samples,Cis the number of EEG channels, andyi∈{-1,1} is the class label for thei-th input trial. In this paper,yi=1 andyi=-1 denote finger movement conditions of right hand and left hand, respectively. LR, considered in this paper, is a popular binary classification method[20]. The goal of LR is to determine the posterior probability of the occurrence of an event. The probability that thei-th trial belongs to classyiis

    (1)

    wherexidenotes aT×Cvector which is formed by straightening the elements ofXi;ωis a vector representing regression coefficients, each element of which corresponds to a weight of a feature. We estimate the weight matrix by maximizing the log-likelihood function:

    (2)

    While maximizingl(ω),regularization is constantly introduced to enable the weight vector to be sparse[21]. The popular regularizers are the LASSO term and the ridge term. The former is a sparse regularizer, which makes the weights of irrelevant features be zero; the latter enables the weights of relevant features to be larger and irrelevant features to be smaller without an exact tendency to be zero[19, 22-25]. However, the two regularizers might ignore the local structure of the EEG time course which contains discriminative information among patterns. To address this problem, we introduce a new regularizer and combine it with the SLR, which will be described in the next section.

    1.2 Locality preserving logistic regression

    1.2.1 Locality preserving projection

    Locality preserving projection (LPP), a linear dimensionality reduction algorithm, is a useful and effective method for pattern recognition. It builds a projection to preserve the neighborhood structure of the original data based on Euclidean distances[17]. He et al.[26]showed that the LPP algorithm gave a better representation of the data structure and achieved higher accuracy in face recognition. Watanabe and Kurita[13]introduced the locality into the regularization term of LR and applied it to standard benchmark datasets. Some encouraging results were obtained[13, 27].

    When defining the weight matrix, one usually introduces the following forms[28]:

    1) 0-1 weighting:Qij=1 if and only if nodesiandjare connected by an edge.

    2) Heat kernel weighing: If nodesiandjare connected,

    (3)

    whereτis a hyper parameter and it is usually determined by a cross validation strategy.

    3) Dot-product weighing: If nodesiandjare connected,

    (4)

    Clearly, if ‖xi‖2and ‖xj‖2are both equal to 1,Qijis the cosine of the two vectors.

    Owing to the tunable parameterτof the heat kernel weighing, we adopt the second form above to define the weight matrix.

    1.2.2 LPP regularizer

    In this paper, we propose the LPP regularizer as follows:

    (5)

    MinimizingELPPis an attempt to ensure that ifxiandxjare close in the original space, then they are close in the generation space. It gives a large value ofQijif the distance of two samples is close while it gives small weight when meeting distant samples. It shows the advantage of preserving the helpful neighborhood information of the original feature space.

    By combining theELPPterm and the LASSO term, we obtain the log-likelihood function:

    (6)

    1.2.3 Bound optimization

    With the bound optimization approach,l(ω) is optimized by iteratively maximizing a surrogate functionS,

    (7)

    (8)

    whereg(ω) denotes the gradient ofl(ω). The matrixBof two classes is given by[19]

    (9)

    Adding the regularizers of LASSO and LPP, the surrogate function ofL(ω) is given by

    (10)

    By maximizing the surrogate function in the framework of bound optimization, we obtain the update equation:

    (11)

    (12)

    (13)

    soft(a;δ)=sign(a)max{0,|a|-δ}

    (14)

    From the theory of the bound optimization, we know that, with the above procedures, the value of the surrogate function monotonically increases at each iteration. The LSLR algorithm can be obtained in the following steps. First, we record the EEG data and do data preprocessing. Next, we initialize the parameters ofλ1,λ2,τ,ωoldand choose the best performance of the four parameters, respectively, by using cross-validation. Then we obtainωnewfromωoldby using Eq.(13) until ||ωnew|2-|ωold|2|<10-6.

    2 Experiment

    2.1 Self-paced finger tapping dataset

    The self-paced finger tapping data set is an EEG data set from BCI competition 2003-dataset Ⅳ[29-31]. Our goal is to predict the type of upcoming finger movement before it really happens. The subject presses the corresponding keys at an average speed of once per second, using either the index finger or the little finger of the right or the left hand. The data set consists of 416 trials, in which 316 trials are used for training and the remaining trials are used for testing. The duration length of each trial is 630 ms, in which just the beginning 500 ms is adopted because the ending 130 ms mainly contains artifacts from the electro-myogram (EMG). The data contains 28 channels and is down sampled from 1 000 to 100 Hz.

    2.2 Preprocessing

    Before applying our algorithm, we use a band-pass Butterworth filter with cut-off frequencies from 7 to 35 Hz on the raw EEG data. Meanwhile, the temporal interval is selected as follows: We use the latter 200 ms time samples in the whole 500 ms because the data from this time window are more close to the real action, and have achieved higher classification accuracy than that of the whole 500 ms.

    2.3 Experimental setting and results

    In this experiment, we use classification accuracy to compare the results of SLR with LSLR. First, we select each element asλ1from the set {10-4,10-3,10-2,10-1,1,10,102,103,104} to test the accuracy of SLR because we found that when we fixed the value ofλ2, different values ofλ1made little difference in the accuracy of LSLR. Therefore, we test the accuracy of SLR with different values ofλ1first in order to find the best performance ofλ1. From Fig.1, we find that, when the value ofλ1is less than 10, the test accuracy changes slowly. Otherwise, it dramatically decreases. Then, on the basis of the optimalλ1, the same test is conducted on parameterλ2to do the LSLR experiment. The ten-fold cross-validation is used to evaluate the classification accuracy as follows. All the trials are divided into ten divisions, nine of which are used as the training set while the remaning one of which is used as the testing set. The average classifica-tion accuracy of the ten folds is considered as the final recognition rate. Tab.1 shows the performance of the LSLR method according to different values of theλ2penalty term.

    Fig.1 Test accuracy of SLR vs. variation of parameter λ1

    Tab.1 Average recognition values of SLR and LSLR using the ten-fold cross-validation

    We find that LSLR outperforms SLR when we keep the value ofλ1invariant and select different values ofλ2. The optimal LSLR performance is significantly above the average performance using SLR according to a t-test paired by cross-validation runs (p<0.05). The improvement of classification performance comes from the local structure modeling of LSLR. However, the LPP regularizer yields a dense model whereas the LASSO term only selects 53.93% of the features. Fig.2 contains box plots that compare the difference between SLR and LSLR in terms of test accuracy. The result strongly shows that our method outperforms SLR.

    Fig.2 Box plot of the accuracy using SLR and LSLR

    Moreover, two other algorithms of LDA and LR are evaluated over the same dataset and the classification rates are demonstrated in Tab.2. CSP is used to extract features before applying LDA as a classifier.

    Tab.2 Average recognition values of LDA, LR, SLR and LSLR

    From Tab.2, it is noticed that the recognition values obtained by LDA and LR without regularization are low. The regularized logistic regression SLR and LSLR give better recognition rates than LR. Especially LSLR gives the best recognition rate for BCI competition 2003-dataset Ⅳ. These results prove that the LPP regularizer is effective for classification of neuroimaging data and the LPP regularizer can be a helpful regularizer.

    Note that the recognition value of Wang et al.[31], the winner in this dataset, achieved 84%. The algorithm combines common spatial subspace decomposition with LDA to extract features, and then uses a perceptron neural network as the classifier. In our algorithm, no prior feature extraction is required and we directly use LSLR to classify a single-trial EEG during the preparation of self-paced tapping.

    2.4 Discussion

    The LASSO term produces a sparse solution while the LPP regularizer has desirable properties. From Tab.1 and Fig.2, the improvement of classification performance comes from the LPP term, which provides the advantage of preserving the helpful neighborhood information of original feature space with less outlier distortion. It defines a small weight if the distance of two samples is large while it puts a large weight when meeting near neighbor samples. In our experiment, our classifier of the regularized logistic regression contains the step of feature extraction.

    3 Conclusion

    The goal of this paper is to demonstrate that the LPP regularizer, which is beneficial to the classification, can preserve the neighborhood information of the original feature space. Compared with SLR, LSLR has better discriminate performance. Actually, LSLR is the extension to logistic regression. Experimental results indicate that LPP regularization is a valuable regularization in single trial EEG data. Our future direction is to explore more useful regularizers and test their performance in EEG-based BCI application.

    [1]Bashashati A, Fatourechi M, Ward R K, et al. A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals [J].JNeuralEng, 2007,4(2): R32-R57.

    [2]Wolpaw J R, Birbaumer N, Heetderks W J, et al. Brain-computer interface technology: a review of the first international meeting [J].IEEETransNeuralSystRehabilEng, 2000,8(2): 164-173.

    [3]Birbaumer N, Ghanayim N, Hinterberger T, et al. A spelling device for the paralysed [J].Nature, 1999,398(25): 297-298.

    [4]Kübler A, Kotchoubey B, Kaiser J, et al. Brain-computer communication: unlocking the locked in [J].PsycholBull, 2001,127(3): 358-375.

    [5]Wolpaw J R, Birbaumer N, McFarland D J, et al. Brain-computer interfaces for communication and control [J].ClinNeurophysiol, 2002,113: 767-791.

    [6]Haynes J D, Rees G. Decoding mental states from brain activity in humans [J].NatRevNeurosci, 2006,7: 523-534.

    [7]Wold S, Esbensen K, Geladi P. Principal component analysis [J].ChemometricsandIntelligentLaboratorySystems, 1987,2(1/2/3): 37-52.

    [8]Hyvarinen A, Karhunen J, Oja E. Independent component analysis: algorithms and applications [J].NeuralComputation, 2001,13(4/5): 411-430.

    [9]Blankertz B, Tomioka R, Lemm S, et al. Optimizing spatial filters for robust EEG single-trial analysis [J].IEEESignalProcessingMagazine, 2008,25(1):41-56.

    [10]Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernels [C]//IEEESignalProcessingSocietyWorkshop. Madison, WI, USA, 1999:41-48.

    [11]Cortes C, Vapnik V. Support-vector networks [J].MachineLearning, 1995,20(3): 273-297.

    [12] Li T, Wang J, Wu X, et al. The estimate and application of posterior probability: based on kernel logistic regression [J].PatternRecognitionandArtificialIntelligence, 2007,19(6): 689-695.

    [13]Watanabe K, Kurita T. Locality preserving multi-nominal logistic regression [C]//19thInternationalConferenceonPatternRecognition(ICPR 2008). Tampa, FL, USA, 2008: 1-4.

    [14]Aseervatham S, Antoniadis A, Gaussier E, et al. A sparse version of the ridge logistic regression for large-scale text categorization [J].PatternRecognitionLetters, 2011,32(2): 101-106.

    [15]Chen Z, Haykin S. On different facets of regularization theory [J].NeuralComputation, 2002,14(12): 2791-2846.

    [16]Belkin M, Niiyogi P, Sindhwani V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples [J].TheJournalofMachineLearningResearch, 2006,7(12): 2399-2434.

    [17]He X, Niyoqi P.Localitypreservingprojections[D]. Chicago, IL,USA: University of Chicago, 2005.

    [18]Krishnapuram B, Carin L, Figueiredo M A T, et al. Sparse multinomial logistic regression: fast algorithms and generalization bounds [J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2005,27(6):957-968.

    [19]Ryali S, Supekar K, Abrams D A, et al. Sparse logistic regression for whole-brain classification of fMRI data [J].Neuroimage, 2010,51(2): 752-764.

    [20]Bielza C, Robles V, Larranaga P. Regularized logistic regression without a penalty term: An application to cancer classification with microarray data [J].ExpertSystemswithApplications, 2011,38(5): 5110-5118.

    [21]Poggio T, Girosi F. Regularization algorithms for learning that are equivalent to multilayer networks [J].Science, 1990,247(4945): 978-982.

    [22]Cawley G C, Talbot N L C, Girolami M. Sparse multinomial logistic regression via Bayesian l1 regularisation [C]//AdvancesinNeuralInformationProcessingSystems. Vancouver, CA, USA, 2007.

    [23]Meier L, Geer S V D, Buhlmann P. The group lasso for logistic regression [J].JournaloftheRoyalStatisticalSociety:SeriesB, 2008,70(1): 53-71.

    [24]Zou H, Hastie T. Regularization and variable selection via the elastic net [J].JournaloftheRoyalStatisticalSociety:SeriesB, 2005,67(2): 301-320.

    [25]Tomioka R, Müller K R. A regularized discriminative framework for EEG analysis with application to brain—computer interface [J].Neuroimage, 2010,49(1): 415-432.

    [26]He X, Yan S, Hu Y, et al. Face recognition using Laplacianfaces [J].IEEETransactionsonPatternAnalysisandMachineIntelligence, 2005,27(3): 328-340.

    [27]Kurita T, Watanabe K, Otsu N. Logistic discriminant analysis [C]//IEEEInternationalConferenceonSystems,ManandCybernetics. San Antonio, USA, 2009: 2167-2172.

    [28]He X, Cai D, Shao Y, et al. Laplacian regularized Gaussian mixture model for data clustering [J].IEEETransactionsonKnowledgeandDataEngineering, 2007,23(9): 1406-1418.

    [29]Blankertz B, Curio G, Müller K R. Classifying single trial EEG: towards brain computer interfacing [C]//AdvancesinNeuralInformationProcessingSystems. Vancouver, CA, USA, 2002: 157-164.

    [30]Wang H X, Xu J. Local discriminative spatial patterns for movement-related potentials-based EEG classification [J].BiomedicalSignalProcessingandControl, 2011,6(5): 427-431.

    [31]Wang Y, Zhang Z, Li Y, et al. BCI competition 2003-data set Ⅳ: an algorithm based on CSSD and FDA for classifying single-trial EEG [J].IEEETransBiomedEng, 2004,51(6): 1081-1086.

    亚洲中文av在线| 天堂8中文在线网| 大香蕉97超碰在线| 日本91视频免费播放| 久久久久国产网址| 免费播放大片免费观看视频在线观看| 我要看日韩黄色一级片| 中国三级夫妇交换| 青青草视频在线视频观看| 狂野欧美激情性bbbbbb| 18+在线观看网站| 永久免费av网站大全| 久久精品国产自在天天线| 亚洲欧洲精品一区二区精品久久久 | 欧美xxⅹ黑人| 国产亚洲欧美精品永久| 热99国产精品久久久久久7| 国产乱人偷精品视频| 久久久久久久久久成人| 美女主播在线视频| 精品少妇内射三级| 高清毛片免费看| 国产精品一区二区三区四区免费观看| 精品久久久久久久久亚洲| 久久人人爽av亚洲精品天堂| 如何舔出高潮| 久久久久久久久久久免费av| 一区二区av电影网| 亚洲国产最新在线播放| 精品久久久噜噜| av.在线天堂| 日韩精品有码人妻一区| 大片免费播放器 马上看| 国产爽快片一区二区三区| 国产一区二区三区综合在线观看 | 中文天堂在线官网| 国产精品三级大全| 建设人人有责人人尽责人人享有的| a级一级毛片免费在线观看| 久久99一区二区三区| 爱豆传媒免费全集在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲图色成人| 国产黄片美女视频| 亚州av有码| 夜夜骑夜夜射夜夜干| 精品亚洲乱码少妇综合久久| 亚洲第一区二区三区不卡| 中国三级夫妇交换| a 毛片基地| 精品一品国产午夜福利视频| 边亲边吃奶的免费视频| 精品久久久久久久久av| 天堂俺去俺来也www色官网| 97超碰精品成人国产| 久久久午夜欧美精品| 91久久精品国产一区二区三区| 狂野欧美激情性bbbbbb| 亚洲在久久综合| 日本av免费视频播放| 在线观看美女被高潮喷水网站| 国产69精品久久久久777片| 国产毛片在线视频| 国产真实伦视频高清在线观看| 欧美性感艳星| 成年av动漫网址| 国产白丝娇喘喷水9色精品| 亚洲欧洲国产日韩| 六月丁香七月| 国产高清三级在线| 亚洲精品亚洲一区二区| 偷拍熟女少妇极品色| 久久精品久久久久久久性| 色5月婷婷丁香| 国产午夜精品久久久久久一区二区三区| 亚洲av电影在线观看一区二区三区| 韩国av在线不卡| 中国美白少妇内射xxxbb| 国产精品福利在线免费观看| 91久久精品国产一区二区成人| 高清毛片免费看| 大陆偷拍与自拍| 爱豆传媒免费全集在线观看| 秋霞在线观看毛片| 久久精品国产亚洲av涩爱| 亚洲精品日韩av片在线观看| av在线播放精品| 蜜桃久久精品国产亚洲av| 久久国产精品大桥未久av | 少妇被粗大的猛进出69影院 | 午夜福利,免费看| 亚洲熟女精品中文字幕| 国模一区二区三区四区视频| 日韩一区二区视频免费看| 精品人妻偷拍中文字幕| 嫩草影院新地址| 精品99又大又爽又粗少妇毛片| 黄色日韩在线| 国产男女内射视频| 丝袜在线中文字幕| 女人久久www免费人成看片| 国产伦精品一区二区三区视频9| 大片免费播放器 马上看| 老女人水多毛片| 寂寞人妻少妇视频99o| 精品久久久久久久久av| 欧美 日韩 精品 国产| 国产精品.久久久| 色婷婷av一区二区三区视频| 一本大道久久a久久精品| 免费少妇av软件| 伊人亚洲综合成人网| 噜噜噜噜噜久久久久久91| 啦啦啦啦在线视频资源| 最近中文字幕2019免费版| 亚洲国产欧美在线一区| 国产精品国产三级国产专区5o| 精品少妇黑人巨大在线播放| 亚洲av成人精品一二三区| 人妻人人澡人人爽人人| 国产精品国产av在线观看| 自拍偷自拍亚洲精品老妇| av国产精品久久久久影院| 老熟女久久久| 男女啪啪激烈高潮av片| av卡一久久| videos熟女内射| 寂寞人妻少妇视频99o| 91久久精品国产一区二区三区| 亚洲成人一二三区av| 女性生殖器流出的白浆| 亚洲国产精品专区欧美| 亚洲欧美日韩卡通动漫| 日本色播在线视频| 午夜激情久久久久久久| 亚洲婷婷狠狠爱综合网| 老熟女久久久| 欧美激情极品国产一区二区三区 | 免费观看在线日韩| 亚洲精品色激情综合| 免费观看的影片在线观看| 在线观看一区二区三区激情| 免费观看在线日韩| 99久久中文字幕三级久久日本| 免费观看性生交大片5| 日韩一区二区三区影片| 免费少妇av软件| 欧美日韩综合久久久久久| 男女啪啪激烈高潮av片| 国产一区二区在线观看av| 久久久久人妻精品一区果冻| 中文乱码字字幕精品一区二区三区| 丝瓜视频免费看黄片| 亚洲国产精品999| 我的老师免费观看完整版| 菩萨蛮人人尽说江南好唐韦庄| 在线观看美女被高潮喷水网站| 麻豆成人午夜福利视频| 精品人妻一区二区三区麻豆| 久久鲁丝午夜福利片| 在线观看免费日韩欧美大片 | 9色porny在线观看| 51国产日韩欧美| 久久精品熟女亚洲av麻豆精品| 色94色欧美一区二区| 一区在线观看完整版| 久久久精品94久久精品| 日韩欧美精品免费久久| 久热久热在线精品观看| 国产淫语在线视频| 久久久久久久久久人人人人人人| 免费人妻精品一区二区三区视频| 亚洲内射少妇av| 亚洲精品国产av成人精品| 久久久久久久国产电影| 亚洲无线观看免费| 男女边摸边吃奶| 2018国产大陆天天弄谢| 亚洲av免费高清在线观看| 丝瓜视频免费看黄片| 欧美激情极品国产一区二区三区 | 观看免费一级毛片| 只有这里有精品99| 亚洲va在线va天堂va国产| 人人妻人人看人人澡| 亚洲欧洲国产日韩| 天堂俺去俺来也www色官网| 免费av不卡在线播放| 九色成人免费人妻av| 欧美日韩亚洲高清精品| 久久久亚洲精品成人影院| 高清不卡的av网站| 在线播放无遮挡| 日韩制服骚丝袜av| 色视频www国产| 精品国产一区二区三区久久久樱花| 97在线视频观看| 蜜桃久久精品国产亚洲av| 美女大奶头黄色视频| 免费观看性生交大片5| 99热这里只有是精品50| 欧美日韩在线观看h| 夜夜骑夜夜射夜夜干| 色5月婷婷丁香| 18禁裸乳无遮挡动漫免费视频| 人妻系列 视频| 免费av不卡在线播放| 亚洲精品国产色婷婷电影| 亚洲不卡免费看| 在线观看av片永久免费下载| 一区二区三区乱码不卡18| 欧美高清成人免费视频www| 精品久久久久久电影网| 色视频www国产| 久久人妻熟女aⅴ| 国产精品女同一区二区软件| 美女中出高潮动态图| 哪个播放器可以免费观看大片| 五月天丁香电影| 免费大片黄手机在线观看| 午夜激情久久久久久久| 中文字幕人妻熟人妻熟丝袜美| 汤姆久久久久久久影院中文字幕| 麻豆成人午夜福利视频| 九九在线视频观看精品| 一二三四中文在线观看免费高清| 91精品一卡2卡3卡4卡| 日韩大片免费观看网站| 妹子高潮喷水视频| 亚洲av中文av极速乱| 成人无遮挡网站| 中国美白少妇内射xxxbb| 丰满人妻一区二区三区视频av| 久久精品久久久久久久性| 永久网站在线| 精品国产国语对白av| 国产精品不卡视频一区二区| 18禁裸乳无遮挡动漫免费视频| 一级av片app| 国产成人精品无人区| 国精品久久久久久国模美| 秋霞伦理黄片| 亚州av有码| 亚洲av不卡在线观看| 国产免费一级a男人的天堂| 啦啦啦中文免费视频观看日本| 午夜免费观看性视频| 亚洲av成人精品一二三区| 国产乱来视频区| 国产精品久久久久久久电影| 亚洲成人手机| 亚洲久久久国产精品| 十分钟在线观看高清视频www | 男人舔奶头视频| 最后的刺客免费高清国语| 国产成人一区二区在线| 男女国产视频网站| 日韩一区二区视频免费看| 久久久久久久久大av| 建设人人有责人人尽责人人享有的| 亚洲性久久影院| 国产亚洲91精品色在线| 乱码一卡2卡4卡精品| 五月伊人婷婷丁香| 天堂俺去俺来也www色官网| 99视频精品全部免费 在线| 自拍偷自拍亚洲精品老妇| 大陆偷拍与自拍| 日韩制服骚丝袜av| 中文字幕av电影在线播放| 狠狠精品人妻久久久久久综合| 日本黄色日本黄色录像| 街头女战士在线观看网站| 免费大片18禁| 亚洲国产成人一精品久久久| 大陆偷拍与自拍| 街头女战士在线观看网站| 中国国产av一级| 免费在线观看成人毛片| 亚洲,欧美,日韩| 国内揄拍国产精品人妻在线| 亚洲高清免费不卡视频| 国产高清三级在线| 蜜臀久久99精品久久宅男| 一级二级三级毛片免费看| 香蕉精品网在线| 九九在线视频观看精品| 99久久综合免费| 国产伦理片在线播放av一区| 青春草亚洲视频在线观看| 中文在线观看免费www的网站| 久久99蜜桃精品久久| 在线 av 中文字幕| 在线看a的网站| 亚洲婷婷狠狠爱综合网| 国产一区二区三区综合在线观看 | 日本午夜av视频| 亚洲人与动物交配视频| 天天躁夜夜躁狠狠久久av| 亚洲综合精品二区| 在线天堂最新版资源| 91精品伊人久久大香线蕉| 在线精品无人区一区二区三| 久久午夜综合久久蜜桃| 国产午夜精品一二区理论片| 国产亚洲午夜精品一区二区久久| 秋霞伦理黄片| 多毛熟女@视频| 在线观看一区二区三区激情| 亚洲自偷自拍三级| av免费在线看不卡| 亚洲不卡免费看| 欧美日韩精品成人综合77777| 久久久久国产精品人妻一区二区| 亚洲激情五月婷婷啪啪| 国产精品99久久99久久久不卡 | 亚洲精品第二区| 人人妻人人看人人澡| 日韩中字成人| 国产av国产精品国产| 如何舔出高潮| 大香蕉久久网| 99热国产这里只有精品6| 在线观看免费高清a一片| 黑人巨大精品欧美一区二区蜜桃 | 国产亚洲一区二区精品| 久久久久国产网址| 亚洲综合色惰| 亚洲欧美中文字幕日韩二区| 亚洲久久久国产精品| 一级毛片 在线播放| 熟女人妻精品中文字幕| 亚洲丝袜综合中文字幕| 国产一区二区三区av在线| 观看美女的网站| 免费看日本二区| 国产成人freesex在线| 精品国产乱码久久久久久小说| av国产精品久久久久影院| 97在线人人人人妻| 大话2 男鬼变身卡| 成人18禁高潮啪啪吃奶动态图 | 亚洲欧美日韩卡通动漫| 精品久久久噜噜| 自拍偷自拍亚洲精品老妇| 欧美日韩国产mv在线观看视频| 欧美高清成人免费视频www| 少妇人妻久久综合中文| 免费在线观看成人毛片| 最近中文字幕2019免费版| 精品久久久久久久久av| 妹子高潮喷水视频| 亚洲电影在线观看av| 人人澡人人妻人| tube8黄色片| 亚洲欧美精品专区久久| 国产精品熟女久久久久浪| 亚洲国产日韩一区二区| 国产精品免费大片| 99久久人妻综合| freevideosex欧美| 午夜91福利影院| 伦精品一区二区三区| 久久久久视频综合| 18禁动态无遮挡网站| 久久热精品热| 最近的中文字幕免费完整| 91久久精品电影网| 亚洲精品成人av观看孕妇| 男的添女的下面高潮视频| 成年人午夜在线观看视频| 日本黄大片高清| 国产精品熟女久久久久浪| 男女免费视频国产| 黄色视频在线播放观看不卡| freevideosex欧美| 免费在线观看成人毛片| 国产一区二区三区av在线| 免费看日本二区| 日本午夜av视频| 亚洲国产成人一精品久久久| 亚洲国产精品专区欧美| 国产成人精品一,二区| 国产亚洲91精品色在线| 国产av一区二区精品久久| 免费av中文字幕在线| av视频免费观看在线观看| 91久久精品国产一区二区三区| kizo精华| 91在线精品国自产拍蜜月| 久久鲁丝午夜福利片| 日日摸夜夜添夜夜爱| 大香蕉久久网| 一本久久精品| 交换朋友夫妻互换小说| 亚洲精品成人av观看孕妇| 亚洲真实伦在线观看| 99热这里只有是精品在线观看| 黄片无遮挡物在线观看| 18禁动态无遮挡网站| 亚洲美女视频黄频| videos熟女内射| av又黄又爽大尺度在线免费看| 男人添女人高潮全过程视频| a级毛片免费高清观看在线播放| 午夜免费男女啪啪视频观看| 少妇裸体淫交视频免费看高清| 国产探花极品一区二区| 亚洲婷婷狠狠爱综合网| 永久网站在线| 在线免费观看不下载黄p国产| 男人舔奶头视频| 色视频www国产| 国产熟女午夜一区二区三区 | 成人免费观看视频高清| 一本久久精品| 久久久久久久久久久久大奶| 国产69精品久久久久777片| 日本色播在线视频| 国产乱人偷精品视频| 爱豆传媒免费全集在线观看| 久热这里只有精品99| 亚洲精品国产色婷婷电影| 高清视频免费观看一区二区| 夫妻午夜视频| 国产精品麻豆人妻色哟哟久久| 精华霜和精华液先用哪个| av女优亚洲男人天堂| 日本黄色日本黄色录像| 日本猛色少妇xxxxx猛交久久| 久久久精品免费免费高清| 日韩强制内射视频| 国产欧美亚洲国产| 人妻人人澡人人爽人人| 天天躁夜夜躁狠狠久久av| 性色av一级| 99热国产这里只有精品6| 国产日韩欧美亚洲二区| √禁漫天堂资源中文www| 国产精品不卡视频一区二区| 国产成人免费无遮挡视频| 九九在线视频观看精品| 精品人妻熟女av久视频| 最近中文字幕高清免费大全6| 国产探花极品一区二区| 最后的刺客免费高清国语| 人妻夜夜爽99麻豆av| 久久人人爽人人片av| 五月伊人婷婷丁香| 一个人免费看片子| √禁漫天堂资源中文www| kizo精华| 亚洲成人手机| 欧美精品一区二区大全| 欧美丝袜亚洲另类| 日韩制服骚丝袜av| 日韩一区二区视频免费看| 少妇裸体淫交视频免费看高清| h日本视频在线播放| 亚洲四区av| 午夜日本视频在线| 亚洲精品国产av蜜桃| 亚洲av.av天堂| 一级毛片aaaaaa免费看小| 国产日韩一区二区三区精品不卡 | 亚洲国产精品一区二区三区在线| 日韩一区二区三区影片| 亚洲怡红院男人天堂| 日韩视频在线欧美| 一级二级三级毛片免费看| 99九九线精品视频在线观看视频| 免费看光身美女| 一级毛片我不卡| 男的添女的下面高潮视频| 婷婷色av中文字幕| 99久久中文字幕三级久久日本| 久热这里只有精品99| 日韩成人av中文字幕在线观看| 国产男女超爽视频在线观看| 久久久久精品性色| 婷婷色综合大香蕉| 免费少妇av软件| 丰满迷人的少妇在线观看| 看十八女毛片水多多多| 麻豆成人午夜福利视频| 日本午夜av视频| 国产色爽女视频免费观看| 狂野欧美激情性xxxx在线观看| 精品酒店卫生间| 亚洲四区av| 自拍偷自拍亚洲精品老妇| 乱人伦中国视频| 2018国产大陆天天弄谢| 十八禁网站网址无遮挡 | 亚洲精品亚洲一区二区| 欧美成人午夜免费资源| 国产精品欧美亚洲77777| 国产一区二区三区综合在线观看 | 99久久综合免费| 男的添女的下面高潮视频| 香蕉精品网在线| 久久久久视频综合| 高清视频免费观看一区二区| 国产在视频线精品| 2022亚洲国产成人精品| 精品人妻一区二区三区麻豆| av天堂久久9| 波野结衣二区三区在线| 最近的中文字幕免费完整| 亚洲欧洲国产日韩| 午夜视频国产福利| 91精品伊人久久大香线蕉| 中文天堂在线官网| 亚洲人成网站在线播| 一边亲一边摸免费视频| 午夜福利,免费看| 久久97久久精品| 国产精品.久久久| 丰满少妇做爰视频| 下体分泌物呈黄色| 精品熟女少妇av免费看| 黄色视频在线播放观看不卡| 街头女战士在线观看网站| 中文字幕制服av| 一级毛片 在线播放| 欧美一级a爱片免费观看看| 免费av中文字幕在线| 一个人看视频在线观看www免费| 天美传媒精品一区二区| 成人亚洲精品一区在线观看| 好男人视频免费观看在线| 亚洲欧美精品自产自拍| 国产黄色视频一区二区在线观看| 亚洲精品久久久久久婷婷小说| 亚洲av不卡在线观看| 亚洲av.av天堂| 在线观看一区二区三区激情| 欧美国产精品一级二级三级 | 国产欧美另类精品又又久久亚洲欧美| 成年女人在线观看亚洲视频| av一本久久久久| 在线精品无人区一区二区三| 国产成人免费无遮挡视频| 你懂的网址亚洲精品在线观看| 欧美xxxx性猛交bbbb| 国产精品福利在线免费观看| 久久精品国产亚洲av天美| 欧美精品一区二区免费开放| 伊人久久国产一区二区| 精品久久久久久久久av| 亚洲久久久国产精品| 大片免费播放器 马上看| 国产成人精品无人区| 国产精品国产三级国产专区5o| 精品国产乱码久久久久久小说| 一个人免费看片子| 亚洲精品国产色婷婷电影| 久久久久国产网址| 国产精品久久久久成人av| 午夜福利在线观看免费完整高清在| 下体分泌物呈黄色| 午夜av观看不卡| 免费黄网站久久成人精品| 色吧在线观看| 两个人免费观看高清视频 | 久久狼人影院| 国国产精品蜜臀av免费| 尾随美女入室| 亚洲成人手机| 欧美精品一区二区大全| 国产亚洲一区二区精品| 少妇人妻 视频| 免费人成在线观看视频色| 人人妻人人添人人爽欧美一区卜| 看十八女毛片水多多多| 久久久久精品性色| av免费观看日本| 国产乱人偷精品视频| 夫妻午夜视频| 免费大片黄手机在线观看| 欧美 亚洲 国产 日韩一| 国产黄色免费在线视频| 成年av动漫网址| xxx大片免费视频| 日日摸夜夜添夜夜添av毛片| 日日摸夜夜添夜夜爱| av.在线天堂| 韩国av在线不卡| av福利片在线| 中文字幕人妻熟人妻熟丝袜美| 一边亲一边摸免费视频| 99国产精品免费福利视频| 午夜福利影视在线免费观看| 亚洲一区二区三区欧美精品| 女的被弄到高潮叫床怎么办| 我的女老师完整版在线观看| 久久久精品免费免费高清| 啦啦啦中文免费视频观看日本| 在线天堂最新版资源| 亚洲精品成人av观看孕妇| 美女主播在线视频| 99久久人妻综合| 国产精品三级大全| 日本黄色日本黄色录像| 一级毛片我不卡| 在线观看av片永久免费下载| 热re99久久精品国产66热6| 国内揄拍国产精品人妻在线| 日韩视频在线欧美| 久久综合国产亚洲精品| 三级经典国产精品| 国产片特级美女逼逼视频| 国产精品福利在线免费观看| 丁香六月天网| 在线观看国产h片|