• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Uplink capacity analysis of single-user SA-MIMO system

    2013-01-08 08:26:18DaiJianxinChenMingChungPeiJung

    Dai JianxinChen MingChung Pei-Jung

    (1National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China)(2School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)(3Institute for Digital Communications, School of Engineering, the University of Edinburgh, Edinburgh EH9 3JL, UK)

    As well known, the multiple-input multiple-output (MIMO) system with multiple antennas at both the transmitter and the receiver in a richly scattering environment can significantly increase the capacity of wireless channels without requiring additional power or band-width[1-2]. But the advantages of MIMO systems tend to be lost around the cell edge areas for two principal reasons. The first is the low signal-to-noise ratio (SNR) and inter-cell interference with the low frequency reuse factor. The other is the increase in the signal correlation for different antenna elements. To overcome the problem found in traditional MIMO systems and provide higher data rates, wider coverage and better quality of service (QoS) in the cell edge areas, many new frameworks of multiple antenna systems have been suggested to extend conventional MIMO systems[3-8]. The distributed antenna system (DAS) was investigated in Refs.[3-5] whose basic idea is that all antennas are geographically separated from each other and connected by optical fibers to a central processor where all signals are jointly processed. The downlink performance of single cell and multi-cell MIMO relay networks was analyzed which took into account MIMO technology in fixed relay networks in Ref.[6]. Ref.[7] provided a propagation measurement campaign of a MIMO two-hop relay network in a 5 GHz band in an L-shaped corridor environment with various relay locations and a relay placement estimation scheme to identify the optimum relay location. A brief survey of cooperative MIMO, the basic idea of which is to group multiple devices into virtual antenna arrays to emulate MIMO communications, was provided in Ref.[8].

    However, the improvement of performance in the above-mentioned multiple antenna systems comes at the price of increased cost, space and computational complexity due to the individual power constraints of each antenna, the cooperation algorithm and the hardware limitations. In this paper, a new smart antennas-MIMO (SA-MIMO) system with the total power constraint of all antennas is studied. The basic idea of the SA-MIMO is to replace each antenna of traditional MIMO systems with a smart antenna array. Smart antennas, which can suppress the interference coming from different directions by beam-forming and hence can make the cell have a wider coverage and greater user capacity[9-10], are considered as a transmission technology of the single channel current in the 3rd generation of mobile communication systems (3G) standard. And the MIMO technology provides multiple independent transmission channels that can increase system throughput in a long term evolution (LTE) standard. However, a key fact to note is that a richly scattering environment also suffers from high loss. Smart antennas technique improves power gains and increases the SNR which lowers the path loss. Thus, it is of great interest to investigate the combination of the MIMO system and smart antennas in order to ensure the future system a smooth evolution, make the most of existing system resources, avoid extensive redesign of antennas and the feeder system as much as possible, and reduce difficulties of network arrangement and cell-site selection. However, the investigation of the SA-MIMO is rare in the current literature.

    In this paper, we propose an SA-MIMO system, which is different from the traditional MIMO systems and other multiple antenna systems, i.e., the DAS and the cooperative MIMO system. For the single-user uplink SA-MIMO system, we first propose an optimization model. Then we investigate the capacity of the single-user uplink SA-MIMO system in some cases. For the general case, it is difficult to derive closed-form solutions of the optimal beam-forming vectors to the capacity optimization problem. This paper presents a suboptimal method for the capacity optimization problem, in which the beam-forming vectors are obtained by maximizing the squared Frobenius norm of the channel matrix.

    1 Statement of the Problem

    1.1 System model

    Consider an uplink SA-MIMO system which is shown in Fig.1. The user transmitter hasNantenna transmitting uplink signals, whose mutual distances are greater than the half wavelength of the carrier wave such that all the transmit channels are independent of each other. At the receiver base station, there areMantenna arrays, each of which hasLelements whose mutual distance is less than half the wavelength. In addition, all theMantenna arrays are mutually so far that their receive channels are independent of each other.

    Fig.1 Single-user uplink SA-MIMO system model

    Lethmnbe the microscope fading coefficient between then-th transmit antenna and them-th receive antenna array for 1≤m≤Mand 1≤n≤N. The channels are flat Rayleigh fading, i.e.,hmn~CN(0,1), wherex~CN(μ,σ2) means thatxis complex Gaussian distributed with meanμand varianceσ2.

    (1)

    By stacking the received signals of all the antenna arrays intor={r1,r2,…,rM}T, we have

    r=HPs+z

    (2)

    1.2 Information-theoretic capacity

    LetW={ω1,ω2,…,ωM}. If the input signalsis a circularly symmetric complex Gaussian vector with covariance matrixE{ssT}=IN, the instantaneous capacity of the SA-MIMO system for each channel use can be formulated as

    H=(hmn〈ωm,amn〉)1≤m≤M, 1≤n≤N

    (3)

    where ()Hdenotes the complex-conjugate transpose of a vector or matrix.

    1.3 Analysis of the capacity

    In this section, we investigate the capacity in the case of equal power allocation.

    Denoteρ=P/σ2, and letλi(i=1,2,…,M) be the eigenvalues of matrixHHH.

    Theorem1In the case that the DOAs from all the transmit antennas are the same in a receive antenna array, i.e.,am1=am2=…=amN=am, and the power is allocated to the transmit antennas equally, the capacity of the SA-MIMO system can be formulated as

    (4)

    if and only if the optimal beam-forming vector can be written as

    (5)

    ProofIf the DOAs of all the elements of one smart antenna array are the same, the channel matrixHcan be written as

    (6)

    where

    Moreover, if the power is allocated to the transmit antennas equally, Eq.(3) can be further written as

    (7)

    Using singular value decomposition (SVD), we have

    (8)

    (9)

    To simplify the rest of the derivations, let

    It is obvious thatBis a positive definite Hermitian matrix. Now, from the Hadamard theorem[11], we obtain

    (10)

    whereAiiandBiiare the diagonal elements ofAandB, respectively. In Eq.(10), there can be equality only ifBis a diagonal matrix. IfAis a diagonal matrix,Bis a diagonal matrix. So Eq.(10) is established only whenAis a diagonal matrix. According to the expression ofA, it can be known that all the diagonal elements are independent. Therefore,

    (11)

    In Eq.(11), there can be equality if and only ifωiis given by

    (12)

    And after substitution, the capacity can be written as

    if and only if the beam-forming vector is given by Eq.(12).

    (13)

    Theorem2In the case that the DOAs from different transmit antennas are not the same in a receive antenna array, the upper bound of the capacity of the SA-MIMO system with equal power can be written as

    (14)

    whereRis the number of singular values of matrixHHH.

    s.t. |ωm|F=1m=1,2,…,M

    (15)

    Letλ1,λ2,…,λRbe non-zero eigenvalues of matrixHHH. From the theorem of the arithmetic and geometric means, we obtain

    (16)

    with equality when

    λ1=λ2=…=λR

    (17)

    From the Rayleigh-Ritz theorem[11], we obtain

    (18)

    In Eq.(18), there can be equality whenωmis the main eigenvector ofAm, where

    (19)

    Namely,

    Amωm=λm,maxωm

    |ωm|=1, ?m=1,2,…,M

    (20)

    So the upper bound of the capacity of the SA-MIMO system with equal power can be written as

    (21)

    with equality when Eqs.(17) and (20) are true.

    2 Method for Determining the Beam-Forming Vectors

    For the general case, it is difficult to derive closed-form solutions of the optimal beam-forming vectors to the capacity optimization problem (3). Moreover, although the optimal beam-forming vectors can be found numerically, these methods are complicated, and may not be feasible for practical applications. Here, we present a suboptimal algorithm for determining the beam-forming vectors based on the maximum eigenvalue in this paper.

    In Ref.[12], an equivalent scaled AWGN channel induced by the space-time block code for complex constellations was given as

    (22)

    (23)

    where

    (24)

    So we generate the suboptimal beam-forming vectors to solve the capacity optimization problem by the above method.

    3 Numerical Results

    Monte Carlo simulations are carried out in some cases to compare the capacities of SA-MIMO and conventional MIMO systems. We denote an SA-MIMO system withNtransmit antennas andMreceive antenna arrays, and each array ownsLelements by anN×(M,L) SA-MIMO system.

    Fig.2 depicts the ergodic channel capacity of the MIMO system and the SA-MIMO system for various values of SNR withN=2,M=2,L=4 andN=4,M=4,L=4, respectively. It is shown that smart antennas can bring significant capacity gain for the MIMO system without additional spatial degrees of freedom. It is also evident that the upper bound is actually very tight for the considered system.

    Fig.2 Ergodic capacity comparison between MIMO system and SA-MIMO system

    The following simulations are performed by the proposed method for determining the suboptimal beam-forming vectors. All the simulations are performed under the assumption that the transmit power is equally allocated.

    NIA denotes an algorithm that the optimal solution of the capacity problem in the SA-MIMO system is obtained by numerical iteration. MEV denotes the method that the optimal beam-forming vectors are obtained by the main eigenvector method.

    Case1The same DOAs of one smart antenna

    Fig.3 depicts the capacity of the three systems, withN=M=2 andL=8. It is observed that the capacity obtained by the MEV method is equal to the optimal capacity in case 1. This result also validates theorem 2.

    Figs.4(a) and (b) illustrate the radiation patterns of the two smart antenna arrays at the receiver for the 2×(2,8) SA-MIMO system for case 1, the beam-forming vectors of which are determined by MEV. It is shown that the pattern gains on the corresponding angles are in the periphery of the peaks, so that the smart antenna will attain a capacity gain.

    Fig.3 Ergodic capacity comparison for case 1

    Fig.4 Two smart antenna patterns for case 1. (a) The first smart antenna pattern (DOAs are 105°); (b) The second smart antenna pattern (DOAs are 167°)

    Case2The different DOAs of one smart antenna

    Fig.5 depicts the capacity of the four systems mentioned above, whereN=M=2 andL=8. It is observed that the gap between the capacity obtained by the MEV method and the optimal capacity is small. It indicates that the performance of beam-forming vectors obtained by MEV is acceptable.

    Fig.6(a) and Fig.6(b) illustrate the radiation patterns of the two smart antenna arrays at the receiver for the 2×(2,8) SA-MIMO system, the beam-forming vectors of which are determined by MEV. It is shown that the pattern gains on the corresponding angles are in the periphery of the peaks, so that SA will attain capacity gain. Such a gain is due to the use of a smart antenna array, rather than diversity.

    Fig.5 Ergodic capacity comparison for case 2

    Fig.6 Two smart antenna patterns for case 2.(a) The first smart antenna pattern (DOAs are 8° and 100°, respectively); (b) The second smart antenna pattern (DOAs are 54° and 150°, respectively)

    4 Conclusion

    Forthcoming work should be focused on analyzing the capacity gain of SA-MIMO systems under the multiple-user case in which the advantage suppressing interference among users can be embodied.

    [1]Telatar E. Capacity of multi-antenna Gaussian channels [J].EuropeanTransactionsonTelecommunications, 1999,10(6): 585-595.

    [2]Foschini G J, Gans M J. On limits of wireless communications in a fading environment when using multiple antennas [J].WirelessPersonalCommunications, 1998,6(2): 311-335.

    [3]Chen Huamin, Wang Junbo, Chen Ming. Outage capacity study of the distributed MIMO system with antenna cooperation [J].WirelessPersonalCommunications, 2011,59(4): 599-605.

    [4]Choi W, Andrews J G. Downlink performance and capacity of distributed antenna systems in a multicell environment [J].IEEETransactionsonWirelessCommunications, 2007,6(1): 69-73.

    [5]Feng W, Zhao Y F, Zhao M, et al. A novel evaluation method for the downlink capacity of distributed antenna systems [J].IEICETransactionsonCommunications, 2009,E92-B(6): 2226-2230.

    [6]Wang Ping, Zu Lijun, Liu Fuqiang, et al. Downlink performance analysis of MIMO relaying networks [J].WirelessPersonalCommunications, 2012,62(3): 729-746.

    [7]Lertwiram N, Tran G K, Mizutani K, et al. Performance analysis of MIMO relay network via propagation measurement in L-shaped corridor environment [J].IEICETransactionsonCommunications, 2012,E95-B(4): 1345-1356.

    [8]Wang Chengxiang, Hong Xuemin, Ge Xiaohu, et al. Cooperative MIMO channel models: a survey [J].IEEECommunicationsMagazine, 2010,48(2): 80-87.

    [9]Andersen J B. Array gain and capacity for known random channels with multiple element arrays at both ends [J].IEEEJournalonSelectedAreasinCommunications, 2000,18(11): 2172-2178.

    [10]Dakdouki A S, Tabulo M. On the eigenvalue distribution of smart-antenna arrays in wireless communication systems [J].IEEEAntennasandPropagationMagazine, 2004,46(4): 158-167.

    [11]Bellmam R.Introductiontomatrixanalysis[M]. New York: Mcgraw-Hill Book Company, 1970.

    [12]Sandhu S, Paulraj A. Space-time block codes: a capacity perspective [J].IEEECommunicationsLetter, 2000,4(12): 384-386.

    国产伦精品一区二区三区四那| 在线观看免费视频日本深夜| 亚洲在线观看片| 久久久国产成人精品二区| 秋霞在线观看毛片| 国产精品久久久久久久久免| 日韩一区二区三区影片| 人妻系列 视频| 美女 人体艺术 gogo| 好男人在线观看高清免费视频| 日韩亚洲欧美综合| 午夜激情福利司机影院| 在现免费观看毛片| 一进一出抽搐动态| 亚洲av免费高清在线观看| 热99re8久久精品国产| 人妻系列 视频| 一级av片app| 日本三级黄在线观看| 内地一区二区视频在线| 午夜久久久久精精品| 免费人成在线观看视频色| 在线播放无遮挡| 亚洲色图av天堂| 亚洲成人av在线免费| ponron亚洲| 免费观看a级毛片全部| 99热网站在线观看| 日日撸夜夜添| 久久精品国产亚洲av香蕉五月| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产中年淑女户外野战色| 亚洲国产精品成人久久小说 | 欧美最新免费一区二区三区| 老熟妇乱子伦视频在线观看| 久久鲁丝午夜福利片| 亚洲成人av在线免费| 日本免费一区二区三区高清不卡| 身体一侧抽搐| 久久久久久九九精品二区国产| 三级国产精品欧美在线观看| 一个人看的www免费观看视频| 亚洲无线观看免费| 亚洲欧美成人精品一区二区| 老女人水多毛片| 一卡2卡三卡四卡精品乱码亚洲| 成熟少妇高潮喷水视频| 真实男女啪啪啪动态图| 国产av一区在线观看免费| 欧美3d第一页| 非洲黑人性xxxx精品又粗又长| 国产人妻一区二区三区在| 99热全是精品| 性欧美人与动物交配| 久久精品久久久久久久性| 亚洲美女视频黄频| 亚洲av中文字字幕乱码综合| av专区在线播放| 大又大粗又爽又黄少妇毛片口| 国产欧美日韩精品一区二区| 成人综合一区亚洲| 伊人久久精品亚洲午夜| 欧美一区二区精品小视频在线| 亚洲成人精品中文字幕电影| 1000部很黄的大片| 中文在线观看免费www的网站| 国产色婷婷99| 中国美白少妇内射xxxbb| 熟女电影av网| 丰满的人妻完整版| 成人午夜高清在线视频| 国产精品嫩草影院av在线观看| 嘟嘟电影网在线观看| 亚洲国产精品久久男人天堂| 校园春色视频在线观看| 亚洲欧洲日产国产| 美女黄网站色视频| 丰满人妻一区二区三区视频av| 国产精品久久久久久精品电影| 哪里可以看免费的av片| 亚洲精品粉嫩美女一区| 中国国产av一级| 日日干狠狠操夜夜爽| 国产片特级美女逼逼视频| 能在线免费观看的黄片| 久久99热6这里只有精品| 麻豆乱淫一区二区| 又爽又黄无遮挡网站| 一卡2卡三卡四卡精品乱码亚洲| 丝袜喷水一区| 亚洲三级黄色毛片| 伦精品一区二区三区| 亚洲人成网站在线播放欧美日韩| 国产三级在线视频| 精品一区二区免费观看| 色综合站精品国产| 久久韩国三级中文字幕| 国产人妻一区二区三区在| 高清毛片免费看| 久久亚洲国产成人精品v| 成年女人看的毛片在线观看| 日韩欧美精品v在线| 亚洲综合色惰| 亚洲无线在线观看| 91久久精品国产一区二区成人| 人妻少妇偷人精品九色| 男人狂女人下面高潮的视频| 久久人妻av系列| 日日摸夜夜添夜夜添av毛片| 女同久久另类99精品国产91| 久久精品人妻少妇| 亚洲一级一片aⅴ在线观看| 欧美zozozo另类| 最近2019中文字幕mv第一页| 日本三级黄在线观看| 国产精品99久久久久久久久| 小说图片视频综合网站| 中文字幕av成人在线电影| 日韩中字成人| 国产精品一及| 中文字幕熟女人妻在线| 国产精品久久视频播放| 午夜激情福利司机影院| 尤物成人国产欧美一区二区三区| 国产精品不卡视频一区二区| 亚洲电影在线观看av| av免费观看日本| 丰满的人妻完整版| 深爱激情五月婷婷| 99久久精品国产国产毛片| 一卡2卡三卡四卡精品乱码亚洲| 中国美白少妇内射xxxbb| 国产亚洲5aaaaa淫片| 在线免费观看的www视频| 免费观看人在逋| 免费观看的影片在线观看| 麻豆av噜噜一区二区三区| 极品教师在线视频| 99久久成人亚洲精品观看| 亚洲人成网站高清观看| 久久亚洲国产成人精品v| 全区人妻精品视频| 欧美日韩精品成人综合77777| 亚洲精品国产成人久久av| 久99久视频精品免费| 麻豆成人av视频| 少妇丰满av| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站高清观看| 国产午夜精品久久久久久一区二区三区| 一区二区三区四区激情视频 | 日产精品乱码卡一卡2卡三| 狠狠狠狠99中文字幕| 青春草国产在线视频 | 国产精品久久久久久久电影| 2021天堂中文幕一二区在线观| 久久久久久久久大av| 精品午夜福利在线看| 国产成人a∨麻豆精品| 一进一出抽搐动态| 精品久久久久久久久久免费视频| 国产女主播在线喷水免费视频网站 | 国产精品不卡视频一区二区| 婷婷六月久久综合丁香| 日本撒尿小便嘘嘘汇集6| 亚洲国产精品合色在线| 有码 亚洲区| 人妻系列 视频| 亚洲av二区三区四区| av又黄又爽大尺度在线免费看 | 欧美极品一区二区三区四区| 久久久久久九九精品二区国产| 久久婷婷人人爽人人干人人爱| 久久综合国产亚洲精品| 国内精品久久久久精免费| 日本五十路高清| 色播亚洲综合网| 成人美女网站在线观看视频| 最新中文字幕久久久久| 三级毛片av免费| 日韩,欧美,国产一区二区三区 | 给我免费播放毛片高清在线观看| 内射极品少妇av片p| 久久久成人免费电影| 成人av在线播放网站| 亚洲,欧美,日韩| 国产蜜桃级精品一区二区三区| 可以在线观看的亚洲视频| 日本熟妇午夜| 国产黄a三级三级三级人| 久久久国产成人精品二区| 在线天堂最新版资源| 欧美性猛交黑人性爽| 中文字幕制服av| 国产一级毛片七仙女欲春2| 久久综合国产亚洲精品| 国产亚洲av片在线观看秒播厂 | 国产真实乱freesex| 麻豆成人av视频| 国产精品国产三级国产av玫瑰| a级毛色黄片| 插逼视频在线观看| 日本免费a在线| 日韩欧美国产在线观看| eeuss影院久久| 一本一本综合久久| 伦理电影大哥的女人| 国产亚洲91精品色在线| 精品久久久久久成人av| 麻豆久久精品国产亚洲av| 最近中文字幕高清免费大全6| 老师上课跳d突然被开到最大视频| 又粗又爽又猛毛片免费看| 亚洲五月天丁香| 亚洲av中文字字幕乱码综合| 国产伦精品一区二区三区视频9| 午夜激情欧美在线| 亚洲国产高清在线一区二区三| 国产精品精品国产色婷婷| 内地一区二区视频在线| 国产 一区精品| 麻豆国产av国片精品| 久久久久国产网址| 国产视频首页在线观看| 亚洲av成人精品一区久久| 亚洲乱码一区二区免费版| 国产成人影院久久av| 少妇的逼水好多| 99热网站在线观看| 欧美3d第一页| 亚洲精品日韩在线中文字幕 | 边亲边吃奶的免费视频| 一区二区三区免费毛片| 岛国毛片在线播放| 中国国产av一级| 男女那种视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产老妇伦熟女老妇高清| 大香蕉久久网| 搡老妇女老女人老熟妇| 亚洲人成网站在线观看播放| 国产精品免费一区二区三区在线| 99热6这里只有精品| 亚洲色图av天堂| 久久久精品欧美日韩精品| 国产高清三级在线| 日韩欧美一区二区三区在线观看| 一级av片app| 国内精品美女久久久久久| 国产精品精品国产色婷婷| 精品久久久噜噜| 欧美日韩在线观看h| 99久久精品国产国产毛片| 久久久久国产网址| 超碰av人人做人人爽久久| 国产探花在线观看一区二区| 黑人高潮一二区| 精品日产1卡2卡| 三级国产精品欧美在线观看| av在线播放精品| 日韩一区二区视频免费看| 久久久成人免费电影| 美女 人体艺术 gogo| 久久精品91蜜桃| 国产高清有码在线观看视频| 欧美人与善性xxx| 黑人高潮一二区| 蜜桃久久精品国产亚洲av| 国产精品综合久久久久久久免费| 一区二区三区免费毛片| 婷婷精品国产亚洲av| 综合色av麻豆| 国产 一区 欧美 日韩| 深夜a级毛片| 国产精品一区www在线观看| 亚洲人成网站在线播放欧美日韩| 少妇猛男粗大的猛烈进出视频 | 亚洲国产精品成人综合色| 99久久精品一区二区三区| 国产高清激情床上av| 久久精品久久久久久久性| 国产一级毛片七仙女欲春2| 搡老妇女老女人老熟妇| 日日摸夜夜添夜夜添av毛片| 九色成人免费人妻av| 中文字幕制服av| 日韩一本色道免费dvd| 99riav亚洲国产免费| 国产午夜精品论理片| 国产精品,欧美在线| 日本黄色片子视频| 国内少妇人妻偷人精品xxx网站| 久久久久九九精品影院| 国产白丝娇喘喷水9色精品| 成人漫画全彩无遮挡| 青春草视频在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 美女 人体艺术 gogo| 成年女人看的毛片在线观看| 精品久久久久久久末码| 国内精品一区二区在线观看| 一级二级三级毛片免费看| 国内精品久久久久精免费| 久久婷婷人人爽人人干人人爱| 日本撒尿小便嘘嘘汇集6| 国产午夜福利久久久久久| 日日摸夜夜添夜夜爱| 天堂av国产一区二区熟女人妻| 国产成人91sexporn| 国产69精品久久久久777片| 麻豆久久精品国产亚洲av| 午夜老司机福利剧场| 国产探花极品一区二区| 亚洲欧洲日产国产| 美女被艹到高潮喷水动态| av免费在线看不卡| 99久久人妻综合| 日本与韩国留学比较| 午夜爱爱视频在线播放| 日韩欧美 国产精品| 中国美女看黄片| 熟妇人妻久久中文字幕3abv| 搡老妇女老女人老熟妇| 搞女人的毛片| 综合色丁香网| 少妇熟女aⅴ在线视频| 国产一区二区在线av高清观看| 中文字幕人妻熟人妻熟丝袜美| 中文欧美无线码| 韩国av在线不卡| 天堂中文最新版在线下载 | 国产精品一区二区三区四区免费观看| 淫秽高清视频在线观看| 午夜视频国产福利| or卡值多少钱| 午夜免费男女啪啪视频观看| 精品久久久久久久久av| 美女被艹到高潮喷水动态| 中文精品一卡2卡3卡4更新| 老师上课跳d突然被开到最大视频| 草草在线视频免费看| 国产精品蜜桃在线观看 | 禁无遮挡网站| 日本成人三级电影网站| 亚洲精品久久国产高清桃花| 国产黄片美女视频| 我要搜黄色片| 特级一级黄色大片| 亚洲av熟女| 91狼人影院| 成人特级av手机在线观看| 免费观看精品视频网站| 少妇的逼好多水| 国产探花在线观看一区二区| 变态另类丝袜制服| 99精品在免费线老司机午夜| 精品久久国产蜜桃| 波多野结衣巨乳人妻| 国产成年人精品一区二区| 在线播放国产精品三级| 免费av毛片视频| 精品99又大又爽又粗少妇毛片| 亚洲成人中文字幕在线播放| 国产一级毛片在线| 2021天堂中文幕一二区在线观| a级毛色黄片| 2022亚洲国产成人精品| 亚洲成a人片在线一区二区| 国产精品爽爽va在线观看网站| 国产av麻豆久久久久久久| 国产精品一区二区三区四区久久| 又黄又爽又刺激的免费视频.| 草草在线视频免费看| 高清毛片免费看| 久久精品久久久久久噜噜老黄 | 国产精品国产高清国产av| 我要看日韩黄色一级片| 国产精品人妻久久久久久| 天堂√8在线中文| 99精品在免费线老司机午夜| 国产一区二区亚洲精品在线观看| 在线播放无遮挡| 激情 狠狠 欧美| 久久这里有精品视频免费| 久久精品综合一区二区三区| 国产激情偷乱视频一区二区| 亚洲国产欧美人成| 国产在线男女| 欧美性猛交╳xxx乱大交人| kizo精华| 精品免费久久久久久久清纯| 不卡视频在线观看欧美| 69av精品久久久久久| 少妇高潮的动态图| 六月丁香七月| 国产精品1区2区在线观看.| 欧美成人一区二区免费高清观看| 成人特级黄色片久久久久久久| 亚洲av免费高清在线观看| 国产成人精品久久久久久| 日本欧美国产在线视频| 国产高潮美女av| 乱系列少妇在线播放| 国产爱豆传媒在线观看| 免费在线观看成人毛片| 国产真实伦视频高清在线观看| 久久99热6这里只有精品| 精品人妻视频免费看| 嘟嘟电影网在线观看| 日本色播在线视频| 99久久成人亚洲精品观看| 高清日韩中文字幕在线| 亚洲欧美日韩高清在线视频| 色哟哟·www| 久久久欧美国产精品| 中国国产av一级| 熟妇人妻久久中文字幕3abv| 色播亚洲综合网| 女同久久另类99精品国产91| 最近手机中文字幕大全| 天天躁夜夜躁狠狠久久av| 欧美色欧美亚洲另类二区| 91aial.com中文字幕在线观看| 女人被狂操c到高潮| www日本黄色视频网| 国产精品永久免费网站| 亚洲自偷自拍三级| 日韩欧美在线乱码| 欧美一区二区亚洲| 国产毛片a区久久久久| 嫩草影院入口| 国产免费一级a男人的天堂| 麻豆成人午夜福利视频| 久久99蜜桃精品久久| 国产v大片淫在线免费观看| 最新中文字幕久久久久| 老女人水多毛片| 国产成人福利小说| 久久久久免费精品人妻一区二区| 亚洲七黄色美女视频| 亚洲最大成人中文| 春色校园在线视频观看| 天天躁夜夜躁狠狠久久av| 欧美丝袜亚洲另类| 久久人人精品亚洲av| 极品教师在线视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲国产精品sss在线观看| 蜜桃亚洲精品一区二区三区| 亚洲欧洲国产日韩| 观看免费一级毛片| 亚洲国产欧美人成| 熟妇人妻久久中文字幕3abv| 国产精品久久视频播放| 国产午夜精品久久久久久一区二区三区| 干丝袜人妻中文字幕| av免费观看日本| 尤物成人国产欧美一区二区三区| 亚洲自偷自拍三级| 国产成人午夜福利电影在线观看| 日本爱情动作片www.在线观看| 久久久久国产网址| 亚洲精品国产av成人精品| 美女脱内裤让男人舔精品视频 | 夜夜看夜夜爽夜夜摸| 亚洲国产精品成人久久小说 | 99久久成人亚洲精品观看| 丰满人妻一区二区三区视频av| 国产探花在线观看一区二区| 欧美性感艳星| 伦精品一区二区三区| 好男人视频免费观看在线| 国产精品久久久久久久电影| 成人性生交大片免费视频hd| 亚洲自拍偷在线| 欧美另类亚洲清纯唯美| 丰满的人妻完整版| 日韩一区二区视频免费看| 日韩成人av中文字幕在线观看| 婷婷亚洲欧美| 99久国产av精品国产电影| 国产三级中文精品| 久久草成人影院| 色吧在线观看| 日韩一区二区视频免费看| 欧美一区二区亚洲| 美女脱内裤让男人舔精品视频 | 免费av不卡在线播放| 国产精品嫩草影院av在线观看| 久久久久久九九精品二区国产| 欧美丝袜亚洲另类| 亚洲av男天堂| 国产av麻豆久久久久久久| 青青草视频在线视频观看| 亚洲成人av在线免费| 99久久精品国产国产毛片| 99久久久亚洲精品蜜臀av| 一级av片app| 久久99热这里只有精品18| 亚洲人成网站高清观看| 超碰av人人做人人爽久久| 夫妻性生交免费视频一级片| 午夜爱爱视频在线播放| av国产免费在线观看| 精品久久久久久久久久免费视频| 青春草亚洲视频在线观看| 变态另类成人亚洲欧美熟女| 美女 人体艺术 gogo| 亚洲欧洲国产日韩| 精品无人区乱码1区二区| 26uuu在线亚洲综合色| 亚洲av成人精品一区久久| 18禁在线播放成人免费| 网址你懂的国产日韩在线| 精品欧美国产一区二区三| 亚洲精品久久久久久婷婷小说 | 午夜精品一区二区三区免费看| 欧美性猛交黑人性爽| 少妇高潮的动态图| 熟女人妻精品中文字幕| 亚洲精品乱码久久久久久按摩| 99热6这里只有精品| 深夜a级毛片| 欧美成人免费av一区二区三区| 男人舔女人下体高潮全视频| 高清毛片免费看| 久久中文看片网| 中文字幕人妻熟人妻熟丝袜美| 久久精品国产清高在天天线| 国产av麻豆久久久久久久| 日韩av在线大香蕉| 欧美一区二区精品小视频在线| 中文字幕制服av| 又粗又硬又长又爽又黄的视频 | 综合色av麻豆| 国产精品1区2区在线观看.| 精品人妻熟女av久视频| 国产精品av视频在线免费观看| 欧美潮喷喷水| 亚洲欧美日韩卡通动漫| 日本-黄色视频高清免费观看| 又爽又黄无遮挡网站| 国产成人91sexporn| 日韩在线高清观看一区二区三区| 久久午夜福利片| 亚洲精品亚洲一区二区| 久久精品国产亚洲av天美| 成年女人永久免费观看视频| 老熟妇乱子伦视频在线观看| 午夜爱爱视频在线播放| 男女下面进入的视频免费午夜| 99久久精品一区二区三区| 69av精品久久久久久| 一进一出抽搐gif免费好疼| 女人被狂操c到高潮| 久久久久久久久久黄片| 国产精品乱码一区二三区的特点| 在线观看午夜福利视频| 国产午夜精品久久久久久一区二区三区| 久久精品国产亚洲av天美| a级毛片a级免费在线| 成年版毛片免费区| 欧美xxxx性猛交bbbb| 久久这里只有精品中国| 少妇的逼水好多| 一级毛片我不卡| 国产爱豆传媒在线观看| 国产乱人偷精品视频| 一级毛片电影观看 | 亚洲精品乱码久久久久久按摩| 国产久久久一区二区三区| 嫩草影院精品99| 久久久久久久久久久免费av| 午夜免费男女啪啪视频观看| 免费观看人在逋| 1000部很黄的大片| 高清毛片免费看| 久久久精品欧美日韩精品| 插逼视频在线观看| 久久精品国产99精品国产亚洲性色| 亚洲美女视频黄频| 亚洲无线观看免费| 男人的好看免费观看在线视频| 国产三级在线视频| 最近最新中文字幕大全电影3| 青青草视频在线视频观看| 亚洲成人久久性| 国内久久婷婷六月综合欲色啪| 中国国产av一级| 三级国产精品欧美在线观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美性感艳星| 寂寞人妻少妇视频99o| 晚上一个人看的免费电影| 一级毛片电影观看 | 日韩一本色道免费dvd| 亚洲第一电影网av| 一个人免费在线观看电影| 精品一区二区三区人妻视频| 国产91av在线免费观看| 中国国产av一级| 天堂中文最新版在线下载 | 哪个播放器可以免费观看大片| 成人美女网站在线观看视频| 国产成人a∨麻豆精品| 2021天堂中文幕一二区在线观| 亚洲av成人精品一区久久| 国产成人a∨麻豆精品| 国产av在哪里看| 欧美最黄视频在线播放免费| 六月丁香七月| 国产真实伦视频高清在线观看| 成人午夜精彩视频在线观看| 最后的刺客免费高清国语| 免费看a级黄色片|