• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bayesian network model for traffic flow estimation using prior link flows

    2013-01-08 12:56:33ZhuSenlaiChengLinChuZhaoming

    Zhu Senlai Cheng Lin Chu Zhaoming

    (School of Transportation, Southeast University, Nanjing 210096, China)

    During the last decades, traffic flow estimation has become an important aspect of transportation planning. Two important problems in the traffic flow estimation field are: the origin-destination (OD) matrices estimation and the traffic assignment problems. The first one is to try to estimate the number of users traveling from each origin to each destination based on some link flow observations, while the second is to try to estimate how the OD flows disaggregate among different possible routes and links of the OD pairs.

    The OD matrices estimation problem can be dealt with by many different methods, such as least squares[1]and generalized least squares[2]methods, entropy or information-based methods[3], and statistical-based methods. The statistical-based methods can be classified into classical methods[4]and Bayesian methods[5-10]. In statistical-based methods, the traffic flows are assumed to be multivariate random variables given some parametric families, such as Poisson, Gamma, multivariate normal, etc. And the parameters are considered as random variables themselves in Bayesian methods. The traffic assignment problem is primarily dealt with using two different methods: deterministic user equilibrium (DUE)[11-12]and stochastic user equilibrium (SUE)[13-14]. If the OD matrices estimation and traffic assignment are treated separately, some inconsistencies normally arise in the solutions of both problems. To remove these inconsistencies, several combined methods of the two problems have been proposed in Refs.[15-17].

    More recently, Castillo et al.[6]proposed a Bayesian network (BN) model using prior OD flows for traffic flow estimation and then combined it with the multinomial logit(MNL) SUE model. In their Bayesian network, OD flows are assumed to be parents of link flows. Thus they need to give the relative weights of all OD flows with respect to the total traffic flow, as part of the inputs of the BN model. However, generally, for a real transportation network, the number of OD pairs can be very large. For example, in Chicago’s Regional Network, there are 12982 nodes, 39018 links and 2297945 OD pairs. It can be seen that the number of links is usually much smaller than the number of OD pairs and the relative weights of link flows are comparatively convenient to be obtained in a real traffic network. Based on these facts, we build a new Bayesian network using prior link flows, in which the link flows are parents of OD flows, and the relative weights of link flows with respect to the total traffic flow are part of the inputs of the BN model. Furthermore, to obtain an equilibrium solution, we combine the proposed BN model with a SUE model and give the procedures to solve it.

    1 Proposed Bayesian Network Model

    1.1 Model assumptions

    Assumption1The vectorVof link flows is a multivariate normal random variable with meanμVand variance-covariance matrixΣV.

    Assumption2The conditional distribution of each OD flowTigiven the link flows is a normal distribution:

    To obtain the regression coefficientβia, we first consider the well-known conservation law equation:

    (1)

    Eq.(1) can be written as

    (2)

    V=DT

    (3)

    We do the following conversion of Eq.(3):

    DTV=DTDT

    (4)

    Then, Eq.(4) can be written as

    T=(DTD)-1DTV=(DTD)-1DTμV+

    (DTD)-1DT(V-μV)

    (5)

    And it becomes clear that,

    β=(DTD)-1DT,E(T)=μT=βμV

    (6)

    According to Eq.(5), we replace Assumption 2 by the following assumption.

    Assumption3The OD flows are given by

    T=βV+ε

    (7)

    whereε={ε1,ε2,…,εn} are the mutually independent normal random variables and represent the OD flows apart from those used in the links of the considered network.

    Note that all the link flows are correlated. Their values vary randomly with the vacation time, commute time and special weather conditions, etc. In order to represent these correlations, we make the following assumption.

    Assumption4The link flows are given by

    Va=kaU+ηa

    (8)

    1.2 Complete model

    According to all the assumptions, all the random variables involved in our model are related by the linear expression:

    (9)

    The meanE(U,η,ε,V,T) is

    (10)

    And the variance-covariance matrixΣ(U,η,ε,V,T)is

    (11)

    whereDεis the variance matrix ofε, andDηis the variance-covariance matrix ofη.

    Then, we obtain the joint probability density (JPD):

    f(V1,V2,…,Vm;T1,T2,…,Tn)=

    (12)

    The probability can be updated by using the joint distribution of OD and link flows conditioned on the available information. And we can solve the following planning to obtain point estimations, whose results are normally the conditional means:

    (13)

    whereV0is the subset ofVand represents the observed component ofV.

    2 Combined BN and SUE model

    Note that the proposed BN model needs to know the route choice proportions. If combining this model with traffic assignment models, such as SUE, we can easily obtain the proportion values from the SUE model and iterate until convergence. In this paper, we use the MNL model as a representative. The procedure of the combined method is given as follows:

    Step1Initializing the model. FromE(U) and matrixK, we obtain the initial link flow vectorV={V1,V2,…,Vm}=KE(U). Then we can obtain the initial route choice proportionpikusing the formulas:

    (14)

    (15)

    (16)

    Step2Solving the BN model. After knowing the proportion matrixP, we can obtain the OD matrixTand the link flow vectorVusing the formulas:

    β=[(Pδ)TPδ]-1(Pδ)T

    (17)

    E(V)=KE(U)

    (18)

    E(T)=βE(V)+E(ε)

    (19)

    Dη=Diag(vE(V))

    (20)

    (21)

    ΣVT=ΣVVβT

    (22)

    ΣVT=ΣTV

    (23)

    ΣTT=βΣVVβT+Dε

    (24)

    (25)

    (26)

    E(Z|Z=z)=z

    (27)

    ΣZ|Z=z=0

    (28)

    T=E(Y|Z=z)|(Y,Z)=T

    (29)

    (30)

    (31)

    (32)

    (33)

    Step5Updating. We can update the route choice proportions and matrixKusing the following formulas:

    (34)

    (35)

    and go to Step 2.

    Eqs.(14) and (31) are the link cost functions. Eqs.(15) and (32) are the cost functions associated with routekof the OD pairi. Eqs.(16) and (33) are the Logit route choice proportion formulations. Eq.(17) defines the regression coefficient matrix. Eqs.(18) and (19) define the means ofVandT. Eq.(20) defines the diagonal variance matrix ofη;i.e.,varηa=(E(va)ν)2, wherevis the coefficient of variation. Eqs.(21) to (24) define the variance-covariance matrix in (14). Eqs.(25) and (26) are the updating equations for the means and variance-covariance matrix of the unobserved variables, whereYandZrefer to the unobserved and observed components of (T,V), respectively. Eqs.(27) and (28) state that the values of the observed variables are their observed values and their variances and covariances are null. Eq.(29) takes the means as point estimations for the OD and link flows. Eq.(30) is the conservation law equation. Eq.(34) is for updating route choice proportions, whereρ(0<ρ<1) is a relaxation factor. Eq.(35) is for updating matrixK.

    3 Numerical Examples

    Fig.1 The numerical traffic network

    Fig.2 Bayesian network associated with the numerical traffic network

    Using the data above to solve the combined BN and the SUE model, we can give the point estimations of traffic flows (including OD flows and link flows) after updating the evidences one by one. Tab.1 shows how the means (point estimations) of traffic flows change after updating the evidences one by one. It can be seen that onceV2becomes known andV3is also known (boldfaced in the table) due to the conservation laws. Similarly, after knowingV6,V7is also known.

    Fig.3 illustrates how the marginal densities of OD flows evolve from their initial form to their final form with the increasing evidences. It can be seen that the variances normally decrease with the increasing evidences. By these marginal densities, we can easily obtain the probability intervals of the point estimations respectively. It can be seen that the proposed combined model provides the conditional distributions of all the variables given some evidences; i.e., it supplies complete statistical information about them, including point estimations and the corresponding probability intervals. Finally, in order to compare the results with those using the method of Castillo et al.[6], the OD flows of both methods are shown in Tab.2. Note that they are basically the same. This is to be expected, because of the same normal distribution assumptions for the traffic flows.

    Tab.1 Point estimations of traffic flows

    Fig.3 Conditional distribution of OD flows after updating evidences one by one. (a) T1; (b) T2; (c) T3;(d) T4;(e) T5; (f) T6

    In the proposed method, link flows are parents of the OD flows, while the OD flows are parents of link flows in Castillo’s method. Therefore, the proposed method requires the knowledge of the relative weights of link flows with respect to the total traffic flow, while Castillo’s model requires the knowledge of the relative weights of OD flows. In fact, generally, for a network, the number of links is much smaller than the number of OD pairs. For example, in the numerical network, for the sake of illustrating, we only sample 6 OD pairs. But in fact, the numerical network is supposed to have totally 36 OD pairs due to its 9 nodes, while it has only 12 links. Another example, in Chicago’s Regional Network, there are 12982 nodes, 39018 links, while it has 2297945 OD pairs which is really a large number and much bigger than the number of links. So it is more convenient to obtain the relative weights of link flows with respect to the total traffic flow. In addition, the proposed model does not need to really assign traffic flows by solving the SUE model and we just use the well-known route choice proportion formulation instead. But Castillo’s method needs to make traffic assignment to obtain an initial solution. In other words, the proposed method is much easier to solve. Due to this advantage, the proposed model can almost use any existing SUE model easily, in which the only difference lies on the route choice proportion formulation. Moreover, if DUE models can be modified to get uniqueness and can provide route information, the proposed BN model can also be combined with them.

    Tab.2 OD flow estimation

    4 Conclusion

    A comparison in the example shows that the estimates of the proposed method and Castillo’s method are basically the same. The proposed method needs the relative weights of link flows with respect to the total traffic flow, while Castillo’s method needs the relative weights of OD flows. Due to the fact that generally the number of links is much smaller than the number of OD pairs, the proposed method is more convenient. Meanwhile, the proposed model does not need to really assign traffic flows by solving the SUE model and just uses the route choice proportion formulation instead. But Castillo’s method needs to make traffic assignment to obtain an initial solution. So the proposed method is easier to solve. Similar to Castillo’s method, the proposed method can provide not only point estimations but also the corresponding probability intervals.

    [1]Doblas J, Benitez F G. An approach to estimating and updating origin-destination matrices based upon traffic counts preserving the prior structure of a survey matrix [J].TransportationResearchPartB,2005,39(7): 565-591.

    [2]Parry M, Hazelton M L. Estimation of origin-destination matrices from link counts and sporadic routing data [J].TransportationResearchPartB, 2012,46(1): 175-188.

    [3]Xie C, Kockelman K M, Waller S T. A maximum entropy-least squares estimator for elastic origin-destination trip matrix estimation [J].TransportationResearchPartB, 2011,45(9): 1465-1482.

    [4]Lo H P, Zhang N. Estimation of an origin-destination matrix with random link choice proportions: a statistical approach [J].TransportationResearchPartB, 1996,30(4): 309-324.

    [5]Sun S L, Zhang C S, Yu G Q. A Bayesian network approach to traffic flow forecasting [J].IEEETransactionsonIntelligentTransportationSystems, 2006,7(1): 124-132.

    [6]Castillo E, Menéndez J M, Snchez-Cambronero S. Predicting traffic flow using Bayesian networks [J].TransportationResearchPartB, 2008,42(5): 482-509.

    [7]Perrakis K, Karlis D, Cools M, et al. A Bayesian approach for modeling origin-destination matrices [J].TransportationResearchPartB, 2012,46(1): 200-212.

    [8]Wang Jian, Deng Wei, Zhao Jinbao. Short-term freeway traffic flow prediction based on improved Bayesian combined model [J].JournalofSoutheastUniversity:NaturalScienceEdition, 2012,42(1):162-167. (in Chinese)

    [9]Wang Jian, Deng Wei, Zhao Jinbao. Short-term freeway traffic flow prediction based on multiple methods with Bayesian network [J].JournalofTransportationSystemsEngineeringandInformationTechnology, 2011,11(4):147-153.

    [10]Xianyu Jianchuan, Juan Zhicai, Zhu Taiying. Travel choice analysis by Bayesian networks [J].JournalofTransportationSystemsEngineeringandInformationTechnology, 2011,11(5):167-172.

    [11]Xu M, Qu Y, Gao Z. Implementing Frank-Wolfe algorithm under different flow update strategies and line search technologies [J].JournalofTransportationSystemsEngineeringandInformationTechnology, 2008,8(3): 14-22.

    [12]Bar-Gera H. Origin-based algorithm for the traffic assignment problem [J].TransportationScience, 2002,36(4): 398-417.

    [13]Zhou Z, Chen A, Behkor S. C-logit stochastic user equilibrium model: formulations and solution algorithm [J].Transportmetrica, 2012,8(1): 17-41.

    [14]Abbe E, Bierlaire M, Toledo T. Normalization and correlation of cross-nested logit models [J].TransportationResearchPartB, 2007,41(7): 795-808.

    [15]Fisk C. On combining maximum trip estimation with user optimal assignment [J].TransportationResearchPartB, 1988,22(1): 69-79.

    [16]Yang H. Heuristic algorithm for the bi-level origin destination matrix estimation problem [J].TransportationResearchPartB, 1995,29(1): 1-12.

    [17]Maher M, Zang X, Van Vliet D. A bi-level programming approach for trip matrix estimation and traffic control problems with stochastic user equilibrium link flows [J].TransportationResearchPartB, 2001,35(1): 23-40.

    .国产精品久久| 久久久亚洲精品成人影院| 九九在线视频观看精品| 国语自产精品视频在线第100页| 白带黄色成豆腐渣| 国语自产精品视频在线第100页| 亚洲第一区二区三区不卡| 在线天堂最新版资源| 三级国产精品欧美在线观看| 日韩av在线免费看完整版不卡| 又粗又爽又猛毛片免费看| 亚洲成人精品中文字幕电影| 日韩人妻高清精品专区| 亚洲精品aⅴ在线观看| 午夜福利网站1000一区二区三区| 身体一侧抽搐| 中文字幕av成人在线电影| 国产真实伦视频高清在线观看| 亚洲欧美精品专区久久| 蜜臀久久99精品久久宅男| 国产成人a区在线观看| 丝袜喷水一区| 99久久人妻综合| 国产精品永久免费网站| 久热久热在线精品观看| 亚洲国产成人一精品久久久| 国产精品蜜桃在线观看| 亚洲欧美精品综合久久99| 亚洲图色成人| 久久久精品大字幕| 国产又色又爽无遮挡免| 大香蕉久久网| 夜夜看夜夜爽夜夜摸| 男女啪啪激烈高潮av片| 3wmmmm亚洲av在线观看| 久久婷婷人人爽人人干人人爱| 亚洲精品乱久久久久久| 2022亚洲国产成人精品| 汤姆久久久久久久影院中文字幕 | 天堂√8在线中文| 九九在线视频观看精品| 91精品一卡2卡3卡4卡| 欧美3d第一页| 欧美丝袜亚洲另类| 国产精品伦人一区二区| 精品99又大又爽又粗少妇毛片| 尤物成人国产欧美一区二区三区| 国产91av在线免费观看| 精品人妻一区二区三区麻豆| 日韩欧美国产在线观看| 国产av一区在线观看免费| 一级爰片在线观看| 国产探花在线观看一区二区| 国产精品不卡视频一区二区| 日韩在线高清观看一区二区三区| 中国美白少妇内射xxxbb| 麻豆一二三区av精品| 小蜜桃在线观看免费完整版高清| 在线播放无遮挡| 欧美日本视频| 人妻制服诱惑在线中文字幕| 联通29元200g的流量卡| 国产成人午夜福利电影在线观看| 少妇熟女aⅴ在线视频| 全区人妻精品视频| 日产精品乱码卡一卡2卡三| www.色视频.com| 久久久久久国产a免费观看| 视频中文字幕在线观看| 插阴视频在线观看视频| 99热全是精品| 91精品国产九色| 久久久a久久爽久久v久久| 国产又色又爽无遮挡免| 精品酒店卫生间| 午夜福利在线观看免费完整高清在| 亚洲精品自拍成人| eeuss影院久久| 又粗又硬又长又爽又黄的视频| 色哟哟·www| 超碰av人人做人人爽久久| 美女xxoo啪啪120秒动态图| 性插视频无遮挡在线免费观看| 精品欧美国产一区二区三| 欧美丝袜亚洲另类| 尤物成人国产欧美一区二区三区| 国产精品电影一区二区三区| 国产伦在线观看视频一区| 夜夜看夜夜爽夜夜摸| 日产精品乱码卡一卡2卡三| 搡女人真爽免费视频火全软件| 一边亲一边摸免费视频| 美女xxoo啪啪120秒动态图| 免费观看的影片在线观看| 成年免费大片在线观看| 乱码一卡2卡4卡精品| 不卡视频在线观看欧美| 精品国产露脸久久av麻豆 | 美女被艹到高潮喷水动态| 久久久久久久久久成人| 中文亚洲av片在线观看爽| 国产极品天堂在线| 99久久中文字幕三级久久日本| 午夜亚洲福利在线播放| 日韩高清综合在线| 国产精品一二三区在线看| 国产大屁股一区二区在线视频| 99久久精品一区二区三区| 一级黄色大片毛片| 亚洲精品亚洲一区二区| 亚洲国产精品专区欧美| 亚洲国产欧美人成| av卡一久久| 免费黄色在线免费观看| 又爽又黄a免费视频| 精品久久久噜噜| 亚洲欧美日韩东京热| 午夜福利网站1000一区二区三区| 国产不卡一卡二| 国产视频首页在线观看| 亚洲精品影视一区二区三区av| 51国产日韩欧美| 又爽又黄a免费视频| 亚洲熟妇中文字幕五十中出| 中文字幕熟女人妻在线| 国产在视频线精品| 国产单亲对白刺激| 免费人成在线观看视频色| 成年版毛片免费区| 蜜臀久久99精品久久宅男| 国产精品人妻久久久影院| 丝袜美腿在线中文| 能在线免费观看的黄片| 国产av一区在线观看免费| 亚洲性久久影院| 永久网站在线| 看非洲黑人一级黄片| 九九热线精品视视频播放| 国产精华一区二区三区| 婷婷色av中文字幕| 成人一区二区视频在线观看| 亚洲欧美日韩东京热| 亚洲,欧美,日韩| 边亲边吃奶的免费视频| 午夜a级毛片| 欧美性猛交╳xxx乱大交人| 久久久色成人| 国产av一区在线观看免费| 麻豆一二三区av精品| 高清午夜精品一区二区三区| 2021天堂中文幕一二区在线观| 老司机影院成人| 国产精品嫩草影院av在线观看| 中文字幕免费在线视频6| 亚洲欧美成人精品一区二区| 九九在线视频观看精品| 亚洲精品成人久久久久久| 中文字幕熟女人妻在线| 在线免费十八禁| 精品久久久久久久久久久久久| 免费看光身美女| 亚洲精品,欧美精品| 精品久久久久久久久av| 18禁裸乳无遮挡免费网站照片| 极品教师在线视频| 久久久欧美国产精品| av.在线天堂| 久久精品国产自在天天线| av在线播放精品| 免费看av在线观看网站| 国产精品电影一区二区三区| 亚洲中文字幕日韩| 色噜噜av男人的天堂激情| 日本免费a在线| 久久精品国产亚洲网站| 啦啦啦观看免费观看视频高清| 亚洲成人av在线免费| 久久国产乱子免费精品| 一级二级三级毛片免费看| 成人av在线播放网站| 国产大屁股一区二区在线视频| 国产白丝娇喘喷水9色精品| 亚洲欧美日韩无卡精品| 国产黄a三级三级三级人| 午夜福利视频1000在线观看| 国产久久久一区二区三区| 欧美日韩国产亚洲二区| 麻豆久久精品国产亚洲av| 26uuu在线亚洲综合色| 18禁在线播放成人免费| 在线免费观看不下载黄p国产| 国产色爽女视频免费观看| 黄色一级大片看看| 国产午夜精品久久久久久一区二区三区| 一级毛片电影观看 | 久久精品国产亚洲av天美| .国产精品久久| eeuss影院久久| 两个人视频免费观看高清| 一级av片app| 欧美成人精品欧美一级黄| 日韩成人伦理影院| 黄片无遮挡物在线观看| 免费av毛片视频| 久久综合国产亚洲精品| 一级黄片播放器| 人人妻人人看人人澡| 亚洲精品自拍成人| 成人特级av手机在线观看| 亚洲人与动物交配视频| 国产成人精品一,二区| 欧美日韩一区二区视频在线观看视频在线 | 国产亚洲精品av在线| 国内精品美女久久久久久| 美女黄网站色视频| 免费观看的影片在线观看| 十八禁国产超污无遮挡网站| 三级经典国产精品| 少妇丰满av| 六月丁香七月| 亚洲国产精品久久男人天堂| 黄色一级大片看看| 国产亚洲最大av| 亚洲五月天丁香| 午夜久久久久精精品| 精品酒店卫生间| 久久精品国产自在天天线| 男女国产视频网站| 成人性生交大片免费视频hd| 老女人水多毛片| 久久久久久久久久久免费av| 婷婷六月久久综合丁香| 91久久精品国产一区二区成人| 女的被弄到高潮叫床怎么办| 久久久久久久久久成人| 2021天堂中文幕一二区在线观| 亚洲国产欧美在线一区| 国产在视频线精品| 男女那种视频在线观看| 国产午夜福利久久久久久| 日韩欧美三级三区| 欧美成人a在线观看| 直男gayav资源| 在线观看66精品国产| 美女国产视频在线观看| 精品久久久久久久末码| 99久久成人亚洲精品观看| 国产精品一区二区在线观看99 | av在线蜜桃| 99在线人妻在线中文字幕| 亚洲成人久久爱视频| 午夜视频国产福利| 永久免费av网站大全| 亚洲内射少妇av| 熟女人妻精品中文字幕| 成人午夜精彩视频在线观看| 天天躁夜夜躁狠狠久久av| 淫秽高清视频在线观看| 三级国产精品片| 免费看光身美女| av在线观看视频网站免费| 激情 狠狠 欧美| 成人鲁丝片一二三区免费| 国内精品一区二区在线观看| 久久精品久久久久久噜噜老黄 | 网址你懂的国产日韩在线| www.色视频.com| 久久久久九九精品影院| 成人美女网站在线观看视频| 中文天堂在线官网| 国产精品三级大全| 国产视频内射| 亚洲最大成人中文| 免费播放大片免费观看视频在线观看 | av国产久精品久网站免费入址| 日本三级黄在线观看| 99视频精品全部免费 在线| 国产一区亚洲一区在线观看| 亚洲av免费高清在线观看| 中文字幕久久专区| 日韩av在线免费看完整版不卡| 99九九线精品视频在线观看视频| 干丝袜人妻中文字幕| 国产精品国产高清国产av| 国产精品久久久久久精品电影| 美女cb高潮喷水在线观看| 成人欧美大片| 日产精品乱码卡一卡2卡三| 搡老妇女老女人老熟妇| 欧美另类亚洲清纯唯美| 人体艺术视频欧美日本| 中文精品一卡2卡3卡4更新| 乱系列少妇在线播放| 亚洲欧美成人精品一区二区| 97人妻精品一区二区三区麻豆| 日日摸夜夜添夜夜爱| 老师上课跳d突然被开到最大视频| 亚洲av二区三区四区| 久久久久久久久久黄片| 中文乱码字字幕精品一区二区三区 | 老司机福利观看| 你懂的网址亚洲精品在线观看 | 精品久久久久久久人妻蜜臀av| 免费看a级黄色片| 两个人视频免费观看高清| 老师上课跳d突然被开到最大视频| 欧美日韩一区二区视频在线观看视频在线 | 亚洲最大成人av| 久久精品国产亚洲网站| 赤兔流量卡办理| 日本午夜av视频| 亚洲欧美清纯卡通| 国产亚洲av片在线观看秒播厂 | 最近2019中文字幕mv第一页| 日韩一区二区视频免费看| 国产 一区精品| 能在线免费看毛片的网站| 成人午夜精彩视频在线观看| 久久精品国产自在天天线| 99久久精品国产国产毛片| 小蜜桃在线观看免费完整版高清| www日本黄色视频网| 美女内射精品一级片tv| 欧美97在线视频| 91久久精品电影网| 一夜夜www| 日本一本二区三区精品| 亚洲精品日韩在线中文字幕| 久久6这里有精品| 天堂网av新在线| 精品人妻视频免费看| 日本一二三区视频观看| 日韩欧美在线乱码| 日韩制服骚丝袜av| 午夜爱爱视频在线播放| 精品酒店卫生间| 国产男人的电影天堂91| 男人狂女人下面高潮的视频| 免费观看在线日韩| 色综合站精品国产| 女的被弄到高潮叫床怎么办| 纵有疾风起免费观看全集完整版 | 亚洲欧洲日产国产| 久久精品国产99精品国产亚洲性色| 成人亚洲欧美一区二区av| 嫩草影院精品99| 久久草成人影院| 午夜福利在线观看免费完整高清在| 一级二级三级毛片免费看| 久久精品国产亚洲av天美| 又粗又爽又猛毛片免费看| 亚洲aⅴ乱码一区二区在线播放| 看黄色毛片网站| av免费观看日本| 国产亚洲精品久久久com| 欧美激情国产日韩精品一区| 婷婷六月久久综合丁香| 在线免费观看不下载黄p国产| 夫妻性生交免费视频一级片| 国产成人福利小说| 亚洲av电影不卡..在线观看| 国产极品精品免费视频能看的| 超碰av人人做人人爽久久| 特大巨黑吊av在线直播| 日韩人妻高清精品专区| 99国产精品一区二区蜜桃av| 午夜久久久久精精品| 国产三级在线视频| 国产亚洲精品久久久com| 国内精品一区二区在线观看| 国产亚洲91精品色在线| 国产精品一二三区在线看| 成年女人看的毛片在线观看| 九九热线精品视视频播放| 精品人妻一区二区三区麻豆| 久久99精品国语久久久| 一级毛片我不卡| 麻豆成人av视频| 丰满人妻一区二区三区视频av| 秋霞在线观看毛片| 在线观看66精品国产| 免费观看人在逋| 日本一本二区三区精品| 久久99精品国语久久久| 国产黄片视频在线免费观看| 99热这里只有精品一区| 男人舔奶头视频| 久久精品久久精品一区二区三区| 99久久成人亚洲精品观看| 亚洲中文字幕一区二区三区有码在线看| 国产精品三级大全| 久久99热6这里只有精品| 岛国毛片在线播放| 久久久久国产网址| 91aial.com中文字幕在线观看| 丝袜美腿在线中文| 精品久久久噜噜| 国产免费福利视频在线观看| 久久久精品94久久精品| 久久精品国产鲁丝片午夜精品| 精品国产一区二区三区久久久樱花 | 国模一区二区三区四区视频| 亚洲国产精品国产精品| 蜜臀久久99精品久久宅男| 日韩成人av中文字幕在线观看| 大又大粗又爽又黄少妇毛片口| 三级国产精品欧美在线观看| 91久久精品国产一区二区成人| 国产精品永久免费网站| 国产亚洲5aaaaa淫片| 国产精品精品国产色婷婷| 老女人水多毛片| av.在线天堂| 嫩草影院新地址| 中文字幕亚洲精品专区| 干丝袜人妻中文字幕| 中文资源天堂在线| av又黄又爽大尺度在线免费看 | 亚洲欧美日韩卡通动漫| 成人一区二区视频在线观看| 久久久久久九九精品二区国产| 六月丁香七月| 久热久热在线精品观看| 插逼视频在线观看| 美女国产视频在线观看| 麻豆精品久久久久久蜜桃| 伦理电影大哥的女人| 淫秽高清视频在线观看| 欧美成人免费av一区二区三区| 欧美一区二区精品小视频在线| 丰满乱子伦码专区| 国产乱人偷精品视频| 三级男女做爰猛烈吃奶摸视频| 免费看美女性在线毛片视频| 国产久久久一区二区三区| 亚洲成人精品中文字幕电影| 免费观看性生交大片5| 中文字幕av在线有码专区| 黄色一级大片看看| 97人妻精品一区二区三区麻豆| a级毛片免费高清观看在线播放| 国产一区有黄有色的免费视频 | 中文字幕亚洲精品专区| 22中文网久久字幕| 亚洲欧美精品专区久久| 久久韩国三级中文字幕| 91精品一卡2卡3卡4卡| 91aial.com中文字幕在线观看| 能在线免费观看的黄片| 秋霞伦理黄片| 国产成人免费观看mmmm| 18禁在线无遮挡免费观看视频| 一个人看视频在线观看www免费| 婷婷色综合大香蕉| 国产中年淑女户外野战色| 精品久久久久久久人妻蜜臀av| 美女黄网站色视频| 简卡轻食公司| 国内精品美女久久久久久| 长腿黑丝高跟| 精品人妻熟女av久视频| 1000部很黄的大片| 青青草视频在线视频观看| 天堂av国产一区二区熟女人妻| 亚洲国产精品sss在线观看| 非洲黑人性xxxx精品又粗又长| 少妇高潮的动态图| 亚洲av电影在线观看一区二区三区 | 看黄色毛片网站| 欧美日韩精品成人综合77777| 国产免费视频播放在线视频 | 国产亚洲91精品色在线| 好男人在线观看高清免费视频| 精品不卡国产一区二区三区| 亚洲一级一片aⅴ在线观看| 五月伊人婷婷丁香| av视频在线观看入口| 麻豆一二三区av精品| 联通29元200g的流量卡| 国产精品av视频在线免费观看| 女人十人毛片免费观看3o分钟| 久久久欧美国产精品| 成人三级黄色视频| 有码 亚洲区| 麻豆精品久久久久久蜜桃| 人妻夜夜爽99麻豆av| 乱人视频在线观看| 亚洲精品影视一区二区三区av| 欧美97在线视频| 日韩欧美 国产精品| 精品欧美国产一区二区三| 国产精品久久久久久久电影| 日日干狠狠操夜夜爽| 国产精品麻豆人妻色哟哟久久 | 日本免费一区二区三区高清不卡| 亚洲精品成人久久久久久| 久久久国产成人精品二区| 国产精品一区二区三区四区免费观看| 免费观看人在逋| 国产午夜精品论理片| 亚洲自拍偷在线| 亚洲自偷自拍三级| 亚洲精品456在线播放app| 久久99精品国语久久久| 最后的刺客免费高清国语| 国产午夜精品一二区理论片| 免费av观看视频| 亚洲精品日韩在线中文字幕| 久久久久九九精品影院| 国产老妇女一区| 18禁在线无遮挡免费观看视频| 毛片女人毛片| 99久久精品一区二区三区| 亚洲美女视频黄频| 亚洲精品国产av成人精品| 极品教师在线视频| 22中文网久久字幕| 亚洲欧美一区二区三区国产| 精品不卡国产一区二区三区| 日韩高清综合在线| 成人亚洲精品av一区二区| 久久精品久久久久久噜噜老黄 | 国产精品久久久久久久电影| 一本久久精品| 国产伦一二天堂av在线观看| 亚洲av一区综合| 亚洲av不卡在线观看| 少妇被粗大猛烈的视频| 久久久久网色| 欧美精品一区二区大全| 亚洲成人久久爱视频| 全区人妻精品视频| 国内精品宾馆在线| 黄色一级大片看看| 男女视频在线观看网站免费| 成人午夜精彩视频在线观看| 听说在线观看完整版免费高清| 欧美人与善性xxx| 国产成人精品婷婷| 国产亚洲av片在线观看秒播厂 | 亚洲国产最新在线播放| 国产黄片美女视频| 丰满乱子伦码专区| 真实男女啪啪啪动态图| 亚洲欧美精品专区久久| 亚洲人成网站在线播| 亚洲伊人久久精品综合 | 欧美色视频一区免费| 夜夜看夜夜爽夜夜摸| 亚洲欧美日韩高清专用| 色网站视频免费| 亚洲最大成人手机在线| 麻豆成人av视频| 两个人视频免费观看高清| 热99re8久久精品国产| 91午夜精品亚洲一区二区三区| 亚洲国产精品成人久久小说| 伊人久久精品亚洲午夜| 色播亚洲综合网| 亚洲人成网站在线观看播放| 18禁在线播放成人免费| 久久精品国产亚洲av天美| 最近最新中文字幕免费大全7| 三级毛片av免费| 国产黄片美女视频| 春色校园在线视频观看| 黄色配什么色好看| av国产久精品久网站免费入址| 国产精品野战在线观看| 国产精品国产三级国产av玫瑰| 人妻系列 视频| 国产 一区精品| 欧美成人免费av一区二区三区| 男的添女的下面高潮视频| 最近的中文字幕免费完整| 白带黄色成豆腐渣| 亚洲五月天丁香| 身体一侧抽搐| av国产久精品久网站免费入址| 身体一侧抽搐| 春色校园在线视频观看| 精品人妻偷拍中文字幕| 亚洲精品456在线播放app| 亚洲精品亚洲一区二区| 91精品国产九色| 只有这里有精品99| 国产91av在线免费观看| 97超视频在线观看视频| 蜜桃亚洲精品一区二区三区| 亚洲欧洲国产日韩| 一级av片app| 国产精品av视频在线免费观看| 午夜激情福利司机影院| 亚洲精品自拍成人| 亚洲精品456在线播放app| 亚洲成人精品中文字幕电影| 亚洲不卡免费看| 日本猛色少妇xxxxx猛交久久| 亚洲图色成人| АⅤ资源中文在线天堂| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产欧洲综合997久久,| 看黄色毛片网站| 国产精品三级大全| 熟妇人妻久久中文字幕3abv| www日本黄色视频网| 观看免费一级毛片| 亚洲精品国产成人久久av| 欧美极品一区二区三区四区| 五月玫瑰六月丁香| 99久久成人亚洲精品观看| 国产男人的电影天堂91| 亚洲人成网站在线观看播放| 亚洲自偷自拍三级| 在线播放无遮挡|