• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Approach to estimation of vehicle-road longitudinal friction coefficient

    2013-01-08 12:56:14SongXiangLiXuZhangWeigongChenWeiXuQimin

    Song Xiang Li Xu Zhang Weigong Chen Wei Xu Qimin

    (School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)

    With the implementation of active safety control systems, vehicles have become safer to drive with less involvement in fatal accidents. These active safety control systems can greatly profit from being made road-adaptive; i.e., the control algorithms can be modified to account for the external road conditions if the actual tire-road friction coefficient information is available in real time. The longitudinal tire-road friction coefficient is an essential parameter for the vehicle longitudinal active safety control systems. For example, in an adaptive cruise control (ACC) system, road condition information from the friction coefficient estimation can be used to adjust the longitudinal spacing headway from the preceding vehicle that the ACC vehicle should maintain.

    The tire-road friction coefficient must be estimated in real-time to meet the requirements of the vehicle longitudinal active safety control systems under normal driving conditions. So the method of tire-road friction coefficient estimation based on vehicle longitudinal dynamics is most feasible.

    The relationship between the normalized longitudinal tire force and the slip ratio is different under different road conditions, which is the basis of utilizing the vehicle longitudinal dynamics to estimate the tire-road friction coefficient[1]. The most well known research in this area is on the use of slip-slope for friction coefficient identification[2-5]. In this method, the normalized longitudinal force is considered proportional to the slip ratio at low slip ratios. The slope of the relationship between the normalized longitudinal force and the slip ratio at low slip ratios is called slip-slope. The basic idea behind the use of slip-slope for friction coefficient estimation is that at low slip ratios, the tire-road friction coefficient is proportional to slip-slope. Thus, by estimating slip-slope, the tire-road friction coefficient can be estimated. But this method is only suitable for the condition of low slip ratios. The parameter estimation method is another commonly used method[6-7].But only at the large slip ratios, the estimation results will be close to the true value. Domestic researches[8-9]are based on the above two methods,the drawbacks as mentioned above also exist. Shim et al.[10]assumed a tire-road friction coefficient, and then the response of the vehicle is estimated based on the vehicle dynamics model. According to the differences between the estimated response and the actual vehicle response, the tire-road friction coefficient can be calculated. But the method is difficult to apply to complex road conditions since it requires a lot of experience.

    As mentioned above, the main problem of the tire-road friction coefficient estimation algorithms is that the algorithms cannot be applied to both high and low slip ratios simultaneously. To solve this problem, the recursive least squares (RLS)method with the forgetting factor and the extended Kalman filter (EKF) algorithm are employed to estimate the longitudinal tire-road friction coefficient in this paper. The method utilizes the relationship between the normalized longitudinal tire force and the slip ratio to identify the longitudinal tire-road friction coefficientμ, which can be applicable to for both the high and the low slip ratios, and the effectiveness and feasibility are verified by simulation.

    1 Proposed Method

    If only the longitudinal motion is considered and the lateral force is ignored, the normalized longitudinal tire forceφand the slip ratiosat each wheel can be represented as

    (1)

    (2)

    whereωis the angular wheel speed;ris the effective tire radius;vis the vehicle’s absolute velocity;Fxis the longitudinal force from ground to wheel; andFzis the normal force.

    Fig.1 shows a typical relationship betweensandφf(shuō)or various values of the tire-road friction coefficient.μis the tire-road friction coefficient.

    Fig.1 s-φ curves with different friction coefficients

    In this paper, the friction coefficient is assumed to be the same at each wheel of the vehicle. By calculatingsandφ, the longitudinal tire-road friction coefficientμcan be estimated by the RLS method with the forgetting factor, which is based on the simplified magic formula tire model. Then the estimatedμand the tire model parameters are used as extended states. The EKF algorithm is employed to filter out the noise and adaptively adjust the tire model parameters. Then the final road longitudinal friction coefficient is accurately and robustly estimated. The flowchart of the estimation method is shown in Fig.2.

    Fig.2 Flowchart of estimation method

    2 Vehicle and Tire Models

    The longitudinal vehicle dynamics model can be written as

    max=Fx-Dav2-Crollmg

    (3)

    wheremis the mass of the vehicle;axis the vehicle longitudinal acceleration;Dais the air resistance coefficient;Crollis the rolling resistance coefficient; andgis the acceleration of gravity.

    A simplified magic formula tire model[11]is adopted in this paper.

    φ=μsin[Carctan(Bs)]

    (4)

    whereBandCare the model parameters.

    3 Road Friction Coefficient Preliminarily Estimated based on RLS

    3.1 Longitudinal slip ratio calculation

    The effective tire radiusris calculated as

    (5)

    whereruis the undeformed radius of the tire;rsis the static tire radius and it can be described asrs=ru-Fz/kt,ktis the vertical tire stiffness. The longitudinal slip ratio can be calculated by Eq.(1).

    3.2 Normalized longitudinal tire force calculation

    Eq.(3) can be rewritten as

    Fx=Fxf+Fxr=max+Dav2+Crollmg

    (6)

    whereFxfandFxrare the traction forces of the front and the rear wheels. The total vehicle longitudinal forceFxcan be obtained by Eq.(6).

    The normal forces at the front and rear tires can be calculated as follows:

    (7)

    whereFzfandFzrare the normal forces at the front and the rear tires;aandbare the distances from the center of gravity to the front and the rear axles.

    The relationship betweensandφf(shuō)or the front and rear tires can be written as

    (8)

    (9)

    3.3 Preliminary estimates of μ

    Assuming that the front and rear tires are under the same road surface condition, which is true for many driving situations, the total longitudinal force is

    Fx=Fxf+Fxr=φf(shuō)Fzf+φrFzr=

    μ{Fzfsin[Carctan(Bsf)]+Fzrsin[Carctan(Bsr)]}

    (10)

    Eq.(10) can be rewritten into a standard parameter identification format as

    y(k)=φT(k)θ(k)+e(k)

    (11)

    wherekdenotes the discrete time;y(k)=Fxis the system output;θ(k)=μis the unknown parameter of interest;φ(k)={Fzfsin[Carctan(Bsf)]+Fzrsin[Carctan(Bsr)]} is the measured regression vector;e(k) is the identification error. Then the only unknown parameterθ(k)=μcan be identified in real-time using the RLS method with the forgetting factor as follows:

    1) Measure the system outputy(k) and calculate the regression vectorφ(k).

    2) Calculate the identification errore(k),

    e(k)=y(k)-φT(k)θ(k-1)

    3) Calculate the updated gain vectorK(k) as

    And calculate the covariance matrixN(k)by

    The parameterλis called the forgetting factor, which is used to effectively reduce the influence of old data which may no longer be relevant to the model, and, therefore, prevents a covariance wind-up problem.

    4) Update the parameter estimate vectorθ(k),

    θ(k)=θ(k-1)+K(k)e(k)

    The road friction coefficientμcan be preliminary estimated in real-time.

    4 Longitudinal Tire-Road Friction Coefficient Identification based on EKF

    In the tire-road friction coefficient estimation process described above, the model parametersBandCare assumed to be known and constant. However, during vehicle operation,BandCcannot be directly measured and they are time-varying, which may affect the accuracy of the estimation of the tire-road friction coefficient. In order to real-time updateBandC, and filterμ, the EKF model is established based on the longitudinal dynamic model using Eq.(3).

    The discretized state equation and measurement equation can be written as

    (12)

    wherekrefers to the discrete-time step; the state vectorX={v,μ,B,C}T; the measurement vectorZ={ax,v,μ}T;WandVare the system and measurement noise vectors, respectively;f(·) andh(·) are the nonlinear system and measurement functions which can be deduced from Eq.(3).

    Assuming that the system and measurement noises to be Gaussian with a zero mean and their covariance matrices areQandR, respectively, the EKF process consists of the following two phases.

    1) Time update:

    P(k,k-1)=A(k,k-1)P(k-1)A′(k,k-1)+Q(k-1)

    2) Measurement update:

    K(k)=

    P(k,k-1)H′(k)[H(k)P(k,k-1)H′(k)+R(k)]-1

    P(k)=[I-K(k)H(k)]P(k,k-1)

    whereIis the identity matrix;AandHare the Jacobian matrices of the system functionf(·) and the measurement functionh(·) with respect toX; i.e.,

    The model parametersBandC, estimated by the EKF, are feedbacks to the tire model, so the estimated values by the RLS can be updated in real-time. Therefore, the estimation accuracy of the tire-road friction coefficient can be improved, and the estimated values can respond to the road state changes. Theμoutput by the EKF is the final estimation result.

    5 Simulation Results and Discussion

    To evaluate the performance of the proposed estimation method of the longitudinal friction coefficient, numerical simulations are performed using Carsim in Matlab/Simulink. According to Ref.[12], the initial values of model parametersBandCare 14 and 1.3, respectively. The forgetting factorλis set to be 0.995. The proposed algorithm is validated under the high and the low slip ratio conditions with the tire-road friction coefficient changing, and the estimation results are compared with the conventional slip-slope algorithm. Simulation results show that the proposed algorithm can be applied to both the high and the low slip ratios; the estimation results are accurate and robust, and they can quickly respond to the changes in road conditions.

    5.1 Simulation under low slip ratio condition

    The main vehicle parameters used in the simulations are:kt=230 N/mm,m=1220 kg,rs=310.8 mm,rw=304 mm,a=1.04 mm,b=1.56 mm. Fig.3 and Fig.4 are the simulation results. The figures show that the values of the slip ratio are small, and the proposed method can quickly identify the road friction coefficient with high accuracy; the error is less than 0.1. From Fig.4, we can see that the proposed method can converge to the true value within 2 s when the tire-road friction coefficient jumps, which meets the real-time requirements.

    Fig.3 Simulation results of low slip ratios. (a) Slip ratio; (b) Tire-road friction coefficient

    Fig.4 Simulation results of low slip ratios with friction coefficient changing. (a) Slip ratio; (b) Tire-road friction coefficient

    5.2 Simulation under high slip ratio condition

    The conventional slip-slope algorithm is no longer suitable for the high slip ratio condition because the relationship betweensandφis not linear. Fig.5 and Fig.6 are the simulation results. The figures show that estimation results by the slip-slope algorithm produce a great error. The proposed method can quickly identify the road friction coefficient with high accuracy at high slip ratios and quickly respond to the changes in road conditions.

    6 Conclusion

    Simulation results show that the proposed algorithm can quickly and accurately estimate the tire-road friction coefficient under both the high and the low slip ratio conditions, which can meet the requirements of the vehicle longitudinal active safety system. And the proposed method only needs the existing sensors in commercial vehicles, so the proposed method is suitable for on-board applications with low computational complexity.

    The key of the proposed algorithm is to obtain an accurates-φcurve. Thes-φcurve can be obtained by the bench test, but the friction conditions on an actual road is different from the bench test, and the accuracy of the real-time tire-road friction coefficient is also reduced due to the high dynamic characteristics and noises. So the further work must focus on buildings-φrelationships in different roads by a lot of vehicle tests on the common road, and then the proposed method can be applied to practice and achieves mass-market applications.

    Fig.5 Simulation results of high slip ratios. (a) Slip ratio; (b) Friction coefficient estimated by the proposed method; (c) Friction coefficient estimated by the slip-slope method

    Fig.6 Simulation results of high slip ratios with friction coefficient changing. (a) Slip ratio; (b) Friction coefficient estimated by the proposed method; (c) Friction coefficient estimated by the slip-slope method

    [1]Rajamani R, Piyabongkarn D, Lew J Y, et al. Tire-road friction-coefficient estimation [J].IEEEControlSystemMagazine, 2010,30(4):54-69.

    [2]Wang J, Alexander L, Rajamani R. Friction estimation on highway vehicles using longitudinal measurements [J].JournalofDynamicSystems,Measurement,andControl, 2004,126(2):265-275.

    [3]Lee C, Hedrick K, Yi K. Real-time slip-based estimation of maximum tire-road friction coefficient [J].IEEE/ASMETransactionsonMechatronics, 2004,9(2):454-458.

    [4]Ahn C, Peng H, Tseng H E. Robust estimation of road friction coefficient using lateral and longitudinal vehicle dynamics[J].VehicleSystemDynamics, 2012,50(6):961-985.

    [5]Li K, Misener J A, Hedrick K. On-board road condition monitoring system using slip-based tire-road friction estimation and wheel speed signal analysis [J].JournalofMulti-BodyDynamics, 2007,221(1):129-146.

    [6]Tanelli M, Piroddi L, Savaresi S M. Real-time identification of tire-road friction conditions [J].IETControlTheoryApplications, 2009,3(7): 891-906.

    [7]Villagra J, d’Andréa-Novel B, Fliess M, et al. A diagnosis-based approach for tire-road forces and maximum friction estimation [J].ControlEngineeringPractice, 2009,19(2): 174-184.

    [8]Wu Lijun, Wang Yuejian, Li Keqiang. Estimation method of road adhesion coefficient for vehicle longitudinal safety assistant system [J].AutomotiveEngineering, 2009,31(3):239-243. (in Chinese)

    [9]Yu Zhuoping, Zuo Jianling, Zhang Lijun. A summary on the development status quo of tire-road friction coefficient estimation techniques [J].AutomotiveEngineering, 2006,28(6):546-549. (in Chinese)

    [10]Shim T, Margolis D. Model-based road friction estimation [J].VehicleSystemDynamics, 2004,41(4): 249-276.

    [11]Bian Mingyuan. Simplified tire model for longitudinal road friction estimation[J].JournalofChongqingUniversityofTechnology:NaturalScience, 2012,26(1):1-5. (in Chinese)

    [12]Gustafsson F. Automotive safety systems, replacing costly sensors with software algorithms [J].IEEESignalProcessingMagazine, 2009,26(4):32-47.

    日本黄色视频三级网站网址| 国产一区二区激情短视频| 色播亚洲综合网| 欧美色欧美亚洲另类二区| 国产av一区在线观看免费| 日日摸夜夜添夜夜添av毛片| 91午夜精品亚洲一区二区三区| 日韩欧美三级三区| 日本一二三区视频观看| 在线播放国产精品三级| 一级毛片aaaaaa免费看小| 在线天堂最新版资源| 国产蜜桃级精品一区二区三区| 我要搜黄色片| 蜜桃亚洲精品一区二区三区| 成人高潮视频无遮挡免费网站| 天天躁夜夜躁狠狠久久av| av又黄又爽大尺度在线免费看 | 欧美精品国产亚洲| 亚洲精品影视一区二区三区av| 一级av片app| 看黄色毛片网站| 国产精品综合久久久久久久免费| 国产精品一区二区三区四区久久| 麻豆成人午夜福利视频| 午夜视频国产福利| 此物有八面人人有两片| 91久久精品国产一区二区三区| 成人av在线播放网站| 亚洲人成网站高清观看| 我的老师免费观看完整版| 免费电影在线观看免费观看| 亚洲国产精品成人综合色| 国产亚洲av嫩草精品影院| 美女 人体艺术 gogo| 好男人视频免费观看在线| 少妇裸体淫交视频免费看高清| 亚洲欧洲日产国产| av免费观看日本| 黄片无遮挡物在线观看| 成人国产麻豆网| 久久人人爽人人爽人人片va| 少妇裸体淫交视频免费看高清| 国模一区二区三区四区视频| 午夜爱爱视频在线播放| 亚洲精品456在线播放app| 一本精品99久久精品77| 人人妻人人看人人澡| 伦理电影大哥的女人| 国产成人精品久久久久久| 亚洲成人精品中文字幕电影| 日韩成人av中文字幕在线观看| 国产69精品久久久久777片| 欧美日本视频| 国产精品福利在线免费观看| 亚洲av一区综合| 麻豆精品久久久久久蜜桃| 看黄色毛片网站| 欧美又色又爽又黄视频| 日本免费a在线| 美女高潮的动态| 国产午夜精品论理片| 日本与韩国留学比较| av在线天堂中文字幕| 国产日本99.免费观看| 日韩在线高清观看一区二区三区| 在线观看一区二区三区| 亚洲va在线va天堂va国产| 中文字幕人妻熟人妻熟丝袜美| 在线a可以看的网站| 久久久久久伊人网av| 一区二区三区免费毛片| 99精品在免费线老司机午夜| 只有这里有精品99| 少妇猛男粗大的猛烈进出视频 | 日韩,欧美,国产一区二区三区 | 中文字幕人妻熟人妻熟丝袜美| 亚洲av不卡在线观看| 精品久久久噜噜| 欧美不卡视频在线免费观看| 在线观看av片永久免费下载| 美女大奶头视频| 丰满的人妻完整版| 成人漫画全彩无遮挡| 春色校园在线视频观看| 婷婷色av中文字幕| 男女那种视频在线观看| 亚洲av中文字字幕乱码综合| 国产午夜福利久久久久久| 久久久久久久久久黄片| 在线免费十八禁| 看片在线看免费视频| 国产成人精品久久久久久| 五月伊人婷婷丁香| 91av网一区二区| 中文字幕av成人在线电影| 亚洲一区二区三区色噜噜| 你懂的网址亚洲精品在线观看 | 女同久久另类99精品国产91| 日产精品乱码卡一卡2卡三| 色吧在线观看| 偷拍熟女少妇极品色| 欧美色视频一区免费| 亚洲美女搞黄在线观看| 啦啦啦韩国在线观看视频| 老熟妇乱子伦视频在线观看| 91午夜精品亚洲一区二区三区| 国产精品一及| 91aial.com中文字幕在线观看| 激情 狠狠 欧美| 又爽又黄无遮挡网站| 国产成人freesex在线| 男女下面进入的视频免费午夜| 在线观看午夜福利视频| 久久久精品大字幕| 亚洲国产精品sss在线观看| 女人十人毛片免费观看3o分钟| 日本三级黄在线观看| 精品熟女少妇av免费看| 超碰av人人做人人爽久久| 国产一级毛片在线| 波野结衣二区三区在线| 亚洲一级一片aⅴ在线观看| 亚洲欧美日韩高清专用| 国产精品不卡视频一区二区| www.色视频.com| 久久九九热精品免费| 麻豆一二三区av精品| 国产三级在线视频| 国产成人影院久久av| 啦啦啦观看免费观看视频高清| 中文字幕av成人在线电影| 免费看美女性在线毛片视频| av黄色大香蕉| 99国产极品粉嫩在线观看| 综合色丁香网| 男女那种视频在线观看| 少妇人妻一区二区三区视频| 97热精品久久久久久| 99热精品在线国产| 婷婷色综合大香蕉| 欧美色视频一区免费| 日韩在线高清观看一区二区三区| 91麻豆精品激情在线观看国产| 国产真实乱freesex| 国产伦在线观看视频一区| 男人舔女人下体高潮全视频| 午夜爱爱视频在线播放| 天天一区二区日本电影三级| 国产成人精品婷婷| 国产日本99.免费观看| 婷婷亚洲欧美| 国国产精品蜜臀av免费| 99热这里只有精品一区| 久久欧美精品欧美久久欧美| 69av精品久久久久久| 老女人水多毛片| 天天躁夜夜躁狠狠久久av| 日本av手机在线免费观看| 99久久人妻综合| 国产午夜福利久久久久久| 激情 狠狠 欧美| 欧美高清性xxxxhd video| 亚洲国产高清在线一区二区三| a级毛片免费高清观看在线播放| 成人鲁丝片一二三区免费| 婷婷精品国产亚洲av| 中文精品一卡2卡3卡4更新| 久久久久性生活片| 国产精品一区二区在线观看99 | 亚洲成人久久性| 欧美日韩乱码在线| 免费人成在线观看视频色| 中文欧美无线码| 午夜老司机福利剧场| 欧美变态另类bdsm刘玥| 国产精品,欧美在线| 久久人人爽人人片av| 伦理电影大哥的女人| 国产成人精品婷婷| 欧美高清性xxxxhd video| 国产女主播在线喷水免费视频网站 | 国产精品乱码一区二三区的特点| 床上黄色一级片| 欧美3d第一页| 亚洲中文字幕一区二区三区有码在线看| 丰满乱子伦码专区| 极品教师在线视频| 又粗又爽又猛毛片免费看| av在线播放精品| 黄色欧美视频在线观看| 色噜噜av男人的天堂激情| 毛片女人毛片| 大香蕉久久网| 激情 狠狠 欧美| 精品人妻一区二区三区麻豆| 精品人妻视频免费看| 久久久久九九精品影院| 不卡视频在线观看欧美| 国产一区二区亚洲精品在线观看| 又爽又黄a免费视频| 大型黄色视频在线免费观看| 97热精品久久久久久| 久久久欧美国产精品| 九九久久精品国产亚洲av麻豆| 熟女人妻精品中文字幕| 亚洲成人av在线免费| a级毛片免费高清观看在线播放| 欧美高清性xxxxhd video| 日韩人妻高清精品专区| 性色avwww在线观看| 中文字幕av在线有码专区| 久久这里只有精品中国| 成人二区视频| 精品熟女少妇av免费看| а√天堂www在线а√下载| 男女那种视频在线观看| 少妇人妻一区二区三区视频| 能在线免费观看的黄片| 九九在线视频观看精品| av视频在线观看入口| 青春草视频在线免费观看| 少妇人妻一区二区三区视频| 麻豆成人午夜福利视频| 九九在线视频观看精品| 丝袜美腿在线中文| 久久亚洲国产成人精品v| 国产精品国产三级国产av玫瑰| 美女高潮的动态| 永久网站在线| 夜夜爽天天搞| avwww免费| 51国产日韩欧美| 女同久久另类99精品国产91| 丝袜美腿在线中文| 久久久久久久久久成人| 99在线人妻在线中文字幕| 亚洲av不卡在线观看| 中文字幕av成人在线电影| 欧美成人一区二区免费高清观看| 黄色配什么色好看| 青春草亚洲视频在线观看| 国产大屁股一区二区在线视频| 国产午夜精品久久久久久一区二区三区| 日本欧美国产在线视频| 夫妻性生交免费视频一级片| 最近中文字幕高清免费大全6| 可以在线观看毛片的网站| 国产不卡一卡二| 能在线免费观看的黄片| 日本黄大片高清| 日日干狠狠操夜夜爽| av专区在线播放| 99热网站在线观看| 成熟少妇高潮喷水视频| 日本与韩国留学比较| 麻豆国产av国片精品| 岛国毛片在线播放| 美女xxoo啪啪120秒动态图| 国产日韩欧美在线精品| 国产蜜桃级精品一区二区三区| 在线观看av片永久免费下载| 午夜免费激情av| 国产探花极品一区二区| 99九九线精品视频在线观看视频| 国产伦精品一区二区三区四那| 99热网站在线观看| 亚洲不卡免费看| av天堂在线播放| 男人和女人高潮做爰伦理| 少妇高潮的动态图| 国产黄色小视频在线观看| 国产av麻豆久久久久久久| 国产蜜桃级精品一区二区三区| 性欧美人与动物交配| 中文字幕av成人在线电影| 亚洲欧美清纯卡通| 夫妻性生交免费视频一级片| 免费人成视频x8x8入口观看| 亚洲性久久影院| 床上黄色一级片| 91精品国产九色| 熟女电影av网| a级一级毛片免费在线观看| 免费一级毛片在线播放高清视频| 男的添女的下面高潮视频| 深爱激情五月婷婷| 99久国产av精品| 一个人看的www免费观看视频| 久久久久久伊人网av| 欧美色视频一区免费| 亚洲精华国产精华液的使用体验 | videossex国产| 美女被艹到高潮喷水动态| 热99在线观看视频| 久久久色成人| av在线亚洲专区| 国产高清激情床上av| 久久国内精品自在自线图片| 天堂av国产一区二区熟女人妻| 91aial.com中文字幕在线观看| videossex国产| 麻豆一二三区av精品| 少妇人妻一区二区三区视频| 国模一区二区三区四区视频| 国产 一区 欧美 日韩| 只有这里有精品99| 国产精品一二三区在线看| 日本免费一区二区三区高清不卡| 亚洲国产色片| 一进一出抽搐gif免费好疼| 高清毛片免费观看视频网站| 欧美区成人在线视频| 一个人观看的视频www高清免费观看| 91狼人影院| 亚洲精品国产成人久久av| 欧美最黄视频在线播放免费| 有码 亚洲区| 国产在线精品亚洲第一网站| 99热只有精品国产| 精品久久久久久久久久免费视频| 国产高清视频在线观看网站| 亚洲三级黄色毛片| 亚洲内射少妇av| 精品久久久噜噜| 亚洲一级一片aⅴ在线观看| 内地一区二区视频在线| 男女下面进入的视频免费午夜| 国产精品伦人一区二区| 久久国产乱子免费精品| 国产精品伦人一区二区| 看非洲黑人一级黄片| 色视频www国产| 又粗又爽又猛毛片免费看| 国产精品久久久久久精品电影小说 | 精华霜和精华液先用哪个| 插阴视频在线观看视频| 简卡轻食公司| 亚洲中文字幕日韩| 亚洲欧美日韩卡通动漫| 亚洲人成网站在线观看播放| 国产私拍福利视频在线观看| 尤物成人国产欧美一区二区三区| 18禁黄网站禁片免费观看直播| 午夜激情福利司机影院| 国产精品久久久久久久电影| 一边摸一边抽搐一进一小说| 国产精品一区二区在线观看99 | 亚洲欧美精品专区久久| 国产麻豆成人av免费视频| 日本-黄色视频高清免费观看| 欧美zozozo另类| 国产在线男女| 在线免费观看的www视频| 亚洲av电影不卡..在线观看| 国产一区二区三区av在线 | 男女下面进入的视频免费午夜| 在线免费观看不下载黄p国产| 我的老师免费观看完整版| 美女内射精品一级片tv| 婷婷精品国产亚洲av| av视频在线观看入口| 国产免费男女视频| 黄色视频,在线免费观看| 小蜜桃在线观看免费完整版高清| 一级毛片电影观看 | 亚洲国产精品合色在线| 成人午夜高清在线视频| 亚洲国产精品合色在线| 欧美成人a在线观看| 天天一区二区日本电影三级| 亚洲欧美日韩卡通动漫| av天堂中文字幕网| 日韩欧美精品免费久久| 欧美日韩一区二区视频在线观看视频在线 | 国产久久久一区二区三区| www日本黄色视频网| 国产单亲对白刺激| 欧美日韩精品成人综合77777| 国产精品蜜桃在线观看 | 一级黄片播放器| 大型黄色视频在线免费观看| 秋霞在线观看毛片| 亚洲欧美精品专区久久| 校园春色视频在线观看| 男女做爰动态图高潮gif福利片| 午夜精品国产一区二区电影 | 啦啦啦啦在线视频资源| 村上凉子中文字幕在线| 91精品国产九色| 日本色播在线视频| 精品99又大又爽又粗少妇毛片| 97在线视频观看| 亚洲人成网站高清观看| 久久精品影院6| 日韩大尺度精品在线看网址| 国产黄a三级三级三级人| 国产日韩欧美在线精品| 精品久久久久久久久av| 久久久久久久久中文| 亚洲精品国产成人久久av| 中文字幕av在线有码专区| 精品久久久久久久久av| 中文资源天堂在线| 日韩成人av中文字幕在线观看| 熟妇人妻久久中文字幕3abv| 女人十人毛片免费观看3o分钟| 国内精品一区二区在线观看| 日韩欧美精品免费久久| 两个人的视频大全免费| 一进一出抽搐动态| 只有这里有精品99| 欧美成人精品欧美一级黄| www日本黄色视频网| 国产单亲对白刺激| 久久这里只有精品中国| 国产又黄又爽又无遮挡在线| 亚洲内射少妇av| 国产精品野战在线观看| 青春草亚洲视频在线观看| 国产伦理片在线播放av一区 | kizo精华| 少妇裸体淫交视频免费看高清| 久久精品国产亚洲av涩爱 | 亚洲成人久久性| 国产精品一区www在线观看| 天天躁夜夜躁狠狠久久av| 国产日本99.免费观看| 村上凉子中文字幕在线| 欧洲精品卡2卡3卡4卡5卡区| av免费在线看不卡| 精品国内亚洲2022精品成人| 国产精品爽爽va在线观看网站| 亚洲,欧美,日韩| 日本爱情动作片www.在线观看| 人妻制服诱惑在线中文字幕| 丝袜美腿在线中文| 熟女电影av网| 国产人妻一区二区三区在| 亚洲激情五月婷婷啪啪| 性欧美人与动物交配| 欧美日韩精品成人综合77777| 色尼玛亚洲综合影院| 免费电影在线观看免费观看| 99精品在免费线老司机午夜| 我要看日韩黄色一级片| 久久久久国产网址| 性色avwww在线观看| 国产成人精品久久久久久| 国产淫片久久久久久久久| 日韩精品青青久久久久久| 欧美日韩综合久久久久久| 亚洲va在线va天堂va国产| 寂寞人妻少妇视频99o| 精品人妻熟女av久视频| 黄片无遮挡物在线观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美精品国产亚洲| 免费av观看视频| 天美传媒精品一区二区| 欧美区成人在线视频| 在现免费观看毛片| 午夜福利在线在线| 成人亚洲精品av一区二区| 亚洲综合色惰| 美女被艹到高潮喷水动态| 舔av片在线| 日本熟妇午夜| 亚洲精品久久国产高清桃花| 国产高潮美女av| 久久精品国产亚洲网站| 看非洲黑人一级黄片| 日韩欧美国产在线观看| 精品久久国产蜜桃| 国产精品99久久久久久久久| 好男人视频免费观看在线| 两个人的视频大全免费| 男人狂女人下面高潮的视频| 丰满的人妻完整版| 美女被艹到高潮喷水动态| 免费观看人在逋| 伦理电影大哥的女人| 男人的好看免费观看在线视频| 边亲边吃奶的免费视频| 青春草国产在线视频 | 日本黄色片子视频| 亚洲综合色惰| 看黄色毛片网站| 欧美zozozo另类| 日本黄大片高清| 久久久久性生活片| 热99在线观看视频| 大又大粗又爽又黄少妇毛片口| 激情 狠狠 欧美| 黄色一级大片看看| 精品一区二区三区视频在线| 91av网一区二区| 又爽又黄a免费视频| 变态另类丝袜制服| 久久久久久久久久成人| 中国美女看黄片| 91久久精品电影网| 久久草成人影院| 国产私拍福利视频在线观看| 亚洲成av人片在线播放无| 日日摸夜夜添夜夜爱| 国产精品一区二区性色av| a级毛色黄片| 成人国产麻豆网| 国产av麻豆久久久久久久| 国产高清有码在线观看视频| 亚洲电影在线观看av| 一级黄片播放器| 国产高清激情床上av| 成人欧美大片| 岛国在线免费视频观看| 国产午夜福利久久久久久| 日韩一区二区三区影片| 99久久精品热视频| 人人妻人人看人人澡| 91久久精品国产一区二区成人| 永久网站在线| 嘟嘟电影网在线观看| 国产精品,欧美在线| 午夜免费男女啪啪视频观看| 色播亚洲综合网| 国产免费一级a男人的天堂| 成人鲁丝片一二三区免费| 久久久久久久久大av| 国产在线男女| videossex国产| 神马国产精品三级电影在线观看| 国产乱人偷精品视频| 欧美一区二区国产精品久久精品| 黄色日韩在线| 亚洲人与动物交配视频| 99久久精品热视频| 97超碰精品成人国产| 嫩草影院入口| 午夜福利在线在线| 国产大屁股一区二区在线视频| 国产视频首页在线观看| .国产精品久久| 久久人人爽人人片av| 99久久精品热视频| 91精品一卡2卡3卡4卡| 性色avwww在线观看| 人人妻人人澡欧美一区二区| 午夜久久久久精精品| 噜噜噜噜噜久久久久久91| 波野结衣二区三区在线| 人妻系列 视频| 亚洲一级一片aⅴ在线观看| 中文资源天堂在线| 亚洲最大成人手机在线| 国产真实伦视频高清在线观看| 真实男女啪啪啪动态图| 嫩草影院新地址| 国产高潮美女av| 欧洲精品卡2卡3卡4卡5卡区| or卡值多少钱| 国产老妇女一区| 国产日本99.免费观看| 在线免费观看的www视频| 特级一级黄色大片| 亚洲av免费高清在线观看| 精品久久久久久久久亚洲| 国产探花在线观看一区二区| 99国产精品一区二区蜜桃av| ponron亚洲| 九九爱精品视频在线观看| or卡值多少钱| 国产午夜福利久久久久久| 国产精品蜜桃在线观看 | 国产成人a区在线观看| а√天堂www在线а√下载| 麻豆久久精品国产亚洲av| 亚洲久久久久久中文字幕| 日韩强制内射视频| 欧美三级亚洲精品| 国产一级毛片在线| 久久人人爽人人爽人人片va| 国产黄片美女视频| 中文字幕精品亚洲无线码一区| 免费电影在线观看免费观看| 天天一区二区日本电影三级| 国产精品一区www在线观看| 精品一区二区免费观看| 欧美+日韩+精品| 国产精品久久久久久精品电影小说 | 色吧在线观看| 特级一级黄色大片| 简卡轻食公司| 亚洲av.av天堂| 日韩国内少妇激情av| 精品人妻熟女av久视频| 亚洲av男天堂| 特级一级黄色大片| 熟女人妻精品中文字幕| 久久久成人免费电影| 欧美日本视频| 国产片特级美女逼逼视频| 久久99热这里只有精品18| 日韩成人伦理影院| 亚洲四区av| 欧美日韩综合久久久久久| 男人狂女人下面高潮的视频| 久久久久久国产a免费观看| 全区人妻精品视频| 嘟嘟电影网在线观看| 亚洲无线在线观看| 插逼视频在线观看| 中出人妻视频一区二区| 亚洲国产欧美人成| 亚洲人成网站在线播放欧美日韩|