• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-performance multi-transform architecture for H.264/AVC

    2013-01-08 12:56:04WangGangWangQingLiBingChenRui

    Wang Gang Wang Qing Li Bing Chen Rui

    (1 School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)

    (2 Wuxi Branch, Southeast University, Wuxi 214135, China)

    (3 Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China)

    To obtain better compression performance, the H.264/AVC video coding standard has defined various transforms for different prediction modes, such as an 8×8 integer transform, a 4×4 integer transform, a 4×4 Hadamard transform, a 2×2 Hadamard transform and their inverses. The integer transforms, which are similar to a discrete cosine transform (DCT), can be used to avoid mismatch and reduce computation complexity. Among them, the 8×8 integer transform is only adopted in the high profile and the Hadamard transform is utilized for 4×4 array luma DC coefficients of intra 16×16 prediction modes and 2×2 array chroma DC coefficients. This paper focuses on the 4×4 integer transform and the 2×2 Hadamard transform.

    In accordance with the architecture, the existing designs can be divided into three kinds. The first kinds of architectures are the parallel architectures[1-4]. Hong et al.[1]proposed a parallel 4×4 transform architecture based on bit-extended arithmetic. Rubin[2]proposed a parallel architecture based on bit-serial shared memory. Both bit-extended arithmetic and bit serial shared memory are used to improve the processing rate. To realize forward transforms, Porto et al.[3]proposed a parallel architecture which is called T module, and this kind of architecture achieves a very high throughput. And the design of Wang et al.[4]is another parallel architecture to realize multiple transforms. These parallel architectures achieve high throughput at the expense of high area cost. The second kinds of architectures are reconfigurable architectures[5-6]. Cao et al.[5]proposed a reconfigurable 2-D architecture of two novel signal flow graphs (SFG) of 4×4 forward and inverse transforms which achieves a data processing rate up to 16 pixels/cycle, with greatly increased throughput. By the revised design, Cao et al.[6]optimized the architecture to reduce the data processing rate and throughput. Reconfigurable architectures improve area efficiency and flexibility. However, these architectures are very complex. The third kinds of architectures are direct 2-D architectures[7-9]. Chen et al.[7]proposed a direct 2-D transform algorithm and a correspondent direct 2-D transform architecture. Peng et al.[8]combined direct 2-D transform with quantization. Hwangbo et al.[9]realized inverse transform by dividing the 4×4 matrix multiplication into four 2×2 components, utilizing block multiplication instead of 4×4 matrix multiplication which still belongs to direct 2-D architecture. Direct 2-D transform architectures can improve data throughput and efficiency. However, these architectures need more hardware resources. Some architectures to support multi-standard video applications with the adaptive block-size transform are proposed[10-11]. The throughput values of these architectures are not sufficient to satisfy the real-time requirement of transform in real-time decoding digital cinema video.

    To obtain better performance at low-cost, a new multi-transform architecture is proposed in this paper. A new algorithm is proposed to integrate a 4×4 forward integer transform, a 4×4 inverse integer transform, a 4×4 Hadamard transform and a 2×2 Hadamard transform into a single block. A low-cost and high-performance architecture is proposed to realize the multi-transform algorithm. Experimental results demonstrate that the data throughput rate per unit area (DTUA) of the proposed architecture is at least 40.28% higher than the reference design under the area cost of 3 704 gates. In addition, this architecture satisfies the requirements of real-time decoding digital cinema video (4 096×2 048@30 Hz).

    1 Transform Coding in H.264

    This paper mainly focuses on implementing 4×4 transforms and the 2×2 Hadamard transform of H.264/AVC because all these 4×4 and 2×2 transforms can be used in every H.264/AVC profile/level combination.

    1.1 4×4 transforms of H.264/AVC

    The 4×4 forward integer transform (FIT), 4×4 inverse integer transform (IIT) and the 4×4 Hadamard transform (HT) are defined as

    (1)

    As can be seen in Eq.(1), the forms of 4×4 transforms employed in H.264/AVC are similar to each other. The transform matrices for the 4×4 transforms are given as

    (2)

    whereCf,CiandHare transform matrices for 4×4 FIT, 4×4 IIT and 4×4 HT, respectively. The H.264/AVC standard has defined fast algorithms for implementing 1-D matrix multiplication, and 2-D matrix multiplication can be realized by cascading two 1-D matrix multiplications. And the 1-D matrix multiplication only needs shift, addition and subtraction operations, as shown in Fig.1.

    1.2 2×2 Hadamard transform

    The 2×2 Hadamard transform, which is always applied to a 2×2 array of DC coefficients of each chroma component, is defined as

    (3)

    whereXis a 2×2 residual block input to the Hadamard transform. The transform matrix is given as

    (4)

    Fig.1 Signal flow of 4×4 inverse integer transform. (a) 4×4 forward integer transform; (b) 4×4 inverse integer transform; (c) 4×4 Hadamard transform

    2 Proposed Algorithm for Multi-Transform

    The 4×4 transforms and the 2×2 Hadamard transform defined in the H.264/AVC standards are characterized by their high regularity and low complexity. A generic 2-D transform is illustrated as

    (5)

    whereX,WandCdenote the input data, the output data and the transform coefficient, respectively.

    To improve the hardware utilization rate and to achieve viable hardware implementations, algorithm decomposition is used. The row-column decomposition method for realizingN-point 2-D transforms is as follows:

    (6)

    (7)

    whereMdenotes the intermediate data between the first-dimensional and the second-dimensional transforms, andMTdenotes the transpose matrix ofM. Eq.(6) represents the column-wise transform and Eq.(7) represents the row-wise transform.

    The row-column decomposition reduces the hardware cost of the circuit when implementing the transform algorithm, which only consists of a simpler 1-D matrix multiplication, and it significantly increases the utilization rate of its processor elements (PEs). PEs, which are designed to compute a restricted and very well defined set of operations, are proposed in this paper, and the detailed formulae are presented.

    From Eq.(1), Eq.(2) and Fig.1, it is easy to find that there are similarities among these fast algorithms and matrices. For the matrices, the differences are the coefficients in corresponding position. For example, the first coefficient in the second row ofCfis 2, while those ofCiandHare 1. The signal flow of the 4×4 inverse integer transform and the 4×4 Hadamard transform are the same. Therefore, these matrices may be integrated into one matrix. And these fast algorithms are possible to be realized by one fast algorithm.

    Eq.(1) can be expanded as

    (8)

    ThenYcan be decomposed as

    (9)

    where

    Y0=(Y00,Y01,Y02,Y03)T,X0=(X00,X01,X02,X03)T

    Y1=(Y10,Y11,Y12,Y13)T,X1=(X10,X11,X12,X13)T

    Y2=(Y20,Y21,Y22,Y23)T,X2=(X20,X21,X22,X23)T

    Y3=(Y30,Y31,Y32,Y33)T,X3=(X30,X31,X32,X33)T

    Applying the same process as Eq.(1), Eq.(2) and Eq.(3) can be expanded as

    (10)

    (11)

    (12)

    (13)

    Comparing the three equations with each other, it is easy to find that Eqs.(9), (11) and (13) are similar. Based on this similarity, a new fast algorithm to implement 1-D matrix multiplication for all the three 4×4 transforms is proposed. For the 2×2 Hadamard transform, the expansion equation of Eq.(3) is

    (14)

    And Eq.(14) can be further expanded as

    (15)

    Finally, the following equation is obtained, which is similar to the 4×4 Hadamard transform.

    (16)

    Based on Eq.(16), the 2×2 Hadamard transform is integrated into the 4×4 Hadamard transform, which can be treated as a 1-D 4×4 Hadamard transform.

    According to the previous analysis, a fast algorithm which integrates four kinds of 1-D matrix multiplication is proposed. As demonstrated in Fig.2,X0toX3represent the data input, andY0toY3are the 1-D matrix multiplication results. And the fast algorithm contains three modes corresponding to the three transforms. If the algorithm mode is not the 4×4 forward integer transform, then the data input and output orders areX0,X2,X1,X3andY0,Y1,Y2,Y3, respectively; else, the data input and output order will change toX1,X2,X0,X3andY0,Y1,Y3,Y2, respectively (notice that, as shown in Eq.(9), the output signalsY3andY2exchange position). Coefficients on the dataflow arrow (for example,-1, 1/2, 1) in Fig.2 correspond to the 4×4 Hadamard transform, the 4×4 inverse integer transform and the 4×4 forward integer transform, respectively. If there is no coefficient on the dataflow arrow, the coefficient will be 1 for all transforms. If the coefficient on the dataflow arrow is -1, the coefficient will be-1 for all transforms.

    Fig.2 Proposed fast algorithm

    3 Proposed Architecture for Multi-Transform

    The proposed fast algorithm yields a high-performance architecture for multiple transforms. It adopts the method defined in the H.264/AVC standard, which implements 2-D matrix multiplication by cascading two 1-D matrix multiplications. Although these two 1-D matrix multiplications are all based on the proposed algorithm, there are some differences in their structures. The first 1-D one is controlled by a finite state machine (FSM), while the second one is adopted to realize Eq.(8), Eq.(10) and Eq.(12), which multiplies the transform matrix with the results of the first 1-D matrix multiplication. The proposed architecture for multi-transform is illustrated in Fig.3, which contains three parts, PE1 array, MODE generator and PE0.

    Fig.3 Block diagram of proposed architecture

    3.1 PE0

    The block diagram of PE0 is shown in Fig.4. As the second 1-D matrix multiplication, it aims at obtaining the product of the transform matrix and multiplying the results of the first 1-D matrix multiplication. PE0, which is composed of registers, left shifters, right shifters, MUXs, subtractors and adders, and controlled by a two bit mode selected signal generated by the mode generator, can realize 1-D 4×4 FIT, 1-D 4×4 IIT and 1-D 4×4 HT. The left and right shifters are used to substitute for “×2” and “/2” operations, respectively. MUXs are controlled by input mode selected signals, and the registers are used to ensure the validity of timing. The values of the mode selected signal (named as PE0_SEL) for selecting operation mode are illustrated in Tab.1.

    Fig.4 Block diagram of PE0

    Tab.1 PE0_SEL and PE0 functions

    3.2 PE1 array

    2-D matrix multiplication can be implemented by cascading two 1-D matrix multiplications. In the proposed architecture, PE0 represents a 1-D matrix multiplication and PE1 array represents another. PE1 is also composed of left shifters, right shifters, adders/subtractors and MUXs, which is controlled by PE1_SEL and PE0_SEL. And these two signals are generated by the mode generator. PE0_SEL is used to select the transform mode and PE1_SEL is used to control the operation of PE1s. Each transform mode has four PE1 operation modes, which corresponds to the equations embraced in the brace in Eqs.(8), (10) and (12). PE1 operation modes can be controlled by an FSM, which has four statements corresponding to the four equations embraced in the brace of the third column in Eqs.(9), (11) and (13).

    3.3 MODE generator

    There are four functions of the MODE generator: PE0_SEL generation, PE1_SEL generation, FSM for PE1 array and PE0 data input selection. PE0_SEL is equal to the configuration signal, which is a 5-bit width signal used to control MUXs and adders/subtractors. If the transform mode is a 2×2 Hadamard transform, the data input of PE0 isX00_H2T,X01_H2T,X10_H2TandX11_H2T. Else, the data inputs are the outputs of PE1 array.

    4 Synthesis Results and Validation

    The proposed architecture for multi-transform is implemented by Verilog HDL, functionally simulated with ModelSim SE 6.6 and synthesized by Synopsys Design Compiler under a SMIC 0.18 μm CMOS technology. Tab.2 shows the hardware cost (in terms of gate count), optimum operating frequency, critical path delay, throughput and DTUA. DTUA is defined as the ratio of data throughput rate over gate count. The higher the DTUA is, the more efficient the architecture is.

    The reference designs listed in Tab.2 are all synthesized by CMOS technology and the multiple transform is realized by utilizing reconfigurable architecture[6], parallel structure[4], direct 2-D structure[7,12]and multi-transform architecture[10]. The results shown in Tab.2 indicate that the DTUA of the proposed architecture is at least 40.28% higher than the reference design. And the hardware cost (in terms of gate count) is smaller than all of the reference designs. Additionally, it does not need transpose memory.

    Tab.2 Performance comparison for the proposed architecture

    The data processing rate of the proposed multi-transform architecture is 4 pixels/cycle. Therefore, decoding a 4×4 block needs 4 cycles and utilizing the proposed architecture decoding a macroblock needs about 64 cycles.

    As for digital cinema video (4 096×2 048 @ 30 Hz), the real-time decoding requirement is 983 040 macroblocks per second and the proposed architecture utilized for decoding one frame of digital cinema video needs 64×983 040 cycles, which is 62 914 560. Thus, by using the proposed architecture, the minimum operating frequency to decode this kind of video format is about 62.9 MHz, which is much smaller than the optimum operating frequency (200 MHz). So, it is concluded that the proposed architecture satisfies the real-time decoding requirement of digital cinema video.

    5 Conclusion

    This paper proposes a high-performance multiple transform architecture for H.264/AVC video coding standard and a novel fast algorithm for 1-D matrix multiplication of multi-transforms with the data processing rate of 4 pixels/cycle. By using the SMIC 0.18 μm CMOS technology, the maximum operating clock frequency of the proposed multi-transform architecture is 200 MHz and the data throughput rate can achieve as many as 800×106pixels/s with the hardware cost of 3 704 gates. The synthesize results indicate that the proposed architecture is able to increase at least 40.28% of the DTUA and efficiently reduce the hardware cost to satisfy the requirement of real-time decoding digital cinema video (4 096×2 048 @ 30 Hz).

    [1]Hong E P, Jung E G, Fraz H, et al. Parallel 4×4 transform architecture based on bit extended arithmetic for H.264/AVC [C]//ProcofInternationalSymposiumonSignals,CircuitsandSystems. New York, USA, 2005,1:95-98.

    [2] Rubin G. Parallel 4×4 transform on bit serial shared memory architecture for H.264/AVC [C]//Procofthe16thInternationalConferenceonMixedDesignofIntegratedCircuits&Systems. Lodz, Poland, 2009:675-680.

    [3] Porto R, Bampi M, Agostini S, et al. High throughput architecture for forward transforms of H.264/AVC video coding standard [C]//Procofthe14thIEEEInternationalConferenceonElectronics,CircuitsandSystems. Marrakech, Morocco, 2007:150-153.

    [4] Wang T C, Huang Y W, Fang H C, et al. Parallel 4×4 2D transform and inverse transform architecture for MPEG-4 AVC/H.264 [C]//Procofthe2003InternationalSymposiumonCircuitsandSystems. Bangkok, Thailand, 2003: Ⅱ-800-Ⅱ-803.

    [5] Cao W, Hou H, Lai J M, et al. A high-performance reconfigurable 2-D transform architecture for H.264 [C]//Procofthe15thIEEEInternationalConferenceonElectronics, Circuits and Systems. St. Julien’s, 2008:606-609.

    [6] Cao W, Hou H, Lai J M, et al. A novel dynamic reconfigurable VLSI architecture for H.264 transforms [C]//ProcofIEEEAsiaPacificConferenceonCircuitsandSystems. Macao, China, 2008:1810-1813.

    [7] Chen K H, Guo J I, Wang J S. A high-performance direct 2-D transform coding IP design for MPEG-4 AVC/H.264 [J].IEEETransactionsonCircuitsandSystemsforVideoTechnology, 2006,16(4): 472-483.

    [8] Peng C, Yu D, Cao X, et al. A new high throughput VLSI architecture for H.264 transform and quantization [C]//Procofthe7thInternationalConferenceonASIC. Guilin, China, 2007:950-953.

    [9] Hwangbo W, Kim J, Kyung C M. A high-performance 2-D inverse transform architecture for the H.264/AVC decoder[C]//ProcofIEEEInternationalSymposiumonCircuitsandSystems. New Orleans, LA, USA, 2007:1613-1616.

    [10] Hwangbo W, Kyung C M. A multi-transform architecture for H.264/AVC high-profile coders [J].IEEETransactionsonMultimedia, 2010,12(3):157-167.

    [11] Wang K W, Chen J L, Cao W, et al. A reconfigurable multi-transform VLSI architecture supporting video codec design[J].IEEETransactionsonCircuitsandSystemsⅡ, 2011,58(7):432-436.

    [12] Huang C Y, Chen L F, Lai Y K. A high-speed 2-D transform architecture with unique kernel for multi-standard video applications [C]//ProcofIEEEInternationalSymposiumonCircuitsandSystems. Seattle, WA, USA, 2008:21-24.

    www.999成人在线观看| 日韩av在线大香蕉| 97超级碰碰碰精品色视频在线观看| 制服人妻中文乱码| 欧美日韩精品网址| 99re在线观看精品视频| 亚洲av第一区精品v没综合| 国内精品久久久久久久电影| 亚洲在线自拍视频| 免费av不卡在线播放| 最好的美女福利视频网| 日韩欧美免费精品| 中出人妻视频一区二区| 又黄又粗又硬又大视频| 久久久久久九九精品二区国产| 宅男免费午夜| 99riav亚洲国产免费| 亚洲avbb在线观看| 国产精品亚洲美女久久久| 国产高潮美女av| 日本精品一区二区三区蜜桃| 一本久久中文字幕| 日本三级黄在线观看| 少妇熟女aⅴ在线视频| 亚洲美女黄片视频| 俄罗斯特黄特色一大片| 国产视频内射| 国产精品99久久久久久久久| 丁香欧美五月| 91在线精品国自产拍蜜月 | x7x7x7水蜜桃| 中文字幕av在线有码专区| 中文亚洲av片在线观看爽| 亚洲美女视频黄频| 久久精品91无色码中文字幕| 伦理电影免费视频| 国产午夜福利久久久久久| 国产精品,欧美在线| 最近最新免费中文字幕在线| 级片在线观看| 女同久久另类99精品国产91| 国产成年人精品一区二区| 一本久久中文字幕| 美女被艹到高潮喷水动态| av在线蜜桃| 99精品欧美一区二区三区四区| 又大又爽又粗| 免费观看精品视频网站| 久久欧美精品欧美久久欧美| 黄频高清免费视频| 日韩欧美在线二视频| 天天一区二区日本电影三级| 久久精品国产亚洲av香蕉五月| 91久久精品国产一区二区成人 | 国产又黄又爽又无遮挡在线| 亚洲成人免费电影在线观看| 国产精品,欧美在线| 黄片大片在线免费观看| 欧美最黄视频在线播放免费| 波多野结衣高清无吗| 淫秽高清视频在线观看| 免费在线观看亚洲国产| 黑人操中国人逼视频| 久久欧美精品欧美久久欧美| 最近最新中文字幕大全免费视频| 久久伊人香网站| 国语自产精品视频在线第100页| 国产一区二区在线观看日韩 | 男人和女人高潮做爰伦理| 国产精品一区二区免费欧美| 精品电影一区二区在线| 久久中文字幕人妻熟女| 免费看日本二区| 91九色精品人成在线观看| 日本五十路高清| 国产精品日韩av在线免费观看| 狂野欧美白嫩少妇大欣赏| 成人欧美大片| 女人高潮潮喷娇喘18禁视频| 偷拍熟女少妇极品色| 夜夜夜夜夜久久久久| 午夜日韩欧美国产| 精品久久久久久,| av在线天堂中文字幕| 99在线人妻在线中文字幕| av女优亚洲男人天堂 | 少妇裸体淫交视频免费看高清| 欧美黄色淫秽网站| 黄色成人免费大全| 久久久久久久久久黄片| 中文字幕精品亚洲无线码一区| 亚洲中文日韩欧美视频| 一a级毛片在线观看| 亚洲国产欧美一区二区综合| 高潮久久久久久久久久久不卡| 三级国产精品欧美在线观看 | 久久这里只有精品19| 女人被狂操c到高潮| 欧美成人免费av一区二区三区| 亚洲av中文字字幕乱码综合| av福利片在线观看| 男女床上黄色一级片免费看| 精品一区二区三区四区五区乱码| 色老头精品视频在线观看| 中文字幕人成人乱码亚洲影| 国产亚洲精品久久久com| 高潮久久久久久久久久久不卡| 亚洲专区中文字幕在线| 18禁美女被吸乳视频| 熟女少妇亚洲综合色aaa.| 国产精品98久久久久久宅男小说| 色吧在线观看| 99精品久久久久人妻精品| 欧美高清成人免费视频www| 人人妻人人澡欧美一区二区| 女生性感内裤真人,穿戴方法视频| 亚洲aⅴ乱码一区二区在线播放| 国产视频内射| 亚洲人成网站在线播放欧美日韩| 综合色av麻豆| 99久久综合精品五月天人人| 好看av亚洲va欧美ⅴa在| 国产精品综合久久久久久久免费| 国产真人三级小视频在线观看| 精品久久久久久久毛片微露脸| 精品欧美国产一区二区三| 99热这里只有精品一区 | 九九久久精品国产亚洲av麻豆 | 国产精品一区二区精品视频观看| 美女黄网站色视频| 精品无人区乱码1区二区| 国产伦在线观看视频一区| avwww免费| www.www免费av| 脱女人内裤的视频| 在线视频色国产色| 久久久久久久午夜电影| 国产99白浆流出| 伊人久久大香线蕉亚洲五| 国内揄拍国产精品人妻在线| 观看美女的网站| 嫩草影院入口| 老司机午夜福利在线观看视频| 美女被艹到高潮喷水动态| 久久香蕉精品热| 亚洲成人中文字幕在线播放| 亚洲精品美女久久久久99蜜臀| 中亚洲国语对白在线视频| 色综合欧美亚洲国产小说| 欧美日本视频| 久久久久亚洲av毛片大全| 男女下面进入的视频免费午夜| 日韩三级视频一区二区三区| 91久久精品国产一区二区成人 | 久久国产精品影院| 无限看片的www在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 黄色成人免费大全| 97人妻精品一区二区三区麻豆| 午夜福利免费观看在线| 亚洲五月婷婷丁香| 久久国产精品人妻蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 国产精品综合久久久久久久免费| 久久精品aⅴ一区二区三区四区| 午夜福利免费观看在线| 99riav亚洲国产免费| 美女高潮的动态| 成人精品一区二区免费| 午夜福利在线观看免费完整高清在 | 亚洲午夜理论影院| 精品国产美女av久久久久小说| 在线观看免费午夜福利视频| 免费无遮挡裸体视频| 一二三四社区在线视频社区8| aaaaa片日本免费| 亚洲av五月六月丁香网| 成在线人永久免费视频| 色尼玛亚洲综合影院| 99久久久亚洲精品蜜臀av| 日韩欧美免费精品| 黑人欧美特级aaaaaa片| 女人高潮潮喷娇喘18禁视频| 亚洲色图 男人天堂 中文字幕| 久久精品国产综合久久久| 久久精品aⅴ一区二区三区四区| 午夜精品久久久久久毛片777| 国产亚洲精品一区二区www| 精品国产美女av久久久久小说| 黄色片一级片一级黄色片| 亚洲欧美日韩东京热| 美女黄网站色视频| 色视频www国产| 久久国产精品影院| 俄罗斯特黄特色一大片| 一级毛片女人18水好多| 色噜噜av男人的天堂激情| 久9热在线精品视频| 日韩国内少妇激情av| 久久中文看片网| 色视频www国产| 夜夜看夜夜爽夜夜摸| a级毛片a级免费在线| 精品99又大又爽又粗少妇毛片 | 成人亚洲精品av一区二区| 999精品在线视频| 久久中文字幕一级| 精品国内亚洲2022精品成人| 国产免费av片在线观看野外av| 三级毛片av免费| avwww免费| 久久天躁狠狠躁夜夜2o2o| 国产激情欧美一区二区| 色综合亚洲欧美另类图片| 非洲黑人性xxxx精品又粗又长| 老司机深夜福利视频在线观看| 久久中文看片网| 亚洲一区高清亚洲精品| 两个人的视频大全免费| 久久精品91无色码中文字幕| 99国产精品一区二区三区| 88av欧美| 国产av一区在线观看免费| 欧美一区二区精品小视频在线| 日日干狠狠操夜夜爽| 日本三级黄在线观看| 18禁观看日本| www.www免费av| 国产精品亚洲美女久久久| 日本精品一区二区三区蜜桃| 国产av一区在线观看免费| 亚洲真实伦在线观看| 午夜福利视频1000在线观看| 免费在线观看视频国产中文字幕亚洲| 岛国视频午夜一区免费看| 精品久久蜜臀av无| 亚洲精品一区av在线观看| 国产亚洲av嫩草精品影院| 亚洲最大成人中文| 俄罗斯特黄特色一大片| 免费在线观看日本一区| 午夜a级毛片| 可以在线观看的亚洲视频| 黄色成人免费大全| 国产成人精品久久二区二区91| 日日夜夜操网爽| 久久精品夜夜夜夜夜久久蜜豆| 精品无人区乱码1区二区| 日韩中文字幕欧美一区二区| 久久天躁狠狠躁夜夜2o2o| 久久久久免费精品人妻一区二区| АⅤ资源中文在线天堂| 国产综合懂色| 天天躁狠狠躁夜夜躁狠狠躁| 热99re8久久精品国产| 日本成人三级电影网站| 亚洲性夜色夜夜综合| 国产又黄又爽又无遮挡在线| 男女做爰动态图高潮gif福利片| 两人在一起打扑克的视频| 亚洲国产高清在线一区二区三| 亚洲七黄色美女视频| 一级毛片高清免费大全| 十八禁网站免费在线| svipshipincom国产片| 人人妻人人澡欧美一区二区| 中文字幕精品亚洲无线码一区| 亚洲成人免费电影在线观看| 国产精品久久视频播放| 国产精品国产高清国产av| 欧美一区二区国产精品久久精品| 脱女人内裤的视频| 国产精品一区二区三区四区久久| 亚洲欧洲精品一区二区精品久久久| 日本与韩国留学比较| 国产亚洲精品久久久com| 成年版毛片免费区| 欧美激情在线99| 在线观看舔阴道视频| 久久久水蜜桃国产精品网| 国产人伦9x9x在线观看| 搡老岳熟女国产| 久9热在线精品视频| 欧美日韩综合久久久久久 | 看黄色毛片网站| 精品乱码久久久久久99久播| 国产综合懂色| 国产私拍福利视频在线观看| 国产精品 欧美亚洲| 亚洲自拍偷在线| 欧美日韩一级在线毛片| 亚洲 欧美 日韩 在线 免费| 久久久久九九精品影院| 国产亚洲精品久久久久久毛片| 成人午夜高清在线视频| 亚洲自偷自拍图片 自拍| 亚洲国产欧美人成| 啦啦啦韩国在线观看视频| 久久婷婷人人爽人人干人人爱| 桃色一区二区三区在线观看| av天堂在线播放| 欧美色视频一区免费| 三级男女做爰猛烈吃奶摸视频| 国产黄色小视频在线观看| 波多野结衣巨乳人妻| 亚洲,欧美精品.| 国产成人啪精品午夜网站| 日韩欧美精品v在线| 午夜精品久久久久久毛片777| 中文亚洲av片在线观看爽| 国产精品 国内视频| 91九色精品人成在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲av成人精品一区久久| 午夜a级毛片| 久久久久国产一级毛片高清牌| av天堂在线播放| bbb黄色大片| 精品一区二区三区视频在线观看免费| 在线观看午夜福利视频| 九九在线视频观看精品| 免费看十八禁软件| 在线观看66精品国产| 日韩av在线大香蕉| 网址你懂的国产日韩在线| 亚洲欧美一区二区三区黑人| 免费看光身美女| 露出奶头的视频| 亚洲 欧美一区二区三区| 亚洲精品色激情综合| 欧洲精品卡2卡3卡4卡5卡区| 国产主播在线观看一区二区| 法律面前人人平等表现在哪些方面| 巨乳人妻的诱惑在线观看| 97超级碰碰碰精品色视频在线观看| 久久精品人妻少妇| 久久久国产成人免费| 欧美日韩黄片免| 免费看十八禁软件| 国产精品久久久久久久电影 | 国产人伦9x9x在线观看| 国产精品,欧美在线| av黄色大香蕉| 美女高潮喷水抽搐中文字幕| 国产在线精品亚洲第一网站| 99精品欧美一区二区三区四区| 久久人妻av系列| 一进一出好大好爽视频| 国产人伦9x9x在线观看| 97超视频在线观看视频| 久久国产精品人妻蜜桃| www.999成人在线观看| 国产成人av激情在线播放| 美女高潮喷水抽搐中文字幕| 看免费av毛片| 国产午夜精品久久久久久| 免费观看精品视频网站| 国产黄a三级三级三级人| 免费在线观看日本一区| 成年女人永久免费观看视频| 一区二区三区国产精品乱码| 欧美性猛交黑人性爽| 美女被艹到高潮喷水动态| 亚洲精品粉嫩美女一区| 国产伦精品一区二区三区四那| 19禁男女啪啪无遮挡网站| 真实男女啪啪啪动态图| 国产成年人精品一区二区| 99热这里只有是精品50| 床上黄色一级片| 中文字幕久久专区| 九九热线精品视视频播放| 亚洲中文日韩欧美视频| 久久中文字幕一级| 久久久久国产精品人妻aⅴ院| 岛国在线免费视频观看| 国产精品一区二区三区四区免费观看 | 一边摸一边抽搐一进一小说| 亚洲成人免费电影在线观看| 精品一区二区三区视频在线 | 变态另类丝袜制服| 中文字幕av在线有码专区| 国产一区二区三区在线臀色熟女| 国产亚洲精品久久久久久毛片| 欧美成人一区二区免费高清观看 | 99在线视频只有这里精品首页| 老汉色∧v一级毛片| 别揉我奶头~嗯~啊~动态视频| 黄色 视频免费看| 精品熟女少妇八av免费久了| 国产精品久久久久久亚洲av鲁大| 中文字幕精品亚洲无线码一区| 亚洲av成人不卡在线观看播放网| 国产视频内射| 国产又色又爽无遮挡免费看| 蜜桃久久精品国产亚洲av| 九九久久精品国产亚洲av麻豆 | 2021天堂中文幕一二区在线观| 日本撒尿小便嘘嘘汇集6| 日韩免费av在线播放| 国产美女午夜福利| 1000部很黄的大片| 成人性生交大片免费视频hd| 国产三级中文精品| 国内精品久久久久久久电影| 国产男靠女视频免费网站| 久久这里只有精品19| 神马国产精品三级电影在线观看| 成年女人毛片免费观看观看9| 国产av在哪里看| www国产在线视频色| 丁香欧美五月| av黄色大香蕉| 国产黄a三级三级三级人| 午夜日韩欧美国产| 欧美成人性av电影在线观看| 少妇熟女aⅴ在线视频| 男女视频在线观看网站免费| 熟女电影av网| 99在线视频只有这里精品首页| 91字幕亚洲| e午夜精品久久久久久久| 亚洲自拍偷在线| 亚洲av电影不卡..在线观看| 他把我摸到了高潮在线观看| 成人一区二区视频在线观看| 精品久久久久久久毛片微露脸| 午夜日韩欧美国产| 黄频高清免费视频| 麻豆成人av在线观看| 桃红色精品国产亚洲av| 国产高清视频在线播放一区| 又紧又爽又黄一区二区| 天天躁日日操中文字幕| 不卡一级毛片| 午夜激情福利司机影院| 亚洲国产精品sss在线观看| 国产精品久久电影中文字幕| 亚洲精品色激情综合| 麻豆一二三区av精品| 国内毛片毛片毛片毛片毛片| 婷婷亚洲欧美| 午夜免费激情av| 久久久久久人人人人人| 欧美色欧美亚洲另类二区| 天天躁狠狠躁夜夜躁狠狠躁| 在线播放国产精品三级| 中文字幕人妻丝袜一区二区| 色综合婷婷激情| 亚洲精品中文字幕一二三四区| 变态另类成人亚洲欧美熟女| 在线观看日韩欧美| 日韩欧美精品v在线| 日韩欧美在线二视频| 99精品欧美一区二区三区四区| 99国产精品99久久久久| 欧美日韩乱码在线| 国产视频一区二区在线看| 精品一区二区三区视频在线 | 国产精品av久久久久免费| 日本熟妇午夜| 性色avwww在线观看| 三级国产精品欧美在线观看 | 国产免费av片在线观看野外av| 久久久精品大字幕| 亚洲九九香蕉| 国产精品1区2区在线观看.| 免费观看的影片在线观看| 午夜福利高清视频| 久久久国产成人精品二区| 久久精品国产亚洲av香蕉五月| 精品国产乱子伦一区二区三区| 亚洲av日韩精品久久久久久密| 亚洲自偷自拍图片 自拍| 18美女黄网站色大片免费观看| 国产精品久久久久久久电影 | 欧美乱码精品一区二区三区| 最近最新免费中文字幕在线| 日韩免费av在线播放| 成年女人毛片免费观看观看9| 欧美午夜高清在线| 人人妻人人看人人澡| 国产伦人伦偷精品视频| 日本成人三级电影网站| 美女 人体艺术 gogo| 一级a爱片免费观看的视频| 国产人伦9x9x在线观看| 九九热线精品视视频播放| 岛国在线观看网站| 麻豆国产av国片精品| 欧美日本亚洲视频在线播放| 国产精品永久免费网站| 国产精品一区二区三区四区久久| 国产伦一二天堂av在线观看| 高清毛片免费观看视频网站| 午夜免费成人在线视频| 亚洲国产中文字幕在线视频| 哪里可以看免费的av片| 亚洲自偷自拍图片 自拍| 黄片大片在线免费观看| 最好的美女福利视频网| 中文字幕最新亚洲高清| 久久久久久国产a免费观看| www日本在线高清视频| 俺也久久电影网| 18禁观看日本| 国产成人啪精品午夜网站| 哪里可以看免费的av片| 欧美日韩瑟瑟在线播放| 成年人黄色毛片网站| 神马国产精品三级电影在线观看| 欧美国产日韩亚洲一区| 久久久国产精品麻豆| 成年版毛片免费区| 国产美女午夜福利| 久久精品aⅴ一区二区三区四区| 日日夜夜操网爽| 岛国在线免费视频观看| 悠悠久久av| 欧美中文日本在线观看视频| 欧美黄色片欧美黄色片| 成人永久免费在线观看视频| 久久久久九九精品影院| 久久久国产欧美日韩av| 国产又黄又爽又无遮挡在线| 亚洲性夜色夜夜综合| 国产视频一区二区在线看| 久久久久性生活片| 色吧在线观看| 又黄又粗又硬又大视频| 后天国语完整版免费观看| 亚洲成人中文字幕在线播放| 看免费av毛片| 免费人成视频x8x8入口观看| 午夜福利高清视频| 久久伊人香网站| 综合色av麻豆| 国产精品亚洲一级av第二区| 国产亚洲欧美98| 欧美黄色片欧美黄色片| 特级一级黄色大片| 欧美色视频一区免费| 美女午夜性视频免费| 国产激情欧美一区二区| 欧美黑人巨大hd| 日韩人妻高清精品专区| 国产精品久久电影中文字幕| 九九热线精品视视频播放| 久久国产精品影院| 夜夜夜夜夜久久久久| 美女高潮喷水抽搐中文字幕| 99国产精品一区二区三区| 麻豆国产av国片精品| 男人舔女人下体高潮全视频| 成人精品一区二区免费| 性色avwww在线观看| 午夜福利18| 男女那种视频在线观看| 亚洲精品中文字幕一二三四区| 亚洲成人久久性| 午夜福利成人在线免费观看| 19禁男女啪啪无遮挡网站| 国产精品一区二区精品视频观看| 免费在线观看亚洲国产| 欧美黄色片欧美黄色片| 少妇熟女aⅴ在线视频| 操出白浆在线播放| 丰满的人妻完整版| 国产伦一二天堂av在线观看| 久久久色成人| 热99在线观看视频| 中文字幕高清在线视频| 国模一区二区三区四区视频 | 久久久久精品国产欧美久久久| 99国产综合亚洲精品| 亚洲中文字幕一区二区三区有码在线看 | 悠悠久久av| 日韩欧美在线二视频| 欧美性猛交╳xxx乱大交人| 亚洲精品在线美女| 成人三级做爰电影| 成年女人永久免费观看视频| 黑人巨大精品欧美一区二区mp4| 首页视频小说图片口味搜索| 亚洲av成人av| 婷婷精品国产亚洲av| 成年免费大片在线观看| 亚洲精品色激情综合| 国产精品一区二区三区四区免费观看 | 成熟少妇高潮喷水视频| 19禁男女啪啪无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 亚洲一区高清亚洲精品| 国产黄a三级三级三级人| 在线a可以看的网站| 成年免费大片在线观看| 久久久水蜜桃国产精品网| av天堂中文字幕网| 国产亚洲欧美98| 久久久水蜜桃国产精品网| 亚洲专区国产一区二区| 最新在线观看一区二区三区| 日韩三级视频一区二区三区| 小说图片视频综合网站| 久久久久国产一级毛片高清牌| avwww免费| 久久久久免费精品人妻一区二区| 99在线视频只有这里精品首页| 日韩欧美一区二区三区在线观看| 特级一级黄色大片| 亚洲人与动物交配视频| 亚洲av免费在线观看| 免费无遮挡裸体视频| 很黄的视频免费| 亚洲精品色激情综合|