• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal control of wireless energy transfer system via decreasing frequency

    2013-01-08 12:55:38TanlinlinHuangXueliangZhouYalongZhaoJunfeng

    Tan linlin Huang Xueliang Zhou Yalong Zhao Junfeng

    (School of Electrical Engineering, Southeast University, Nanjing 210096, China)

    Wireless energy transfer is critical to many emerging applications and it is commonly realized by means of near-field magnetic resonance coupling. In 2007, the wireless energy transmission research group at MIT proposed the technology of magnetically coupled resonance wireless energy transmission and the research results[1]. This technology has attracted attention by many scholars and gradually become an important research direction in the field of energy transmission. In the subsequent long period of time, this technology has been used to study the long-range energy transmission (The transmission distance is much greater than the geometric dimensions of the coil size), in which case the coupling of transmitting and receiving coils is weakened, and the frequency splitting phenomenon is not obvious or rarely occurs. For this reason, this phenomenon has not attracted much attention by researchers anymore.

    Actually, wireless energy transmission technology has been widely used in various fields[2], and the transfer distance may be close to the radius of coils or smaller than the radius of coils. The coil size and the transmission distance are roughly of propinquity. According to relative theory, the system will be working in strong coupling regions, and the transmitting and receiving coils are prone to strong coupling, which makes the system work in the frequency splitting region. Meanwhile, the extreme transmission power will be split[3]. This splitting leads the power transmission at the natural resonance frequency to decline rapidly, sometimes even up to 50% or more[4-5], which is extremely unfavorable to the transfer of power. Meanwhile, the extreme value of transmission power is deviated from the natural resonance frequency, which means controlling power by stabilizing the natural resonance frequency is no longer suitable.

    So far, it is necessary to propose a reasonable frequency splitting solution when the system is working in the frequency splitting region, which is not only to explore the transmission mechanism of the system, but also is more conducive to the promotion and application of this transmission technology. For this reason, many researchers have also suggested some solutions. For example, Sample et al.[4]changed the coupling between two coils (i.e. changed the angle between the coils) in the strong coupling region to make the system withdraw the frequency splitting region. Actually, the problem of resonance frequency splitting is complex and involves lots of parameter optimizations of the system. By studying the power transmission model of the system, we find that the system frequency splitting is mainly determined by the coupling coefficient between two coils and the natural resonance frequency, and the coupling coefficient between the two coils is affected by the transfer distance. As a result, in this paper we propose a solution based on decreasing the frequency to control the resonance frequency splitting. The simulation and analytical results favourably confirm to the practical measurements obtained from the design.

    1 Model and Power Splitting

    To facilitate the design and analysis, we assume that the transmitting and receiving coils have the same electrical and mechanical parameters (namely coils winding, radii, turns and external compensation capacitance, etc.). Then we haveL1=L2=L,C1=C2=C, whereLandCare the inductance and capacitance values of the coils. According to the equivalent mathematical model[5-7]as shown in Fig.1, the system can be described as

    (1)

    whereX=ωL-1/(ωC);VsandRsare the external power source and the internal resistance, respectively;R1andR2are the equivalent resistances of transmitting and receiving coils, respectively;I1andI2are the current of two coils(transmitting and receiving coils);ωis the system working frequency. The load receiving power can be obtained by

    (2)

    whereVLis the voltage of the load and it can be computed by

    (3)

    whereRLis the load resistance;Mis the mutual inductance between two coils, which is related to the transmission distance with coil parameters fixed.T(X,M) is a variable varying with frequency and mutual inductance, which can be calculated by

    T2(X,M)=[(R1+Rs)(R2+RL)-X2+(ωM)2]2+

    [X(R1+Rs+R2+RL)]2

    (4)

    (5)

    The conditions that satisfy Eq.(5) are

    X=0

    (6a)

    [(R1+Rs)2+(R2+RL)2+2X2-2(ωM)2]=0

    (6b)

    In the case ofX=0, there clearly exists an extreme point of the load receiving power. It is not difficult to find that the receiving power of the load may also meet two other extreme points when Eq.(6b) is valid. Meanwhile,X≠ 0,ω0≠ω, which means that in addition toω0, there are two other frequencies which make the load receiving power achieve the two extreme values, respectively. These two frequencies are distributed on both sides of the natural resonance frequency.

    So, it is not difficult to calculate Eq.(6b) in the solvability condition.

    (7)

    Actually, Eq.(6b) is not expected to have solutions and the analysis error should be considered. The correction factorKmis introduced. So the condition of the system has only one stable resonance frequency which is

    (8)

    If the radius of the coils isr, the number of turns isN. The mutual inductance[8]between the transmitting and receiving coils can be calculated by

    (9)

    whereK(δ) andE(δ) are complete elliptic integrals of the first and the second kind, respectively; andδis

    (10)

    wheredis the transmission distance.

    In order to simplify calculation,K(δ) andE(δ) can be expanded into the form of an infinite series:

    (11)

    (12)

    2 Frequency Control Scheme and Feasibility Analysis

    The above analysis results show that the system has two working statuses. One is the system working on the natural resonance frequency and it has only one resonance frequency, and then the load can receive the maximum power. The other state is that the system meets the frequency splitting condition, and the load receiving maximum power meets the occurrence of splitting. In another sense, the higher the natural resonance frequency, the larger the frequency splitting region, and the lower the natural resonance frequency, the system is less prone to show the resonance frequency splitting. From the results of the above studies, if we do not make any change in the coupling between coils or the load resistance, and just simply reduce the system’s natural resonance frequency, the system is also possible to withdraw the conditions of frequency splitting. This discovery is very important for the system design and control, which means that we can make the system work out of the frequency splitting region by decreasing the natural resonance frequency.

    In order to achieve system transmission power stability at a single natural resonance frequency to solve the frequency splitting caused by strong coupling between the coils, decreasing the natural resonance frequency can be used. Sometimes, the system operating frequency often works in a high state (MHz level), which makes the system strong-coupling region large, thus the system can easily enter the frequency splitting region at short-distance transmission. Therefore, decreasing the natural resonance frequency and narrowing the frequency splitting region are very necessary. Fortunately, decreasing the system natural resonance frequency does not obviously reduce the system transfer efficiency at close range transmission[9], so by decreasing the frequency control to solve the frequency splitting is feasible in theory.

    3 Simulation and Experimental Study

    3.1 Simulation

    The system simulation and experimental parameters are:Vs=200 V,L=350 μH,RL=5 Ω,r=0.2 m,ris the radius of coils. Fig.2 shows that in the case that the natural resonance frequencyω0and the load resistanceRLare 830 kHz and 5 Ω, respectively, the load receiving power changes with the frequency of the external power source. From Fig.2, we can find that the load receiving power has only one maximum value when the system works at the natural resonance frequency (830 kHz) in the long-distance transmission (d?0.25 m).With the transmission distance continuing to decrease, the load receiving power will achieve a maximum value at a certain transmission distance, which is mainly due to the fact that the system equivalent internal resistance matches the internal resistance of the source at the natural resonance frequency[9].

    With the transmission distance decreasing (d<0.25m), the load receiving power enters the frequency splitting region, and the natural resonance frequency (ω0=830 kHz) is no longer the maximum power frequency, instead of being a saddle point for the load receiving power.

    Fig.2 Load receiving power splitting at nature resonance frequency of 830 kHz

    In order to verify the feasibility of the control program for the resonance frequency splitting, we do some simulation studies by Matlab/Simulink and COMSOL electromagnetic module. Fig.3 and Fig.4 show that at the load of 5 Ω and the natural resonant of 830 and 200 kHz, the load receiving power changes with transmission distance and frequencies. The results of Fig.3 show that with the increase in the coupling strength of two coils (i.e. the distance is reduced), the frequency splitting threshold distance is about 0.25 m.

    Fig.3 Load receiving power with distance and frequency changing at natural resonance frequency of 830 kHz and the load resistance of 5 Ω

    Fig.4 Load receiving power with distance and frequency changing at natural resonance frequency of 200 kHz and load resistance of 5 Ω

    The results of Fig.4 show that at the natural resonance frequency of 200 kHz, the frequency splitting threshold distance is about 0.12 m, in spite of the fact that the lowering of the system resonance frequency can greatly weaken the ability of long-range power transmission. But at close range transmission, the transmission power can still become very high. What’s more, the system is out of the frequency splitting region, and the threshold value of the transmission distance is smaller.

    3.2 Experimental results

    The experimental device is designed as shown in Fig.5. The internal resistance of the system power supply is 50 Ω, and the output frequency can be adjusted manually. Fig.6 shows that the load receiving power changes with the load of 5Ω, a transmission distance of 0.2 m and a natural resonance frequency of 830 and 200 kHz, respectively. In order to facilitate the analysis, we make 830 and 200 kHz as the system reference frequencies, respectively, and then normalize the operating frequency to the reference frequency. In the case of the natural resonance frequency of 830 kHz, the system is obviously in the frequency splitting region, and if we reduce the system operating frequency to 200 kHz, the system load receiving power will be withdrawn from the frequency splitting region as shown in Fig.6. From Fig.6, we also know that the system frequency splitting can be effectively suppressed by decreasing the natural resonance frequency in the frequency splitting region. The method for reducing the natural resonance frequency is provided in Ref.[10], and it will not be repeated here.

    Fig.5 Experimental device

    From Fig.6, we can also see that at the same distance (d=0.2 m), the natural resonance frequency reduces from 830 to 200 kHz, and the load receiving power is from 6W up to 30 W at the natural resonant, which increases about 400%. Fig.7 shows that the system transmission efficiency changes regularly with the natural frequency. From Fig.7, we can find that the system resonance frequency reduces from 830 to 200 kHz, and the theoretical transfer efficiency only drops from 70% to 61%. The actual measurement results are basically consi-stent with theoretical calculations at 200 and 830kHz. Results from Fig.7 show that decreasing the system natural frequency to control the transfer power will have a little effect on the transmission efficiency, which is just 14%. Compared with the transmission power increased by 400%, the efficiency loss by the decreasing frequency can be ignored.

    Fig.6 Frequency splitting result from the experiment

    Fig.7 Transmission efficiency of system changes

    If we consider the impedance matching, the load receiving power will be greatly increased. On the other hand, decreasing the natural frequency not only can reduce system power requirements under a close transfer distance, but can also help the transfer system to reduce heat dissipation and space dissipation.

    4 Conclusion

    The load receiving power of the wireless energy transmission system with the frequency changing is studied and the influencing factors of the system transmission power are analyzed in this paper. The mechanism and the boundary conditions of the system frequency splitting are proposed. For a given load, the scheme which by decreasing the system natural resonance frequency has been proposed to solve the frequency splitting problem. However, decreasing the natural resonance frequency can lead transmission distance and transmission efficiency to decrease, but it can increase the system power transmission. Sometimes we must ensure that the system does not cause frequency splitting and that the system transfer distance and efficiency reducing remains in an acceptable range.

    This research work is only a solution for the frequency splitting and verifies its feasibility, so we did not involve the scheme optimization. In practical applications, the external resistance should perfectly match the internal resistance of the system. In order to achieve maximum power transmission, the resonance frequency will have an optimal value in different transmission distances. Therefore, in the process of system designing and controlling, we should coordinate with the load, transfer efficiency, and transfer distance. In this way, the system can not only effectively withdraw the frequency splitting region and it will be easy to control, but it can also achieve maximum power transfer at a close transfer distance. However, the work of this paper can provide an effective solution for frequency splitting control.

    [1]Kurs A, Karalis A, Moffatt R, et al. Wireless power transmission via strongly coupled magnetic resonances[J].ScienceExpress, 2007,317(5834):83-86.

    [2]RamRakhyani A K, Mirabbasi S, Chiao M. Design and optimization of resonance-based efficient wireless power delivery systems for biomedical implants[J].IEEETransBiomedCircuitsSyst, 2011,5(1):48-63.

    [3]Tak Y D, Park J M, Nam S W. Mode-based analysis of resonant characteristics for near-field coupled small antennas[J].IEEEAntennasWirelessPropagLett, 2009,8(11):1238-1241.

    [4]Sample A P, Meyer D A, Smith J R. Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer [J].IEEETransIndElectron, 2011,58(2):544-554.

    [5]Cheon S, Kim Y, Kang S, et al. Circuit model based analysis of a wireless energy transfer system via coupled magnetic resonances[J].IEEETransIndElectron, 2011,58(7):2906-2914.

    [6]Kurs A, Moffatt R, Soljacic M. Simultaneous mid-range power transfer to multiple devices[J].ApplPhysLett, 2010,96(4):044102-1-044102-3.

    [7]Casanova J J, Low Z N, Lin J S. A loosely coupled planar wireless power system for multiple receivers[J].IEEETransIndElectron, 2009,56(8):3060-3068.

    [8]Maxwell J C.Atreatiseonelectricityandmagnetism[M]. New York: Dover, 1954.

    [9]Fu Wenzhen, Zhang Bo. Maximum efficiency analysis and design of self-resonance coupling coils for wireless power transmission system[J].ProceedingsoftheCSEE, 2009,29(18):21-26. (in Chinese)

    [10]Tan Linlin, Huang Xueliang, Huang Hui. Transfer efficiency optimal control of magnetic resonance coupled system of wireless power transfer based on frequency control[J].ScienceinChinaSeriesE:EngineeringandMaterialsScience, 2011,54(6): 1428-143.

    aaaaa片日本免费| 看免费av毛片| 手机成人av网站| 日本免费一区二区三区高清不卡| 九九久久精品国产亚洲av麻豆| 久久久精品欧美日韩精品| 亚洲精品久久国产高清桃花| 日韩有码中文字幕| a级一级毛片免费在线观看| 精品不卡国产一区二区三区| 国产精品久久久久久精品电影| а√天堂www在线а√下载| 精品无人区乱码1区二区| 免费人成在线观看视频色| 手机成人av网站| 欧美在线黄色| 99久久无色码亚洲精品果冻| 久久草成人影院| 免费在线观看日本一区| 在线观看66精品国产| 少妇人妻一区二区三区视频| а√天堂www在线а√下载| 国产精品亚洲av一区麻豆| 国产伦精品一区二区三区四那| 亚洲色图av天堂| 97人妻精品一区二区三区麻豆| 成年女人永久免费观看视频| 国产麻豆成人av免费视频| 日韩大尺度精品在线看网址| 不卡一级毛片| 久久精品影院6| 午夜福利视频1000在线观看| 中文在线观看免费www的网站| 网址你懂的国产日韩在线| 日韩欧美精品v在线| 有码 亚洲区| 色精品久久人妻99蜜桃| 黄色丝袜av网址大全| 99久久九九国产精品国产免费| 久久国产乱子伦精品免费另类| 噜噜噜噜噜久久久久久91| 午夜精品久久久久久毛片777| 国产综合懂色| 999久久久精品免费观看国产| 高清日韩中文字幕在线| 一区二区三区免费毛片| 精品久久久久久久久久免费视频| 成年版毛片免费区| 久久久久久久久大av| 男女视频在线观看网站免费| 日本在线视频免费播放| 日韩中文字幕欧美一区二区| 亚洲18禁久久av| 嫩草影院入口| 国产色爽女视频免费观看| 精品不卡国产一区二区三区| 久久精品影院6| 国产淫片久久久久久久久 | 法律面前人人平等表现在哪些方面| 香蕉久久夜色| 国产爱豆传媒在线观看| 在线视频色国产色| 夜夜夜夜夜久久久久| 一级作爱视频免费观看| 久久午夜亚洲精品久久| 天天躁日日操中文字幕| 麻豆国产av国片精品| 久99久视频精品免费| 人妻久久中文字幕网| 狂野欧美激情性xxxx| 美女高潮的动态| 欧洲精品卡2卡3卡4卡5卡区| 脱女人内裤的视频| 国产黄片美女视频| 大型黄色视频在线免费观看| 国内揄拍国产精品人妻在线| 亚洲国产欧美人成| 两个人视频免费观看高清| 一本一本综合久久| 久久精品国产99精品国产亚洲性色| 天堂影院成人在线观看| 久久久久免费精品人妻一区二区| 国产视频一区二区在线看| 国产午夜精品久久久久久一区二区三区 | 成人性生交大片免费视频hd| 亚洲国产中文字幕在线视频| 亚洲一区二区三区不卡视频| 国产高潮美女av| 国产不卡一卡二| 亚洲欧美日韩无卡精品| 两性午夜刺激爽爽歪歪视频在线观看| 女同久久另类99精品国产91| 午夜免费成人在线视频| 国产国拍精品亚洲av在线观看 | 岛国在线观看网站| 免费在线观看亚洲国产| 亚洲欧美精品综合久久99| 丰满人妻熟妇乱又伦精品不卡| 少妇的逼水好多| 精品久久久久久久人妻蜜臀av| 中文字幕久久专区| 中文字幕久久专区| 美女被艹到高潮喷水动态| 精品久久久久久久人妻蜜臀av| 啦啦啦观看免费观看视频高清| 久久久久久久久中文| 一级黄色大片毛片| 国产av在哪里看| 亚洲,欧美精品.| 丝袜美腿在线中文| 久久久久性生活片| xxx96com| 老司机在亚洲福利影院| 亚洲av成人不卡在线观看播放网| 国产欧美日韩一区二区三| 久久精品综合一区二区三区| 性色avwww在线观看| 特大巨黑吊av在线直播| 国产aⅴ精品一区二区三区波| 亚洲欧美精品综合久久99| 亚洲精品乱码久久久v下载方式 | 国产成人系列免费观看| 亚洲精品美女久久久久99蜜臀| 观看美女的网站| 一进一出抽搐动态| 观看免费一级毛片| 一区二区三区国产精品乱码| 免费在线观看日本一区| 中文字幕高清在线视频| 精品久久久久久久人妻蜜臀av| 成人特级黄色片久久久久久久| 老汉色∧v一级毛片| 老熟妇仑乱视频hdxx| 久久精品国产亚洲av香蕉五月| 舔av片在线| 久久久色成人| 亚洲不卡免费看| 欧美乱码精品一区二区三区| 亚洲精品在线美女| 欧美bdsm另类| 天天添夜夜摸| 国产淫片久久久久久久久 | 亚洲av免费高清在线观看| 国内精品久久久久久久电影| 欧美一级毛片孕妇| 国产高清videossex| 国产aⅴ精品一区二区三区波| 亚洲午夜理论影院| 身体一侧抽搐| 日韩欧美一区二区三区在线观看| 一个人免费在线观看的高清视频| 一本久久中文字幕| 欧美另类亚洲清纯唯美| 欧美乱码精品一区二区三区| 精品人妻偷拍中文字幕| 午夜免费观看网址| 欧美zozozo另类| 国产97色在线日韩免费| 国产精品野战在线观看| 波野结衣二区三区在线 | 日本黄色片子视频| 老司机深夜福利视频在线观看| 人人妻,人人澡人人爽秒播| 亚洲精品成人久久久久久| 宅男免费午夜| 露出奶头的视频| 欧美黑人欧美精品刺激| 亚洲国产欧美人成| av视频在线观看入口| 在线观看免费午夜福利视频| 搡老熟女国产l中国老女人| 久久婷婷人人爽人人干人人爱| 久久久色成人| 亚洲国产精品合色在线| 国产一区二区在线av高清观看| 成人鲁丝片一二三区免费| 日本成人三级电影网站| 亚洲熟妇熟女久久| 国产成人啪精品午夜网站| 午夜福利在线观看免费完整高清在 | 19禁男女啪啪无遮挡网站| 国产亚洲欧美98| 又紧又爽又黄一区二区| 俄罗斯特黄特色一大片| 中文字幕久久专区| 黄色女人牲交| 在线观看免费午夜福利视频| 欧美激情久久久久久爽电影| 97超视频在线观看视频| 婷婷丁香在线五月| 欧美又色又爽又黄视频| 精品欧美国产一区二区三| 中文资源天堂在线| 久久精品国产清高在天天线| 日本撒尿小便嘘嘘汇集6| 欧美日韩精品网址| 天天添夜夜摸| 脱女人内裤的视频| 久久久成人免费电影| 午夜激情欧美在线| 日韩国内少妇激情av| 精品一区二区三区人妻视频| 一级a爱片免费观看的视频| 男女下面进入的视频免费午夜| 88av欧美| 国产黄色小视频在线观看| av片东京热男人的天堂| 亚洲国产日韩欧美精品在线观看 | а√天堂www在线а√下载| 国产单亲对白刺激| 亚洲成av人片在线播放无| 伊人久久大香线蕉亚洲五| 麻豆国产97在线/欧美| 久9热在线精品视频| 久久久久久久亚洲中文字幕 | 国产高潮美女av| 91麻豆精品激情在线观看国产| 国产精品香港三级国产av潘金莲| 亚洲国产欧洲综合997久久,| 欧美性猛交╳xxx乱大交人| 久久久久九九精品影院| 蜜桃亚洲精品一区二区三区| 日日摸夜夜添夜夜添小说| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利高清视频| АⅤ资源中文在线天堂| 岛国在线免费视频观看| 51国产日韩欧美| av专区在线播放| 国内少妇人妻偷人精品xxx网站| 国产一区二区亚洲精品在线观看| 欧美日韩一级在线毛片| 看免费av毛片| 久久久久久九九精品二区国产| 人人妻,人人澡人人爽秒播| 亚洲熟妇中文字幕五十中出| 一个人免费在线观看电影| xxxwww97欧美| 最近最新中文字幕大全电影3| 国产午夜福利久久久久久| 97超视频在线观看视频| 国产淫片久久久久久久久 | 国产精品日韩av在线免费观看| 免费观看的影片在线观看| 一本精品99久久精品77| 欧美在线黄色| 亚洲国产色片| 午夜免费男女啪啪视频观看 | 午夜日韩欧美国产| 人人妻,人人澡人人爽秒播| 国产精品女同一区二区软件 | 19禁男女啪啪无遮挡网站| 国产成人av教育| 老司机在亚洲福利影院| 精品免费久久久久久久清纯| 亚洲国产日韩欧美精品在线观看 | 美女被艹到高潮喷水动态| 日韩成人在线观看一区二区三区| 午夜福利免费观看在线| 国产精品 国内视频| 欧美日韩福利视频一区二区| 99热这里只有是精品50| 一进一出抽搐gif免费好疼| 淫秽高清视频在线观看| 国产69精品久久久久777片| 婷婷亚洲欧美| 久久精品国产清高在天天线| 久久精品国产99精品国产亚洲性色| 99久久久亚洲精品蜜臀av| 最近最新免费中文字幕在线| 国产精品乱码一区二三区的特点| 亚洲狠狠婷婷综合久久图片| 可以在线观看毛片的网站| 国产精品久久久久久精品电影| 国产精品亚洲av一区麻豆| 午夜福利在线观看免费完整高清在 | 99国产综合亚洲精品| 丝袜美腿在线中文| 法律面前人人平等表现在哪些方面| 小说图片视频综合网站| 88av欧美| 在线免费观看不下载黄p国产 | 国产精品久久久久久久久免 | 男女做爰动态图高潮gif福利片| 国内精品久久久久久久电影| 男人舔奶头视频| 性色avwww在线观看| 757午夜福利合集在线观看| 琪琪午夜伦伦电影理论片6080| 中文字幕人妻熟人妻熟丝袜美 | 精品久久久久久久久久免费视频| 国产91精品成人一区二区三区| 99久国产av精品| 好男人电影高清在线观看| 成年人黄色毛片网站| 激情在线观看视频在线高清| 岛国在线免费视频观看| 757午夜福利合集在线观看| 极品教师在线免费播放| 韩国av一区二区三区四区| www.999成人在线观看| 欧美中文综合在线视频| 国产一区在线观看成人免费| 91麻豆av在线| 国产一区在线观看成人免费| 精品日产1卡2卡| 欧美又色又爽又黄视频| 在线免费观看不下载黄p国产 | 99视频精品全部免费 在线| 亚洲aⅴ乱码一区二区在线播放| 亚洲无线观看免费| 亚洲无线在线观看| 免费一级毛片在线播放高清视频| 日本精品一区二区三区蜜桃| 久久人妻av系列| 国产精品香港三级国产av潘金莲| 欧美另类亚洲清纯唯美| 国产精品香港三级国产av潘金莲| 99热这里只有精品一区| 精品国产三级普通话版| 一进一出抽搐动态| 亚洲精品一卡2卡三卡4卡5卡| 波多野结衣高清作品| 俺也久久电影网| 99久国产av精品| 老司机在亚洲福利影院| 久久精品夜夜夜夜夜久久蜜豆| 国产精品 国内视频| 成人一区二区视频在线观看| 日本与韩国留学比较| 丝袜美腿在线中文| 欧美一级a爱片免费观看看| 亚洲美女黄片视频| 男人的好看免费观看在线视频| 香蕉久久夜色| 少妇裸体淫交视频免费看高清| 欧美高清成人免费视频www| www.999成人在线观看| 欧美日韩一级在线毛片| 激情在线观看视频在线高清| 日韩成人在线观看一区二区三区| 露出奶头的视频| 免费在线观看成人毛片| 99久久精品一区二区三区| av天堂在线播放| 久久久久久大精品| 欧美色欧美亚洲另类二区| 欧美不卡视频在线免费观看| 亚洲熟妇中文字幕五十中出| 国产单亲对白刺激| 国产极品精品免费视频能看的| 一夜夜www| 国产欧美日韩精品一区二区| 亚洲18禁久久av| 男女那种视频在线观看| 欧美黄色片欧美黄色片| 一级毛片女人18水好多| 国产亚洲欧美在线一区二区| 午夜视频国产福利| 午夜福利免费观看在线| 搡老熟女国产l中国老女人| 天天添夜夜摸| 好看av亚洲va欧美ⅴa在| 综合色av麻豆| 欧美日韩国产亚洲二区| 欧美日韩乱码在线| 成人国产综合亚洲| 国产精品久久视频播放| 欧美区成人在线视频| 成人无遮挡网站| 一个人看的www免费观看视频| 99久久无色码亚洲精品果冻| 精品不卡国产一区二区三区| 亚洲成av人片免费观看| 精品电影一区二区在线| 97超级碰碰碰精品色视频在线观看| 亚洲精品一区av在线观看| e午夜精品久久久久久久| 日本与韩国留学比较| 成年免费大片在线观看| 欧美av亚洲av综合av国产av| 91麻豆av在线| 欧美av亚洲av综合av国产av| 成人av在线播放网站| 午夜免费男女啪啪视频观看 | 精品久久久久久,| 亚洲七黄色美女视频| 欧美大码av| 日本五十路高清| www.www免费av| 欧美乱码精品一区二区三区| 在线免费观看的www视频| 色综合欧美亚洲国产小说| 久久精品91蜜桃| 亚洲最大成人手机在线| 国内少妇人妻偷人精品xxx网站| 国产美女午夜福利| 亚洲美女黄片视频| 校园春色视频在线观看| 黄色女人牲交| 国内精品久久久久精免费| 亚洲精品粉嫩美女一区| 91九色精品人成在线观看| 亚洲av一区综合| 在线十欧美十亚洲十日本专区| 日韩av在线大香蕉| 亚洲中文字幕日韩| 日韩有码中文字幕| 午夜影院日韩av| 女人被狂操c到高潮| 国产真实伦视频高清在线观看 | 很黄的视频免费| 亚洲成人精品中文字幕电影| 成熟少妇高潮喷水视频| 国产精品,欧美在线| 真实男女啪啪啪动态图| 国产三级黄色录像| 特级一级黄色大片| 亚洲精华国产精华精| 日韩中文字幕欧美一区二区| 国产美女午夜福利| 亚洲精品日韩av片在线观看 | 亚洲美女黄片视频| 内地一区二区视频在线| 亚洲精品色激情综合| 日日夜夜操网爽| 国产一区二区三区在线臀色熟女| 熟妇人妻久久中文字幕3abv| 亚洲黑人精品在线| 999久久久精品免费观看国产| 熟女人妻精品中文字幕| 男女午夜视频在线观看| 国产成人啪精品午夜网站| 久久中文看片网| 日日夜夜操网爽| 久久久精品欧美日韩精品| 99国产精品一区二区三区| 欧美黑人巨大hd| 一区二区三区激情视频| 午夜激情欧美在线| 国产一区二区在线观看日韩 | eeuss影院久久| 法律面前人人平等表现在哪些方面| 国产精品,欧美在线| 久久婷婷人人爽人人干人人爱| 亚洲精品乱码久久久v下载方式 | 国产亚洲精品一区二区www| 观看美女的网站| 网址你懂的国产日韩在线| 日韩高清综合在线| 不卡一级毛片| xxxwww97欧美| 婷婷六月久久综合丁香| 国产成人a区在线观看| 丰满乱子伦码专区| 搞女人的毛片| 俺也久久电影网| 日韩免费av在线播放| 99久久精品国产亚洲精品| 色噜噜av男人的天堂激情| 国产综合懂色| 一个人免费在线观看的高清视频| 国产毛片a区久久久久| 国模一区二区三区四区视频| 999久久久精品免费观看国产| 无人区码免费观看不卡| 91av网一区二区| 午夜久久久久精精品| 97超视频在线观看视频| 99久久99久久久精品蜜桃| 女人十人毛片免费观看3o分钟| 在线天堂最新版资源| 精品一区二区三区视频在线 | 国产在视频线在精品| 欧美午夜高清在线| www.熟女人妻精品国产| 欧美bdsm另类| 男人和女人高潮做爰伦理| 成人国产综合亚洲| 国产精品日韩av在线免费观看| 午夜久久久久精精品| 亚洲自拍偷在线| 一进一出抽搐动态| 午夜福利在线观看免费完整高清在 | 女同久久另类99精品国产91| 国产高清有码在线观看视频| 欧美乱码精品一区二区三区| 少妇的逼好多水| 国产久久久一区二区三区| 亚洲成人精品中文字幕电影| 久久久国产成人免费| 中文亚洲av片在线观看爽| 69av精品久久久久久| 91在线观看av| 精品乱码久久久久久99久播| 亚洲av不卡在线观看| 婷婷精品国产亚洲av在线| x7x7x7水蜜桃| 国产精品久久久人人做人人爽| 美女被艹到高潮喷水动态| 亚洲欧美一区二区三区黑人| 日韩精品中文字幕看吧| 男女视频在线观看网站免费| 久久精品国产亚洲av涩爱 | 99热精品在线国产| 黄片小视频在线播放| 亚洲在线观看片| 欧美性猛交╳xxx乱大交人| 欧美最新免费一区二区三区 | or卡值多少钱| 怎么达到女性高潮| 午夜免费观看网址| 国产成人啪精品午夜网站| 一区福利在线观看| 亚洲精品乱码久久久v下载方式 | 国内精品一区二区在线观看| 男人和女人高潮做爰伦理| 色在线成人网| 黑人欧美特级aaaaaa片| 制服丝袜大香蕉在线| 亚洲国产高清在线一区二区三| 麻豆成人午夜福利视频| 国产成人系列免费观看| 高潮久久久久久久久久久不卡| 国产精品精品国产色婷婷| 在线观看免费视频日本深夜| 午夜激情福利司机影院| 久久亚洲精品不卡| 麻豆一二三区av精品| 欧美激情在线99| 免费在线观看影片大全网站| 成熟少妇高潮喷水视频| 有码 亚洲区| 欧美不卡视频在线免费观看| 国产成人aa在线观看| eeuss影院久久| 99精品在免费线老司机午夜| 色播亚洲综合网| 亚洲成人久久性| 亚洲av电影不卡..在线观看| 成年女人永久免费观看视频| 婷婷精品国产亚洲av| 热99re8久久精品国产| 成人三级黄色视频| 国产成人a区在线观看| 天美传媒精品一区二区| 1000部很黄的大片| 欧美另类亚洲清纯唯美| 久久精品综合一区二区三区| 黄色日韩在线| 午夜激情欧美在线| 午夜免费观看网址| 国产成+人综合+亚洲专区| 久久久久九九精品影院| 精品久久久久久,| 高潮久久久久久久久久久不卡| 最近最新中文字幕大全免费视频| 欧美一区二区精品小视频在线| 法律面前人人平等表现在哪些方面| 亚洲av日韩精品久久久久久密| 在线观看66精品国产| 国产视频内射| 中文字幕人妻丝袜一区二区| 日韩国内少妇激情av| 国产真实乱freesex| 热99在线观看视频| 9191精品国产免费久久| 日韩欧美精品免费久久 | 精品免费久久久久久久清纯| 国产高清视频在线播放一区| 国产精品 欧美亚洲| 天天添夜夜摸| 欧美日韩黄片免| 熟女少妇亚洲综合色aaa.| 亚洲无线在线观看| 熟女电影av网| 国产v大片淫在线免费观看| 有码 亚洲区| 欧美最新免费一区二区三区 | 亚洲天堂国产精品一区在线| 国产一区二区三区在线臀色熟女| 一区二区三区激情视频| 人妻久久中文字幕网| 久久久国产精品麻豆| 亚洲中文字幕日韩| 色综合欧美亚洲国产小说| 丰满乱子伦码专区| 熟女电影av网| 婷婷丁香在线五月| 丰满乱子伦码专区| 亚洲国产高清在线一区二区三| 99久久综合精品五月天人人| АⅤ资源中文在线天堂| 国产伦一二天堂av在线观看| 日本 欧美在线| 精品国产超薄肉色丝袜足j| 精品欧美国产一区二区三| 中文字幕av成人在线电影| 别揉我奶头~嗯~啊~动态视频| 伊人久久大香线蕉亚洲五| 非洲黑人性xxxx精品又粗又长| 国产精品综合久久久久久久免费| 夜夜夜夜夜久久久久| 午夜福利欧美成人| 黄色丝袜av网址大全| 国产黄a三级三级三级人| 香蕉久久夜色| 欧美xxxx黑人xx丫x性爽| 欧美日韩黄片免| 美女高潮的动态| www.色视频.com| 国产精品野战在线观看| 成人午夜高清在线视频| 国产精品影院久久| 午夜久久久久精精品|