• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coupled Reaction/Distillation Process for Hydrolysis of Methyl Acetate*

    2010-02-14 08:25:56ZHAOSuying趙素英HUANGJingzhao黃鏡釗WANGLiangen王良恩andHUANGGuoqiang黃國強

    ZHAO Suying (趙素英)**, HUANG Jingzhao (黃鏡釗) WANG Liang’en (王良恩) and HUANG Guoqiang (黃國強)

    1 College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002, China

    2 National Engineering Research Center for Distillation Technology (NERCDT), Tianjin 300072, China

    1 INTRODUCTION

    Methyl acetate (MA) is a byproduct in the industry of polyvinyl alcohol (PVA) and purified terephthalic acid (PTA). In order to obtain more valuable compound, MA is usually hydrolyzed to methanol (MeOH) and acetic acid (HAc), which are recycled to the production process of PVA or PTA. The conventional hydrolysis process contains a fix-bed reactor and four separation columns [1]. The hydrolysis reaction is carried out in the fixed-bed reactor catalyzed by ion exchange resin. Limited with a equilibrium constant ~0.14 at 25 °C, the hydrolysis ratio is relatively low (~23%), resulting in a large amount of recirculation [2]. Furthermore, in order to deal with the azeotropes of methyl acetate-methanol and methyl acetate-water existing in the system, a complex separation process required 4 columns is introduced. A number of improved processes have been developed to overcome the disadvantages mentioned above [3-6]. Reactive distillation, a process that combines reaction and separation together, is an attractive alternative process and it gives clear advantages for systems with small equilibrium constant. Fuchigami [7] proposed a reactive distillation configuration with total reflux on the top and bottom product withdrawal for the hydrolysis process.The reactive zone placed in the mid-section is packed with catalyst which consists of ion exchange resin and polyethylene powder. With a molar ratio of water to methyl acetate (RW/MA) more than 8, a nearly complete conversion (~99%) can be achieved. However, owing to the large amount of excess water, the concentration of acetic acid in the hydrolysate is so low that it cannot be accepted by PVA and PTA factory. Xiao et al. [8]proposed replacing the fixed-bed reactor by a catalytic distillation column to achieve 56% MA conversion as twice that of fixed-bed reactor technology. Wang et al.[9] reported an industrial application of catalytic distillation for MA hydrolysis with 56% conversion. The mixture of MA and water was fed in the top of catalytic distillation column, and the hydrolysate was withdrawn from the bottom. MA recycle ratio was reduced with the raise of hydrolysis ratio in the two process mentioned above, yet the separation problem of the azeotrope MA-MeOH still cannot be solved.

    Moreover, due to the use of heterogeneous catalyst, typically strong acidic cation ion exchanger resin in the hydrolysis process, there must be some internal equipments to place catalyst in the reactive distillation column [10-13]. Three additional distillation columns are still needed in order to separate the hydrolysate. A new process which consists of a fixed-bed reactor for hydrolysis and a conventional distillation column for separation was developed in this paper. In this process,MeOH is withdrawn from the side of the column and HAc from the bottom of the column. Feasibility of the process was evaluated and the optimal technology conditions were obtained through experiment and simulation.

    2 EXPERIMENTAL

    A lab-scale experiment was carried out to study the coupled process. The experimental schematic diagram is shown in Fig. 1.

    Methyl acetate and SK-1A ion exchanger resin catalyst used in the experiment were supplied by the Fujian Spinning and Chemical Fiber Group Company and the Mo-Ti stainless steel θ shape packing by Tianjin University.

    The concentration of acetic acid in samples was measured by acid-base titration while those of MA and methanol were measured by a VARIAN CP-3800

    Figure 1 The schematic diagram of experimental setup1—deionized water container; 2—constant flow pump; 3—laminar current pump; 4—methyl acetate container; 5—flask;6—thermometer; 7—standby mouth; 8—bottom outlet; 9—outlet pump; 10—bottom product container; 11—fixed-bed reactor; 12—flowmeter; 13—condenser; 14—packed distillation column; 15—side product container

    GC equipped with a 30 m×0.25 mm XP-1701 capillary column and hydrogen flame ionization detector.The GC conditions were: injector temperature 200 °C,detector temperature 250 °C and a stepwise column temperature. The initial column temperature was 50°C for 3 min, heated up to 120 °C at 15 °C·min-1, and then held for 1 min.

    3 SIMULATION MODELING

    Simulations were performed using the Aspen Plus?(Aspen Technology Inc., Aspen Plus?, Version 10.1) software package. The distillation unit was modeled using the RadFrac model in Aspen Plus?. It uses the equilibrium stage model, also called the MESH model, and consists of a set of nonlinear equations to represent material balance, vapor-liquid equilibrium, mole fraction summation, and heat balance.The RPlug model, based on plug flow model, was used to model the fixed-bed reactor. The reactions in the reactor were based on power-law kinetics.

    3.1 Physical equilibrium

    An important consideration in distillation simulation is the choice of physical equilibrium model and the ability to reliably predict multicomponent vaporliquid equilibrium (VLE) and liquid-liquid equilibrium (LLE). Reliable VLE and LLE are needed to establish distillation boundaries and to determine if and where azeotropes and phase separation occur.Several equations can be used to model methyl acetate-methanol-water-acetic acid system such as Van Laar, NRTL, UNIQUAC. Dirk-Faitakis [14] recommended NRTL model. Taking the non-ideality of the vapor phase caused by dimerization of acetic acid into account, Hayden-O’Connell(HOC) method was chosen. Therefore, the NRTL-HOC property method was used in this work because of the presence of high concentration of acetic acid.

    Binary interaction parameters were taken from Aspen Plus?data banks. Table 1 summarizes the interactive parameters used in vapor-liquid equilibrium calculation.

    It was reported that methyl acetate-methanol system exhibits an azeotrope with minimum boiling point at 53.5 °C and 0.6618 mole fraction methyl acetate in the vapor at 101.32 kPa [15]. Methyl acetate-water exhibits a homogeneous azeotrope and also displays a miscibility gap in the region at ambient pressure.Besslinget al. [16] reported a minimum boiling azeotrope at 0.92 mole fraction methyl acetate at temperature of 56.1 °C. Azeotropes predicted by NRTL-HOC model atP=101.3 kPa are shown in Table 2.

    Table 1 Summary of NRTL binary interaction parameters used in the prediction of equilibrium data

    Table 2 Azeotropes predicted by Aspen Plus? using NRTL-HOC model

    3.2 Reaction kinetics

    The hydrolysis of methyl acetate is a reversible reaction with the following expression:

    The equilibrium constant of this reaction is 0.15 at 55 °C. According to the reaction mechanism the pseudohomogeneous reaction kinetics can be expressed as:

    A detailed study of this reaction has been done in our previous work [17] and the forward and reverse reaction rate constant (k+andk-, respectively ) can be expressed by following equations.

    Forward:ThecatC′ in Eq. (2) was 7.8×105g·m-3(catalyst mass/reaction liquid) in this experiment. And this kinetics equation was verified by experiments.

    4 RESULTS AND DISCUSSION

    4.1 Simulation of coupled reactor/column process

    After confirmed the physical equilibrium and reaction kinetics, the continuous reaction and distillation process shown in Fig. 1 can be simulated. The hydrolysate distillation column consists of a 20 stages column with none condenser and a partial reboiler. The height of packed section of the experimental column is 1.6 m. According to the manufacturer, one meter θ shape packing equals 12 theoretical stages, so the theoretical stages of packed section is 20 including reboiler.Compared the results of simulation with experimental data in the next part, 20 theoretical stages is suitable.The side product location is 0.9 m from the bottom of the column, thus the stage is 11. In order to meet demands of MeOH mass concentration of less than 0.5%in bottom product in the PTA and PVA plants, we set a design value of 0.4%.RL/Fof 4.5 andRW/MAof 5.0 are feasible parameters obtained by several simulations.Other parameters are the same as the experimental data. All the parameters for the base case simulation are given in Table 3. All feed streams enter at 25 °C.

    The mass basis distribution in the hydrolysate distillation column is shown in Figs. 2 and 3. Fig. 2 indicates the methanol concentrations in vapor phase at 6th-14th stages are more than 0.8 with less than 0.15 water, 0.03HAc and rare MA. That means 6th-14th stages are the feasible locations for side withdrawal and the side product is readily to be refined by simple distillation to attain high purity methanol. In this way the separation problem of the azeotrope MA-MeOH has been solved. The bottom product only composes of acetate acid and water. The mass concentration of acetic acid is higher than 40% and meets the requirement of PTA plant.

    Figure 2 Vapor profiles in the hydrolysate separation columnMEOH; HAc; MA; Water

    Figure 3 Liquid profiles in the hydrolysate separation columnMEOH; HAc; MA; Water

    Table 3 Parameters used in the simulations

    Table 4 The results of experiment and simulation (mass fraction)

    4.2 Experimental verification

    The results of the experiment and simulation are compared in Table 4. Here, the experimental value ofRSP/Fwere adopted by simulation. As shown in the table,most of the side product is composed of more than 80%(by mass) methanol(xSP-MeOH) and less than 2% (by mass)MA(xSP-MA), which is readily to get >96% (by mass)methanol in the following distillation. At the same time, the mass concentration of the HAc in the bottom(xW-HAc) is more than 46%, which satisfied the requirement in the PVA manufacture. The experimental results agree with those predicted by simulation. Thus,the simulation model can be used to discuss the influence of different parameters on the process.

    4.3 Feasible technology conditions

    RW/MAandRL/Fare the most important parameters in this process. Their value decide whether MA can be hydrolyzed completely or not. Simulation work has been done to study the effect ofRL/Fon the side product, whileRW/MAis kept constant. As shown in Figs. 4 and 5, the increase ofRL/Fwill raise MeOH concentration in the side product and reduce MA impurity whenRW/MAis 4 and 5. Fig. 5 shows that there is a critical value ofRL/F. Below it, MA in the side product is quite high, which means that MA is not hydrolyzed completely. Above it, MA is near zero, indicating about 100% conversion of MA. The critical value is 3 atRW/MA=5.0 and about 4.5 atRW/MA=4.0. Attentions must be paid that atRW/MA=3.0 there always contains a large amount of MA in the side product no matter how muchRL/Fis. It can be predicted that the critical value will further decrease if a largerRW/MAis provided. But the acid concentration in the bottom will decrease. Proper operation conditions can be chosen with the specification of the manufacturer. Under conditions thatRW/MA=4.0-5.0 andRL/Fabove critical value, more than 80% (by mass) MeOH in the side product and more than 46% (by mass) HAc in the bottom can be obtained (Fig. 6).

    Figure 4 Effect of RL/F on MeOH concentration inside productRW/MA: ■ 3; ● 4; ▲ 5

    Figure 5 Effect of RL/F on MA concentration in side product RW/MA: ■ 3; ● 4; ▲ 5

    In the simulation mentioned above, a Design specs-Vary was set, which varied the amount of side product to keep MeOH mass concentration <0.4% in the bottom. At the sameRW/MA, the volume of side product decreases with the increase ofRL/F. TakingRW/MA=4.0 for example, theRSP/Fchanges from 0.68 to 0.57, whileRL/Fchanges from 2 to 9. Because of the decrease ofRSP/F, the quantity of water in the side product reduces. On consequence, the concentration of HAc in the bottom product decreases with the increase ofRL/Fwhen the MA is totally hydrolyzed.

    Figure 6 Effect of RL/F on HAc concentration inbottom productRW/MA: ■ 3; ● 4; ▲ 5

    5 SUPERIORITIES OF THIS PROCESS

    A further simulation was carried out to examine the energy consumption of the proposed process. A simple distillation column was added to purify methanol. As shown in Fig. 7, the side product is distillated to get methanol with high purity and the bottom product is sent back to fixed-bed reactor. Process flow diagram (PFD) of the catalytic distillation process is shown in Fig. 8. This technology [18, 19] has industrialized in several PTA and PVA plants. Ref. [19] describes the process in details.

    Based on data given by a certain petrochemical corporation, energy consumption was compared between this process and the catalytic distillation one(the old process). The mass compositions of the feed MA stream are as follows: MA 94.625%, MeOH 0.625%,and water 3.75%. The purity specifications that the HAc in the bottom equals to 46% (by mass) and product MeOH amounts to 96% (by mass) are required.

    The two processes were both simulated by Aspen plus based on the thermodynamics and kinetics which have been discussed earlier. The operation conditions for catalytic column are: the volume ratio of reflux to MA feed, 3.0, and the molar ratio of H2O to MA feed,4.0. The catalytic column can be simulated using these data by the model introduced by Wuet al. [20]. The energy consumption of other distillation columns can be calculated easily according to separation requirements. The energy consumptions of the main equipments of the two processes are summarized in Tables 5 and 6,respectively.

    Figure 8 PFD of the catalytic distillation process

    Table 5 The energy consumptions of the main equipments of the old process (kW)

    Table 6 The energy consumptions of the main equipments of the new process (kW)

    Obviously the new process have saved a main equipment by comparing Figs. 7 and 8. The MA-MeOH separation column is not needed in which the side-withdraw of the hydrolysate distillation column can solve the separation problem of the azeotrope MA-MeOH. Table 5 shows that the sum of energy consumptions of fixed-bed and hydrolysate distillation column in the new process is 747.81 kW. It is much smaller than that of CD column and hydrolysate distillation column of 1222.31 kW in the old process. As known, MA hydrolyzes with water in liquid phase [21].But MA is vaporized in the reactive distillation zone of the CD column. Thus, the reflux quantity on the top of the CD column needs to be increased to promote reaction. More reflux quantity, more energy consumption. The energy consumption of MeOH distillation column are also reduced greatly as shown in Table 6.In the old process, extra water enters on the top of the MA-MeOH distillation column to extract MeOH from MA, so methanol concentration is much lower than that of the side product in the new process. The vapor feeding used in the new process also saves a lot of energy. The energy consumption gap between the new and the old is up to 47.6%. Therefore, no matter in the capital investment or in the operation cost, the new process takes every superiority.

    6 CONCLUSIONS

    Both simulation and experiment have proven that MA can be hydrolyzed completely in the coupled system of fix-bed reactor and distillation column with vapor side product. However, RW/MAshould be greater than 3.0 and RL/Fabove the critical value at every RW/MA. Under the conditions that RW/MA=4.0-5.0 and RL/Fabove the critical value the side product will contain more than 80% (by mass) MeOH and less than 2% (by mass) MA, while the bottom will contain more than 46% (by mass) HAc. Only a simple column is needed to attain MeOH with high purity. Compared with the catalytic distillation process we proposed before, this process can save 47.6% of energy consumption and a distillation column.

    NOMENCLATURE

    Ciconcentration of component i, mol·m-3

    Eaapparent activation energy, kJ·mol-1

    k rate constant, m6·mol-1·s-1·g-1

    k0pre-exponential factor, m6·mol-1·s-1·g-1

    R universal gas constant, J·mol-1·K-1

    RL/Fdistillate to feed MA volume ratio, m3·m-3

    RSP/Fvolume ratio of side product to feed MA, m3·m-3

    RW/MAmolar feed ratio of water to methyl acetate, mol·mol-1

    r reaction rate, mol·s-1·m-3

    xSP-HAcmass concentration of acetate acid in the side product

    xSP-MAmass concentration of methyl acetate in the side product xSP-MeOHmass concentration of methanol in the side product

    xW-HAcmass concentration of acetate acid in the bottom product

    xW-MeOHmass concentration of methanol in the bottom product

    Superscripts

    + forward reaction

    - reverse reaction

    Subscripts

    az azeotrope cat catalyst

    1 Ma, Y.G., Mou, C.G., Wu, S.H., Technology of PVA Production, Textile Industry Press, Beijing (1986). (in Chinese)

    2 Wang, C.X., “Study on hydrolysis of methyl acetate in a catalytic distillation column”, Chin. J. Chem. Eng., 9, 382-387 (2001).

    3 Pan, Y.B., Li, W.X., Shen, P.D., Wan, H., Han, M.J., Guan, G.F.,“Study on hydrolysis of methyl acetate from production of purified terephthalic acid by catalytic distillation”, Chem. Reac. Eng. & Tech.,25, 132-136 (2009). (in Chinese)

    4 Wang, J.F., Ge, X.D., Wang, Z.W, Jin, Y., “Experimental studies on the catalytic distillation for hydrolysis of methyl acetate”, Chem.Eng. Technol., 24, 155-159 (2001).

    5 Sander, S., Flisch, C., “Methyl acetate hydrolysis in a reactive divided wall column”, Chem. Eng. Res. Des., 85,149-154 (2007).

    6 Yuan, P.Q., Chen, Z.M., Liu, T., Yuan, W.K., “Hydrolysis of methyl acetate under near or supercritical condition”, Chem. J. Chinese U.,24, 1241-1245 (2003). (in Chinese)

    7 Fuchigami, Y., “Hydrolysis of methyl acetate in distillation column packed with reactive packing of ion exchange resin”, J. Chem. Eng.Jpn., 23, 354-359 (1990).

    8 Xiao, J., Liu, J.Q., Li, J.T., Jiang, X.H., Zhang, Z.B., “Increase MeOAc conversion in PVA production by replacing the fixed bed reactor with a catalytic distillation column”, Chem. Eng. Sci., 56, 6553-6562 (2001).

    9 Wang, L.E., Su, W.R., Zhao, Z.S., Liu, J.Q., Wu, Y.X., Shen, J.N., Qiu, T.,“Industrial application of the catalytic distillation technique in hydrolysis of methyl acetate”, Viny. Commu., 21, 10-12 (2001). (in Chinese)

    10 Wu, Y.X., Wang, L.E., Zhao, Z.S., Tan, T.E., “Mass transfer model for catalyst capsule in catalyst distillation (I) mathematical model”,CIESC J., 53, 503-507 (2002). (in Chinese)

    11 Wu, Y.X., Wang, L.E., Zhao, Z.S., Tan, T.E., “Mass transfer model for catalyst capsule in catalyst distillation (II) measurement and calculation of effectiveness factor”, CIESC J., 53, 508-512 (2002). (in Chinese)

    12 Kim, K., Roh, H.D., “Reactive distillation process and equipment for the production of acetic acid and methanol from methyl acetate hydrolysis”, U.S. Pat., .5970770 (1998).

    13 Moritz, P., Hasse, H., “Fluid dynamics in reactive distillation packing Katapak?-S”, Chem. Eng. Sci., 54, 1367-13741 (1999).

    14 Dirk-Faitakis, C.B., An, W.Z., Lin, T.B., Chuang, K.T., “Catalytic distillation for simultaneous hydrolysis of methyl acetate and etherification of methanol”, Chem. Eng. Process., 48, 1080-1087 (2009).

    15 Gmehling, J., B?lts, R., “Azeotropic data for binary and ternary systems at moderate pressures”, J. Chem. Eng. Data., 41, 202-209 (1996).

    16 Bessling, B., L?ning, J.M., Ohligschl?ger, A., Schembecker, G.,Sundmacher, K., “Investigations on the synthesis of methyl acetate in a heterogeneous reactive distillation process”, Chem. Eng. Technol.,21, 393-400 (1998).

    17 Wu, Y.X., Zhao, Z.S., Wang, L.E., Zhao, S.Y., “Kinetics of hydrolysis of methyl acetate and the effectiveness factor of catalyst capsule”,Eng. Chem. Meta., 20, 241-246 (1999). (in Chinese)

    18 Wang, L.E., Liu, J.Q., Su, W.R., Zhao, Z.S., Zheng, W.H., Zhang,J.L., “Catalytic distillation process for methyl acetate hydrolysis and its equipments”, China Pat., 97101306.3 (1997).

    19 Wang, L.E., Zhao, Z.S., Qiu, T., Zhao, S.Y., Zheng, H.D., Qiu, T.R.,Su, W.R., Xie, Y.H., Luo, D.H., “Byproduct methyl acetate hydrolysis process and its equipments in the industry of PTA”, China Pat.,200610124556.7 (2006).

    20 Wu, Y.X., Tan, T.E., Wang, L.E., Zhao. Z.S., “Simulation of the catalytic distillation process for hydrolysis of methyl acetate”, Eng.Chem. Meta., 21, 24-29 (2000). (in Chinese)

    21 P?pken, T., G?tze, L., Gmehling, J., “Reaction kinetics and chemical equilibrium of homogeneously and heterogeneously catalyzed acetic acid esterification with methanol and methyl acetate hydrolysis”, Ind.Eng. Chem. Res., 39, 2601-2611 (2000).

    日韩,欧美,国产一区二区三区| 国产av精品麻豆| 丝袜在线中文字幕| 国产欧美日韩一区二区三区在线| 久久精品国产亚洲av天美| 久久久久久久大尺度免费视频| 丝袜喷水一区| 免费观看av网站的网址| 亚洲成国产人片在线观看| 日本av手机在线免费观看| 国产精品熟女久久久久浪| 久久人人97超碰香蕉20202| 另类亚洲欧美激情| 亚洲欧美一区二区三区黑人 | 少妇人妻 视频| 色哟哟·www| 大香蕉97超碰在线| 男女午夜视频在线观看 | 午夜福利影视在线免费观看| 成年人午夜在线观看视频| 激情视频va一区二区三区| 另类精品久久| 男女午夜视频在线观看 | www.熟女人妻精品国产 | 久久国产精品男人的天堂亚洲 | 色哟哟·www| 国语对白做爰xxxⅹ性视频网站| 国产欧美日韩一区二区三区在线| 日韩,欧美,国产一区二区三区| av在线观看视频网站免费| 高清av免费在线| av电影中文网址| 国产欧美日韩一区二区三区在线| 女人久久www免费人成看片| 日本与韩国留学比较| 夫妻午夜视频| 亚洲欧美日韩另类电影网站| 日韩在线高清观看一区二区三区| 国产精品 国内视频| 大码成人一级视频| 女性被躁到高潮视频| 亚洲精品一区蜜桃| 国产av码专区亚洲av| 视频区图区小说| xxxhd国产人妻xxx| 18禁观看日本| 国产白丝娇喘喷水9色精品| 国产精品一国产av| 久久青草综合色| 国产亚洲一区二区精品| 国产一区二区三区综合在线观看 | 亚洲少妇的诱惑av| 久久精品人人爽人人爽视色| www.色视频.com| 黄色毛片三级朝国网站| 亚洲国产精品国产精品| 午夜福利在线观看免费完整高清在| 少妇人妻久久综合中文| 色婷婷久久久亚洲欧美| 久久久精品免费免费高清| 在线看a的网站| 精品久久蜜臀av无| 国产成人aa在线观看| 成年动漫av网址| 最近最新中文字幕大全免费视频 | 国产精品不卡视频一区二区| 如日韩欧美国产精品一区二区三区| 成人影院久久| 国产无遮挡羞羞视频在线观看| 亚洲精华国产精华液的使用体验| 国产 一区精品| 青青草视频在线视频观看| 人妻系列 视频| 午夜免费男女啪啪视频观看| 欧美日韩视频精品一区| 久久韩国三级中文字幕| 国产深夜福利视频在线观看| 亚洲av电影在线进入| 视频区图区小说| 国产成人a∨麻豆精品| 精品99又大又爽又粗少妇毛片| 九草在线视频观看| 亚洲av男天堂| 大香蕉97超碰在线| 亚洲人成网站在线观看播放| 欧美亚洲 丝袜 人妻 在线| 狂野欧美激情性xxxx在线观看| 一级黄片播放器| 99久久综合免费| 9热在线视频观看99| 男女无遮挡免费网站观看| 亚洲欧美一区二区三区黑人 | 亚洲国产精品成人久久小说| 熟女av电影| 免费人妻精品一区二区三区视频| 最近中文字幕高清免费大全6| 亚洲精品中文字幕在线视频| 久久国产精品大桥未久av| 亚洲伊人久久精品综合| 久久久久网色| 欧美激情 高清一区二区三区| 国产精品成人在线| 久久韩国三级中文字幕| 在线观看一区二区三区激情| 亚洲激情五月婷婷啪啪| av在线播放精品| 国产深夜福利视频在线观看| 成人毛片60女人毛片免费| 国产亚洲欧美精品永久| 建设人人有责人人尽责人人享有的| 精品少妇黑人巨大在线播放| 婷婷色综合大香蕉| 又黄又粗又硬又大视频| 久热这里只有精品99| 国产极品天堂在线| 啦啦啦视频在线资源免费观看| 久久人人97超碰香蕉20202| 亚洲av电影在线进入| 最近最新中文字幕免费大全7| 我要看黄色一级片免费的| 巨乳人妻的诱惑在线观看| 国产免费一级a男人的天堂| 大片电影免费在线观看免费| 另类精品久久| 一级毛片黄色毛片免费观看视频| 中文字幕最新亚洲高清| 久久精品国产a三级三级三级| 免费av不卡在线播放| 桃花免费在线播放| 秋霞在线观看毛片| 久久精品人人爽人人爽视色| 国产男女内射视频| 成人二区视频| 成年美女黄网站色视频大全免费| 国国产精品蜜臀av免费| 在线亚洲精品国产二区图片欧美| 亚洲欧美精品自产自拍| 夫妻午夜视频| 热re99久久精品国产66热6| 精品酒店卫生间| 国产一区二区在线观看av| 最后的刺客免费高清国语| 乱码一卡2卡4卡精品| 欧美日韩一区二区视频在线观看视频在线| 日本猛色少妇xxxxx猛交久久| 亚洲五月色婷婷综合| 日韩成人伦理影院| 亚洲综合色惰| 麻豆乱淫一区二区| 亚洲av电影在线进入| 在线观看三级黄色| 建设人人有责人人尽责人人享有的| 日韩,欧美,国产一区二区三区| 日韩制服骚丝袜av| 少妇 在线观看| 捣出白浆h1v1| 大片电影免费在线观看免费| 久久久久久人人人人人| 满18在线观看网站| 久久97久久精品| 高清在线视频一区二区三区| freevideosex欧美| 精品少妇内射三级| 少妇的逼水好多| 91aial.com中文字幕在线观看| 国产免费视频播放在线视频| 80岁老熟妇乱子伦牲交| 亚洲美女视频黄频| 欧美日韩av久久| 亚洲欧美成人精品一区二区| 国产欧美日韩综合在线一区二区| 在线观看美女被高潮喷水网站| 一级黄片播放器| 国产精品人妻久久久久久| av网站免费在线观看视频| 亚洲国产精品一区三区| 老女人水多毛片| 亚洲欧美一区二区三区黑人 | 激情视频va一区二区三区| 亚洲中文av在线| 成人国语在线视频| 黄色 视频免费看| 欧美最新免费一区二区三区| 啦啦啦在线观看免费高清www| 狂野欧美激情性bbbbbb| 十八禁网站网址无遮挡| 国产男人的电影天堂91| 18禁动态无遮挡网站| 夫妻性生交免费视频一级片| 黑人高潮一二区| 最近2019中文字幕mv第一页| 精品酒店卫生间| 久久久久视频综合| 青春草国产在线视频| 五月开心婷婷网| 十分钟在线观看高清视频www| 国产精品嫩草影院av在线观看| 赤兔流量卡办理| 久久精品久久久久久噜噜老黄| 国产精品久久久久成人av| 18禁国产床啪视频网站| 成人国语在线视频| 国产精品一二三区在线看| 国产白丝娇喘喷水9色精品| 自拍欧美九色日韩亚洲蝌蚪91| 一边摸一边做爽爽视频免费| 女人久久www免费人成看片| 国产男人的电影天堂91| 亚洲精品456在线播放app| 国产精品久久久久久久电影| 国产精品一区二区在线不卡| 免费黄网站久久成人精品| 久久99一区二区三区| 丰满迷人的少妇在线观看| 久久精品国产a三级三级三级| 国产永久视频网站| 9191精品国产免费久久| 成人午夜精彩视频在线观看| 美女国产视频在线观看| 一边摸一边做爽爽视频免费| 在线看a的网站| xxxhd国产人妻xxx| 另类亚洲欧美激情| 少妇人妻 视频| 最后的刺客免费高清国语| 午夜影院在线不卡| 免费观看av网站的网址| 啦啦啦在线观看免费高清www| 美女国产高潮福利片在线看| 久久久国产欧美日韩av| 99国产综合亚洲精品| 亚洲欧洲精品一区二区精品久久久 | 精品国产国语对白av| 精品一品国产午夜福利视频| 七月丁香在线播放| 晚上一个人看的免费电影| 国产成人精品久久久久久| 黑人欧美特级aaaaaa片| 亚洲图色成人| 香蕉国产在线看| 人妻人人澡人人爽人人| 亚洲久久久国产精品| 女人精品久久久久毛片| 亚洲国产欧美日韩在线播放| 高清黄色对白视频在线免费看| 两个人看的免费小视频| 丁香六月天网| 哪个播放器可以免费观看大片| 亚洲四区av| 国产一区二区三区综合在线观看 | 97超碰精品成人国产| 亚洲欧洲国产日韩| 麻豆精品久久久久久蜜桃| 国产高清不卡午夜福利| 青青草视频在线视频观看| 巨乳人妻的诱惑在线观看| av福利片在线| 人妻系列 视频| 狠狠婷婷综合久久久久久88av| 人人澡人人妻人| 国产日韩欧美在线精品| 亚洲伊人久久精品综合| 中文字幕制服av| 男女边摸边吃奶| 精品久久久精品久久久| 岛国毛片在线播放| 久久综合国产亚洲精品| 人妻 亚洲 视频| 69精品国产乱码久久久| 一边摸一边做爽爽视频免费| 国产成人精品久久久久久| 日日爽夜夜爽网站| a级片在线免费高清观看视频| 一级毛片 在线播放| 亚洲av综合色区一区| 亚洲国产精品一区二区三区在线| 国产免费一区二区三区四区乱码| 久久鲁丝午夜福利片| 国产成人精品婷婷| 中文字幕制服av| 午夜日本视频在线| 亚洲综合精品二区| 成人亚洲精品一区在线观看| 9色porny在线观看| 80岁老熟妇乱子伦牲交| 国产成人精品婷婷| 国产成人精品一,二区| 日本wwww免费看| 欧美3d第一页| 婷婷色麻豆天堂久久| 国产亚洲精品久久久com| 成年人免费黄色播放视频| 97在线视频观看| 丝袜喷水一区| 我的女老师完整版在线观看| 精品人妻一区二区三区麻豆| www.色视频.com| 晚上一个人看的免费电影| 国产黄色免费在线视频| 亚洲欧美日韩另类电影网站| 精品少妇内射三级| 精品一品国产午夜福利视频| 欧美激情 高清一区二区三区| 女性生殖器流出的白浆| 菩萨蛮人人尽说江南好唐韦庄| 狂野欧美激情性bbbbbb| 日韩成人伦理影院| 久久久久视频综合| 三上悠亚av全集在线观看| 天堂中文最新版在线下载| 久久影院123| 免费黄网站久久成人精品| 亚洲av欧美aⅴ国产| 黄色毛片三级朝国网站| 久久毛片免费看一区二区三区| 18禁裸乳无遮挡动漫免费视频| 丰满饥渴人妻一区二区三| 亚洲一码二码三码区别大吗| 91精品国产国语对白视频| 考比视频在线观看| 边亲边吃奶的免费视频| 丝袜美足系列| 少妇被粗大的猛进出69影院 | 一本色道久久久久久精品综合| 亚洲国产精品成人久久小说| 亚洲一码二码三码区别大吗| 中文乱码字字幕精品一区二区三区| 99视频精品全部免费 在线| 91精品国产国语对白视频| 国产一区二区三区综合在线观看 | 色网站视频免费| 啦啦啦视频在线资源免费观看| 亚洲在久久综合| 亚洲情色 制服丝袜| 亚洲精华国产精华液的使用体验| 在线观看国产h片| 两个人免费观看高清视频| 2018国产大陆天天弄谢| 人妻 亚洲 视频| 九色成人免费人妻av| 午夜影院在线不卡| 少妇的逼好多水| 精品一区二区三卡| 啦啦啦在线观看免费高清www| 国产高清三级在线| 免费不卡的大黄色大毛片视频在线观看| 亚洲图色成人| av免费观看日本| 中文乱码字字幕精品一区二区三区| 欧美+日韩+精品| 日本wwww免费看| 最近2019中文字幕mv第一页| 亚洲一区二区三区欧美精品| 少妇人妻精品综合一区二区| 只有这里有精品99| 久久精品夜色国产| 视频在线观看一区二区三区| 曰老女人黄片| 亚洲欧美精品自产自拍| 夜夜骑夜夜射夜夜干| 久久久久久久久久人人人人人人| 黄片播放在线免费| 成人综合一区亚洲| 大码成人一级视频| 日韩一区二区视频免费看| 一本色道久久久久久精品综合| 国产爽快片一区二区三区| 亚洲精品久久久久久婷婷小说| 国产精品熟女久久久久浪| 国产精品.久久久| 久久韩国三级中文字幕| 国产av精品麻豆| 国产av国产精品国产| 免费看光身美女| 国产精品一区二区在线不卡| 欧美激情国产日韩精品一区| 97在线视频观看| 日韩电影二区| www.熟女人妻精品国产 | 欧美国产精品一级二级三级| 国产成人精品一,二区| 国产精品人妻久久久影院| 最后的刺客免费高清国语| 亚洲国产日韩一区二区| 国产免费视频播放在线视频| 日本黄色日本黄色录像| 男男h啪啪无遮挡| 日韩熟女老妇一区二区性免费视频| 国产亚洲最大av| 久久久欧美国产精品| 日韩三级伦理在线观看| 国产又爽黄色视频| www.熟女人妻精品国产 | 丰满迷人的少妇在线观看| 熟女av电影| √禁漫天堂资源中文www| 午夜免费观看性视频| 一级毛片 在线播放| 飞空精品影院首页| 国产精品久久久久久久电影| 老司机影院成人| 亚洲精品美女久久av网站| 男女边吃奶边做爰视频| 国产日韩欧美在线精品| 菩萨蛮人人尽说江南好唐韦庄| 婷婷成人精品国产| 亚洲av国产av综合av卡| 久热久热在线精品观看| 丝袜人妻中文字幕| 啦啦啦啦在线视频资源| 亚洲精品久久久久久婷婷小说| 又黄又粗又硬又大视频| 制服丝袜香蕉在线| 美国免费a级毛片| 久久人妻熟女aⅴ| 国产1区2区3区精品| 午夜免费男女啪啪视频观看| xxxhd国产人妻xxx| 精品少妇黑人巨大在线播放| 91精品国产国语对白视频| 欧美人与善性xxx| 男女高潮啪啪啪动态图| 国产探花极品一区二区| 两个人看的免费小视频| www.av在线官网国产| 人人妻人人添人人爽欧美一区卜| 90打野战视频偷拍视频| 嫩草影院入口| 免费女性裸体啪啪无遮挡网站| 精品国产国语对白av| 午夜福利在线观看免费完整高清在| 老司机影院成人| 国产精品久久久久久久电影| 国产黄色视频一区二区在线观看| 亚洲国产精品一区二区三区在线| 欧美成人午夜精品| 国产永久视频网站| 婷婷成人精品国产| 一区二区三区精品91| 少妇人妻精品综合一区二区| 如日韩欧美国产精品一区二区三区| 国产精品一二三区在线看| 欧美日韩精品成人综合77777| 国产精品久久久久久精品古装| 最新中文字幕久久久久| 天天躁夜夜躁狠狠躁躁| 精品午夜福利在线看| 国精品久久久久久国模美| 两个人免费观看高清视频| 国产综合精华液| 亚洲性久久影院| 亚洲精品久久午夜乱码| 国产一区二区三区综合在线观看 | 日韩欧美一区视频在线观看| 大码成人一级视频| 国产不卡av网站在线观看| 精品一区在线观看国产| 亚洲国产日韩一区二区| 国精品久久久久久国模美| 亚洲成av片中文字幕在线观看 | 午夜福利网站1000一区二区三区| 国产 精品1| 亚洲第一区二区三区不卡| 亚洲精品日本国产第一区| 香蕉丝袜av| 欧美日韩国产mv在线观看视频| 制服丝袜香蕉在线| 五月天丁香电影| 久久免费观看电影| 亚洲欧美中文字幕日韩二区| 街头女战士在线观看网站| 久久久久国产精品人妻一区二区| 亚洲国产日韩一区二区| videossex国产| 女性生殖器流出的白浆| 热99国产精品久久久久久7| 人体艺术视频欧美日本| 亚洲欧洲精品一区二区精品久久久 | 欧美xxⅹ黑人| 亚洲av免费高清在线观看| 99精国产麻豆久久婷婷| 在现免费观看毛片| 免费观看在线日韩| 欧美日韩av久久| 国产成人精品久久久久久| 97精品久久久久久久久久精品| 精品国产一区二区三区久久久樱花| 美女内射精品一级片tv| 国产成人精品无人区| 综合色丁香网| 久久久久久久亚洲中文字幕| 少妇人妻 视频| 亚洲五月色婷婷综合| www.av在线官网国产| 国产成人精品婷婷| 十八禁高潮呻吟视频| 亚洲精品久久久久久婷婷小说| 一区二区三区乱码不卡18| 欧美日本中文国产一区发布| 国产成人a∨麻豆精品| 国产白丝娇喘喷水9色精品| 久久 成人 亚洲| 岛国毛片在线播放| a级毛片黄视频| 伊人亚洲综合成人网| 美女视频免费永久观看网站| 99香蕉大伊视频| tube8黄色片| 国产一区亚洲一区在线观看| 亚洲精品一二三| 一级毛片电影观看| 免费看不卡的av| av天堂久久9| 国产成人精品福利久久| 91精品国产国语对白视频| 天天操日日干夜夜撸| 曰老女人黄片| 国产女主播在线喷水免费视频网站| 婷婷成人精品国产| 久久精品久久久久久噜噜老黄| 美女中出高潮动态图| 色哟哟·www| 女人久久www免费人成看片| 精品国产国语对白av| 亚洲av中文av极速乱| 黄网站色视频无遮挡免费观看| 99热网站在线观看| 欧美精品高潮呻吟av久久| 亚洲情色 制服丝袜| 欧美激情国产日韩精品一区| 最新中文字幕久久久久| 乱码一卡2卡4卡精品| 丰满迷人的少妇在线观看| 午夜福利,免费看| 春色校园在线视频观看| 肉色欧美久久久久久久蜜桃| 久久精品久久久久久久性| av免费观看日本| 18禁观看日本| 久久久精品94久久精品| 少妇精品久久久久久久| 国产成人av激情在线播放| 成年人免费黄色播放视频| 亚洲国产色片| 国产极品天堂在线| 丝袜喷水一区| 色哟哟·www| 亚洲成色77777| 夜夜骑夜夜射夜夜干| 91aial.com中文字幕在线观看| 午夜精品国产一区二区电影| 免费久久久久久久精品成人欧美视频 | 另类亚洲欧美激情| 美女福利国产在线| 天堂中文最新版在线下载| 丝袜在线中文字幕| 99热网站在线观看| 亚洲性久久影院| av卡一久久| 最新的欧美精品一区二区| 女人被躁到高潮嗷嗷叫费观| 多毛熟女@视频| 亚洲,欧美,日韩| 成年人午夜在线观看视频| 2022亚洲国产成人精品| 日韩一区二区三区影片| 各种免费的搞黄视频| 人妻 亚洲 视频| 欧美日韩国产mv在线观看视频| 精品熟女少妇av免费看| 国产精品久久久久久精品古装| 亚洲国产av新网站| 久久av网站| 卡戴珊不雅视频在线播放| 婷婷色麻豆天堂久久| 欧美日韩亚洲高清精品| 日本猛色少妇xxxxx猛交久久| 久久av网站| 亚洲四区av| 亚洲,欧美精品.| 国产在视频线精品| 欧美日韩视频精品一区| 亚洲精品久久成人aⅴ小说| 欧美少妇被猛烈插入视频| kizo精华| 国产av国产精品国产| 亚洲精品自拍成人| 18禁动态无遮挡网站| 777米奇影视久久| 国产精品国产av在线观看| 国产免费视频播放在线视频| 男女免费视频国产| 国产爽快片一区二区三区| 黑人高潮一二区| 国产精品.久久久| 97精品久久久久久久久久精品| 亚洲欧洲国产日韩| 国产毛片在线视频| 在线观看免费高清a一片| 欧美亚洲 丝袜 人妻 在线| 欧美成人精品欧美一级黄| 欧美日韩成人在线一区二区| 丝袜在线中文字幕| 色婷婷av一区二区三区视频| 久久精品熟女亚洲av麻豆精品| 精品第一国产精品| 大话2 男鬼变身卡| 一级黄片播放器| 国产男人的电影天堂91| 亚洲国产精品999| 曰老女人黄片| 美女主播在线视频| 赤兔流量卡办理| 精品一区在线观看国产| 国产免费福利视频在线观看|