摘 要:本文以壓氣機(jī)轉(zhuǎn)子Rotor67為對(duì)象,開展了非軸對(duì)稱端壁造型對(duì)轉(zhuǎn)子內(nèi)部流動(dòng)及轉(zhuǎn)子性能影響的研究工作,著重分析了輪轂端壁區(qū)的二次流動(dòng)問題。分析結(jié)果表明:采用非軸對(duì)稱端壁可有效降低葉柵二次流損失,減小通道渦強(qiáng)度與范圍,提高壓氣機(jī)轉(zhuǎn)子效率,改善轉(zhuǎn)子出口總壓分布情況,具有很好的應(yīng)用前景。
關(guān)鍵詞:壓氣機(jī) 非軸對(duì)稱端壁 二次流 數(shù)值模擬
中圖分類號(hào):TH45文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1674-098X(2012)09(a)-0085-03
1 引言
壓氣機(jī)是航空發(fā)動(dòng)機(jī)的重要部件,其氣動(dòng)性能的好壞以及效率的高低直接影響著整臺(tái)發(fā)動(dòng)機(jī)的性能。Howell認(rèn)為,壓氣機(jī)端區(qū)的二次流渦系以及由此引發(fā)的損失可達(dá)壓氣機(jī)總損失的30%~50%[1],所以為了提高葉輪機(jī)械的整體性能,各種減小二次流流動(dòng)損失的方法應(yīng)運(yùn)而生,其中非軸對(duì)稱端壁造型法是近些年來一個(gè)新的研究熱點(diǎn)。
1981年,Koper FC等人首先研究了端壁造型在渦輪葉柵中的作用[2]。1994年,Rose提出了非軸對(duì)稱端壁成型渦輪靜葉柵的新概念[3],其利用凹凸曲面代替了原有軸對(duì)稱的端壁結(jié)構(gòu)。1999年,Rose及Gregory-Smith等人對(duì)非軸對(duì)稱端壁成型的渦輪葉柵進(jìn)行了數(shù)值模擬及實(shí)驗(yàn)研究[4~5],研究結(jié)果表明非軸對(duì)稱端壁能有效降低葉柵二次流及通道渦強(qiáng)度。隨后,英國的Durham大學(xué)和Rolls-Royce公司通過數(shù)值模擬及實(shí)驗(yàn)驗(yàn)證在這方面進(jìn)行了先驅(qū)性的、系統(tǒng)性的研究。在非軸對(duì)稱端壁造型技術(shù)成功應(yīng)用于渦輪之后,2002年,Hoeger等人研究了端壁造型對(duì)壓氣機(jī)中端壁流動(dòng)的影響[6],2008年,Harvey等借助于Rolls-Royce公司的跨音平面葉柵進(jìn)行了類似于渦輪的非軸對(duì)稱端壁造型[7],通過實(shí)驗(yàn)以及對(duì)多級(jí)軸流壓氣機(jī)的數(shù)值模擬分析,表明非軸對(duì)稱端壁對(duì)減弱壓氣機(jī)中的二次渦強(qiáng)度和流動(dòng)損失都有很好的效果。近年來,國內(nèi)一些專家學(xué)者也開始了這方面的工作,2005年,李國君等人闡述了一種非軸對(duì)稱端壁的造型方法[8],其利用三角函數(shù)構(gòu)建了非軸對(duì)稱的葉柵端壁型面,并通過求解三維時(shí)均可壓縮N-S方程,對(duì)構(gòu)建的具有非軸對(duì)稱端壁的跨音速直列葉柵進(jìn)行了數(shù)值研究。黃洪雁等采用數(shù)值模擬手段對(duì)幾種具有大折轉(zhuǎn)角渦輪葉柵內(nèi)的流動(dòng)情況進(jìn)行了研究[9],結(jié)果表明:在具有非軸對(duì)稱端壁的渦輪葉柵中,橫向壓力梯度不是促使通道渦形成的主要原因。高增珣等應(yīng)用NURBS曲面技術(shù)實(shí)現(xiàn)了渦輪非軸對(duì)稱端壁的參數(shù)化幾何造型[10],并以iSIGHT商業(yè)軟件為優(yōu)化設(shè)計(jì)平臺(tái),結(jié)合NUMECA軟件進(jìn)行數(shù)值模擬,構(gòu)建了非軸對(duì)稱端壁的氣動(dòng)優(yōu)化設(shè)計(jì)系統(tǒng)。
本文以跨音速軸流壓氣機(jī)轉(zhuǎn)子Rotor67為研究對(duì)象,對(duì)其葉片通道輪轂區(qū)域進(jìn)行了非軸對(duì)稱端壁造型,數(shù)值研究了其氣動(dòng)性能及內(nèi)部流場特性,初步獲得了非軸對(duì)稱端壁造型對(duì)跨音速軸流壓氣機(jī)轉(zhuǎn)子性能影響結(jié)果。
2 輪轂造型及數(shù)值模擬方法
通道中二次流形成主要是由葉片吸力面與壓力面的壓差所導(dǎo)致,而凸的流線曲率能夠加速流動(dòng),減小當(dāng)?shù)仂o壓,凹的流線曲率能夠減速流動(dòng),增加當(dāng)?shù)仂o壓,因此,將葉片壓力面?zhèn)鹊亩吮趦?nèi)輪轂處采用一定程度的上凸,葉片吸力面?zhèn)鹊亩吮趦?nèi)輪轂處采用一定程度的下凹,可以使得壓力面靜壓降低,吸力面靜壓升高,從而減小了壓力面與吸力面的壓差,可以達(dá)到減小二次流,進(jìn)而減小二次流損失的目的。
本文參照文獻(xiàn)[8]的造型方法,使用三角函數(shù)對(duì)rotor67內(nèi)輪轂端壁進(jìn)行造型,如圖1所示,即利用三角函數(shù)在半個(gè)周期內(nèi)的單調(diào)性、連續(xù)性,使內(nèi)輪轂型面在達(dá)到葉片壓力面?zhèn)葧r(shí)為波峰,在達(dá)到葉片吸力面?zhèn)葧r(shí)為波谷,以減小葉片吸力面與壓力面的壓差,達(dá)到減小二次流損失的目的。
利用商業(yè)CFD軟件數(shù)值模擬了軸對(duì)稱和非軸對(duì)稱輪轂的rotor67的流動(dòng)特性。數(shù)值計(jì)算采用Jameson的有限體積差分格式并結(jié)合Spalart-Allmaras湍流模型求解相對(duì)坐標(biāo)系下的三維雷諾平均Navier-Stokes方程,采用顯式四階Runge-Kutta法時(shí)間推進(jìn)以獲得定常解,為加速收斂,采用了多重網(wǎng)格法,局部時(shí)間步長和殘差光順等方法。采用H-I型網(wǎng)格,經(jīng)過調(diào)整,網(wǎng)格總量約為64萬,并具有良好的正交性。邊界條件給定如下:進(jìn)口給定總溫、總壓,采用軸向進(jìn)氣,出口給定背壓,壁面采用絕熱無滑移邊界條件。(如圖1)
3 計(jì)算結(jié)果分析
圖2對(duì)比了非軸對(duì)稱端壁結(jié)構(gòu)引入前后軸流壓氣機(jī)轉(zhuǎn)子的總性能特性,axisym metric表示軸對(duì)稱端壁造型,non-axisym metric表示非軸對(duì)稱端壁造型。圖中可以看出,與軸對(duì)稱輪轂相比,非軸對(duì)稱端壁結(jié)構(gòu)的峰值效率有一定程度提升,峰值效率提高0.5%左右。另外,計(jì)算得到的非軸對(duì)稱端壁造型的轉(zhuǎn)子喘點(diǎn)流量比軸對(duì)稱端壁造型小,可見非軸對(duì)稱端壁造型稍微擴(kuò)大了轉(zhuǎn)子的穩(wěn)定范圍。(如圖2)
圖3、圖4給出了最高效率工況下三個(gè)葉高截面密度和相對(duì)總溫的對(duì)比。圖中可以看出,在10%葉高截面處,即近輪轂端壁區(qū)域,非軸對(duì)稱端壁造型以后引起流動(dòng)參數(shù)變化較大,而在50%葉高截面,即葉片中部區(qū)域時(shí),非軸對(duì)稱端壁造型所帶來的影響已經(jīng)很大程度減弱,而到達(dá)80%葉高截面處,即近葉尖端部區(qū)域時(shí),非軸對(duì)稱端壁的相關(guān)流動(dòng)參數(shù)曲線已與軸對(duì)稱端壁曲線具有很好的貼合度,即已經(jīng)基本無影響。(如圖3圖4)
圖5給出了軸對(duì)稱端壁結(jié)構(gòu)與非軸對(duì)稱端壁結(jié)構(gòu)10%、50%、80%三個(gè)葉高截面的靜壓分布圖。從圖中可以看出,在10%葉高處,采用非軸對(duì)稱端壁以后,葉片壓力面靜壓降低,吸力面靜壓上升,達(dá)到了減少葉片吸力面與壓力面之間壓差的預(yù)期目的。因此,可以預(yù)測(cè)采用非軸對(duì)稱端壁后葉片通道內(nèi)的通道渦強(qiáng)度會(huì)減弱,進(jìn)而達(dá)到減小二次流損失的目的。(如圖5)
為了探討非軸對(duì)稱端壁結(jié)構(gòu)對(duì)出口截面流場特性的影響,定義總壓損失系數(shù),其中表示進(jìn)口相對(duì)總壓,表示當(dāng)?shù)叵鄬?duì)總壓,表示進(jìn)口流體密度,表示進(jìn)口處流體相對(duì)速度,則出口總壓損失系數(shù)等值線圖如圖6所示。圖中可以看出,非軸對(duì)稱端壁結(jié)構(gòu)的使用使轉(zhuǎn)子出口截面總壓損失系數(shù)的分布有所改變,對(duì)應(yīng)區(qū)域總壓損失系數(shù)均有所降低。即采用非軸對(duì)稱端壁結(jié)構(gòu)以后,由于葉片通道橫向壓力梯度的降低,通道渦強(qiáng)度減小,二次流損失降低,出口總壓損失降低。(如圖6)
4 結(jié)語
利用商用CFD軟件對(duì)跨音速軸流壓氣機(jī)轉(zhuǎn)子Rotor67進(jìn)行了詳細(xì)的數(shù)值模擬,進(jìn)而采用三角函數(shù)造型法對(duì)Rotor67轉(zhuǎn)子進(jìn)行了非軸對(duì)稱端壁造型,并對(duì)造型后的壓氣機(jī)轉(zhuǎn)子內(nèi)部流場進(jìn)行了詳細(xì)的數(shù)值模擬,詳細(xì)分析了非軸對(duì)稱端壁結(jié)構(gòu)對(duì)壓氣機(jī)轉(zhuǎn)子性能及其內(nèi)部流場的影響,通過本文研究得出以下結(jié)論:
(1)非軸對(duì)稱端壁結(jié)構(gòu)的采用使得壓氣機(jī)轉(zhuǎn)子峰值效率提高了0.5%左右,流量范圍有所擴(kuò)大。
(2)非軸對(duì)稱端壁造型是對(duì)壓氣機(jī)轉(zhuǎn)子內(nèi)輪轂型面進(jìn)行造型,非軸對(duì)稱端壁造型所能影響到的區(qū)域主要集中在近端壁區(qū)域,而在50%葉高以上的區(qū)域,流場所受影響較小。
(3)非軸對(duì)稱端壁結(jié)構(gòu)的采用降低了葉片通道內(nèi)橫向壓力梯度的大小,從而降低了通道渦的強(qiáng)度,抑制了通道渦的形成與發(fā)展,進(jìn)而降低了二次流損失。
參考文獻(xiàn)
[1]Howell A R.Fluid dynamics of axial compressor[J].Proceeding of the Institution of Mechanical Engineers,1945,153:441-452.
[2] Kopper F C,Milano R,Vanco M.An experimental investigation of endwall profiling in a turbine blade cascade[J]. AIAA Journa l,1981,19(8).
[3] ROSE M G.Non-axisymmetric endwall profiling in the HP NGVs of an axial flow gas turbine[R].ASME 94-GT-249,1994.
[4] Harvey N W,Rose M G.Non-axisymm etric turbine endwall design:three2dime nsional linear design system[A].Proceedings of ASME Turbo Expo 1999 Power for Land,Sea Air,New York,USA,1999.
[5] Hartland J C,Gregory-Smith D.Non-axisymmetric turbine end wall design:experimental validation[A].Proceedings of ASME Turbo Expo 1999 Power for Land,Sea Air,New York,USA,1999.
[6] Hoeger M,Cardamone P,F(xiàn)ottner L. Influence of endwall contouring on the transonic flow in a compressor blade[R].ASME Paper GT-2002-30440,2002.
[7] Harvey N W.Some effects of non axisymmetric endwall profiling on axial flow compressor aero dynamics Part I:linear cascade investigation[R].ASME Paper GT200850990,2008.
[8] 李國君,馬曉永,李軍.非軸對(duì)稱端壁成型及其對(duì)葉柵損失影響的數(shù)值研究[J].西安交通大學(xué)學(xué)報(bào).2005,39(11).
[9] 黃洪雁,王仲奇,馮國泰.上端壁翹曲對(duì)渦輪葉柵流場的影響[J].推進(jìn)技術(shù),2002,23(1).
[10] 高增珣,高學(xué)林,袁新.透平葉柵非軸對(duì)稱端壁造型的氣動(dòng)最優(yōu)化設(shè)計(jì)初探[C].中國工程熱物理學(xué)會(huì)熱機(jī)氣動(dòng)熱力學(xué)學(xué)術(shù)會(huì)議論文集,2006.